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Abstract

While recognizing a face or kicking a ball may seem to beeasy tasks for us, they still constitute challeng
problems for even the most sophisticated computer algorithms available nowadays. The brain has evolved
mechanisms to encode behaviorally relevant information. Here we review the types of codes used by the br
what their constraints are and how they map the sensory environment or the motor output. We start by
neural codes and briefly describing some of the current tools available to record activity from the brain. W
several examples of coding strategies used by different systems and multiple organisms and discuss ho
patterns can be read out. Going beyond correlations between physiology and stimuli, we show what is c
known about the direct causal link between neuronal responses and behavioral output or sensory input. F
identify what we consider to be some of the pressing questions in the field.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction and scope of the review

It seems effortless for us to see, hear, smell and thus interpret what is outside in the enviro
Yet these processes involve complex interactions of large numbers of neurons. A three-year old p
better at face recognition than the best computational algorithms available today. The intricate stim
we are constantly subject to are represented by the neuronal activity in the approximately 1011 neurons in
our brains. Our internal thoughts, emotions and memories are also represented by these neuro
are the commands sent to the muscles for motor output. One of the main goals of Systems Neur
is to try to comprehend how neuronal activity represents sensory input, cognitive processes an
output. However attractive the idea of a little homunculus in our brains trying to interpret the
and issuing commands may be, our task is to explain these processes using only sensory rece
neuronal signals that are sent to other neurons, read by neurons and submitted to muscles for ou

Studies about coding in the nervous system have a long history. Perhaps one of the most in
ideas came about with the realization that different brain areas are involved in processing differe
of signals[1]. A lucid review of the field of neural coding was published by Perkel and Bullock
thirty years ago[2]. Interestingly, they wondered back then whether the code was about to be b
There have been major advances in our understanding of coding in the brain as illustrated b
theme-specific reviews related to neural coding[3–14]. However, many questions about coding are m
complicated that they thought back then and many mysteries remain.
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We will start by asking what we mean by “coding” in the context of the nervous system and what
would constitute evidence that we can decipher particular types of codes. We will not devote much effort
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to enumerating theoretically plausible codes (there are too many). We focus on patterns that a
ally observed in the nervous systems of different species and for which we can find neurophysio
evidence. Embedded in the idea of a code is the notion that some aspects of neuronal activity ca
criminated as a signal while other aspects may be due to noise. The distinction between what co
a signal and what constitutes noise will be a fundamental one. We are particularly interested in t
extract general principles that govern the encoding of information in the nervous system, the mech
that are responsible for such neuronal patterns of activation and the way that those patterns are
However, this does not imply that there is a single answer, a single universal code as in the cas
mapping from nucleotides in DNA to amino acids in proteins[15].

We will draw examples from multiple species and systems throughout the review but we wou
to make some of our biases explicit at this point. We are particularly interested in the visual s
of primates (particularly the higher stages of the so-called ventral pathway in macaque monke
humans). Therefore, we hope the reader will excuse us if there are more examples pertainin
visual system than from other sensory systems, cognitive processes or the motor side. The e
cited in later sections only constitute a small fraction selected for clarity. The examples do not a
to constitute an exhaustive list of all possible coding schemes nor of all possible examples for pa
coding schemes.

Throughout the review, we will focus on spiking patterns from one or more neurons. As w
discuss below, spikes are not the only way of neuronal communication nor are they the only va
one could study to identify neuronal codes. For example, photoreceptor neurons in the retina do
spikes and encode the intensity of light in the form of graded potentials[16,17]. A special section of the
review will be devoted to understanding the state of the art of what can be measured and the d
trade-offs of different techniques. Coding can be studied at different levels of specificity and we
not know what the most appropriate levels are. The annual meeting of the Society for Neurosc
typically attended by approximately 30 000 scientists. Some are concerned with the detailed s
of ionic channels at the atomic level. Others present models and data averaging the activity of m
of neurons. In the same way that it is not necessary to write complex quantum mechanics equa
describe the movement of a ball in free fall, it is likely that there is a most appropriate scale to und
coding in the nervous system.

2. Codes and features

We can generally think of a code as a way of mapping two spaces. In the particular case tha
discussing here, the stimuli in the outside world are represented by the activity of neurons in our
Most of the basic questions that one can ask about maps in general are still unanswered in the
the brain. Is it a one-to-one map (a particular neuronal signature for every stimulus) or many-to
one-to-many? To what extent is it a deterministic or stochastic map? What is the domain (in st
space and neuronal space) of the map? We start by constraining the definition of codes to the
Neuroscience.
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2.1. What is a code and what needs to be explained?
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A code can be a substitution scheme (e.g., a coded language where each letter is substituted b
lowing one as in “Ofvsptdjfodf”). The code(s) in the nervous system are somewhat different: (i) th
not necessarily static (“n” always maps to “o” in the above example), (ii) it is unclear whether the
ber of symbols is fixed (and if they are fixed the number of combinations may be very large), (iii)
codes show considerable levels of noise (e.g., “n” sometimes may map to “o”, other times to “
other times to “m” with different frequencies). Some of these discrepancies are addressed by Sh
information theoretic approach[18]. Indeed information theory has been used quite successfully in m
examples in Neuroscience[19–21]. One should be cautious, however, about the interpretation of
results. In general, the ability to decode a signal from neuronal spike trains does not necessari
that this decoding process is used by the nervous system. While the number of bits conveyed
rons about sensory stimuli can be very high and approximate the theoretical limits[7], it is still hard to
establish a direct link between information transmission rate and behavior.

Encoding the information through multiple stages of processing may be useful for an organ
compress information, get rid of behaviorally irrelevant variables and extract the particular st
features that are important to understand the environmental signals. For example, a neuron in
temporal cortex might be interested in achieving a representation of complex stimuli (such as a
a way that is invariant to changes in position, size, illumination, and even rotation in some cases.

What would it mean to understand the neural code? We would like to be able to predict the ne
activity from a given stimulus and guess which stimulus was presented based on the neuronal
An analogy may be useful. It is common to store digital images in a computer. Given the pixels
are several different ways of storing the information into the pattern of zeros and ones that com
understand. If we take one particular format, say JPEG, we know how to convert pixels to 0s and
we know how to read the 0s and 1s to re-create the digital image.

The question is more complicated in the case of neural coding. We generally do not know the
alent of the pixels, that is, exactly what is being encoded in different areas of the brain. And th
potentially several million neurons that may be involved in the representation (it is estimated th
human brain contains on the order of 1011 neurons making approximately 1014 synapses[22]). The task
seems daunting. However, we do not need to write quantum mechanics level equations for a lar
ber of atoms to predict the trajectory of a ball in space. Maybe it is possible to derive similar “clas
approximations for how neurons encode information.

As a first step, we can suspect that a particular area of the brain is relevant for certain task
type of information has initially come from cases of patients that had neurological lesions (see a
comments below about functional imaging). In this way, it was initially established that areas
occipital cortex were important for visual processing[23]. This type of initial notions then gave way
more detailed studies about the responses of individual neurons. A lesion in area V5 (also called
monkeys impairs the animals’ perception of motion[24]. Several investigators reported that the neuro
activity in this area was correlated with the direction of motion of the stimuli. Within this frame
possible to ask how to predict certain aspects of the stimulus (e.g., its direction of motion in this
from the neuronal activity.

A distinction must be made between explicit and implicit encoding of information. If we obse
face, the information about that face is encoded in our retinae. This information is then subm
several stages of visual processing. The retinae contain information about the face in the same
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the pixels in a computer monitor contain information about a face photograph. However, the retinae know
little about faces. If the face is slightly rotated, or if luminosity changes, or if the face moves away from
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the observer changing its size, most of the neurons in the retinae will completely alter their patt
firing. The retinae implicitly contain information about the face but faces are not the features enco
the retinae.

2.2. Which features are encoded?

An area of the cortex called V1 receives visual input from the lateral geniculate nucleus in the th
which, in turn, receives visual input from the retina[17]. Investigators have studied the receptive fie
and response characteristics of neurons in this area to visual stimuli. Searching for a response
stimuli in this area would not yield much success. This obvious point shows that in order to stud
neurons encode information one also needs to understand what kind of information is being e
However, it seems that in order to understand what kind of information is being encoded, one n
understand what to look for in the neuronal response. This chicken and egg dilemma emphas
strong link between neural coding and the study of feature selectivity. In fact, the two issues cou
well be considered to be part of the same problem. The above example appears trivial but cons
case of recordings in inferior temporal (IT) cortex in the macaque brain. We know that neurons in th
change their firing rate in response to complex stimuli such as faces and hands[25–28]. Does this mean
that neurons in IT are actually interested in the whole face or just the eyes, or a particular comb
of eyes and mouth, or some other complex features? A model of object recognition posits that se
and invariance of neurons in IT can be derived from a hierarchical arrangement of different visua
with distinct feature selectivities[29]. Still, understanding what particular features are being encod
IT has proved to be a rather difficult task in spite of over three decades of active research in the fi

Detecting what features are encoded is difficult because the stimulus universe is multidimensio
potentially quite complex and recording time is highly limited. A typical recording session for a
neuron may allow the investigator to present a set of approximately a few hundred stimuli and
typically not enough to fully characterize or extract what features are encoded. Investigators ma
metrically vary the stimuli according to some particular features they have in mind but these para
may be as relevant to the neurons as the tactile stimuli may be to V1.

2.3. Comparison to coding in modern computers

The brain has often been compared to computers. In computer science, the word “code” is som
used to refer to a program or set of instructions that a computer will follow but this is unrelated
discussion. Closer to neural codes are the ways in which information is encoded in the bits of a co
Gross estimates of the number of neurons in the human brain give numbers of 1011 neurons and on th
order of 1014 synaptic connections[22]. The Intel chip in the CPU of a modern computer contains on
order of 108 transistors. The clock speed may be on the order of 1 ns for the Pentium chip, a numb
is several orders of magnitude faster than the type of communications present in the brain. On
major differences lies in the connectivity; the brain has an average of approximately 103 connections pe
neuron. Another remarkable difference is the reliability. At the single transistor level, the voltage m
very stable whereas the timing of firing of a neuron may vary by several hundred ms from one
the next under apparently similar conditions. Even in the most remarkable cases of timing accura
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Section 4.3), transistors would appear to be more precise. Furthermore, transmission of action potentials
and neurotransmitter release from action potentials is also very unreliable (seeSection 5). While it is
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unclear how to accurately estimate the storage capacity of the human brain, common sense
indicate that in terms of sheer memory storage, computers highly surpass humans. Still, the m
and apparently simple tasks of recognizing objects, understanding an arbitrary conversation and
around the house still constitute hard tasks for modern computers.

Suppose an investigator tries to understand how information is stored in a computer. The
reverse-engineering a computer to find out the codes may by highly nontrivial. We could further a
that his tools are far from ideal. For example, he can start only by monitoring the voltage at a pa
transistor within the circuit. Trying to correlate this measurement to the processes going on in th
puter or to its output (e.g., what is shown in the screen) may not be easy. This trivial analogy,
flawed in many aspects, illustrates how difficult the task of understanding the codes used by a co
or a brain can be. One way to start is by using large-scale models and measurements (e.g., wha
if this chip is removed?), and then fine-tune the techniques to study the smaller components.

3. What kind of experimental data and resolutions do we need to study neural coding?

As in many other areas of science, what can and what cannot be measured influences the
hypotheses that can be directly tested. There are many theoretical ideas and models about c
large groups of neurons and multiple brain areas. Unfortunately, at this point many of these hyp
are necessarily highly speculative given the kind of evidence that experimentalists can gather.
give a brief overview here of the most common type of measurements that neuroscientists use n
to interrogate the activity within the brain. We will describe the temporal and spatial resolution o
technique (Fig. 1). The description is brief and the reader is referred to other more comprehensive e
mental treatises for further information (see, for example, Refs.[30–32]). The list of techniques indicate
here corresponds to some of the most prominent experimental tools used by neuroscientists tod
are not intended to represent theoretical limits of what can be measured. It should be kept in m
course, that this is a highly dynamic discipline and that techniques can be dramatically improve
the course of a decade.

3.1. A succinct description of experimental techniques

One of the oldest techniques is electroencephalography (EEG). EEG measurements have a v
temporal resolution (<1 ms), but the spatial resolution is highly limited[16]. Several investigators hav
tried to improve models used to attempt to derive the precise location of the sources of EEG acti
it is still at best on the order of several mm (several cm in most cases). This is due to the nece
solving an ill-posed problem in which multiple solutions exist for electric fields inside the head th
give rise to a given pattern of EEG measurements. For a density of approximately 105 neurons per mm3

in cortex, a resolution of 1 cm3 implies listening to the activity of on the order of millions of neurons.
important advantage of EEGs is that this is a non-invasive technique. This implies that it is pos
work in humans as well as in other species. A related technique is magnetic encephalography t
similar comments apply[33,34].
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Fig. 1. Experimental techniques used to study neural coding. Schematic illustration of the spatial and temporal resoluti
ferent experimental techniques used in Neuroscience. The resolution limits indicated here are only approximate and m
on experimental conditions. In some cases, combining different techniques can improve the resolution. The limits shown h
only indicate what has been experimentally reported and do not necessarily imply fundamental physical limits in the tec
We exclude from these diagrams measurements from psychophysics, psychology, and computational models. (A) Techniq
that measure neuronal activity directly or indirectly. Electrophysiology-based techniques are shown in gray, optical te
are shown in blue, PET and fMRI are shown in green. (B) Techniques that interfere with neuronal activity. Lesion tec
are shown in red, stimulation techniques are shown in yellow. Further comments about each technique and reference
in the text (seeSection 3.1). EEG= electroencephalography, MEG= magnetoencephalography, LFP= local field potentials,
MUA = multiunit activity, SUA= single unit activity, PET= positron emission tomography, fMRI= functional magnetic res
onance imaging, TMS= transcranial magnetic stimulation. This is an update of a figure prepared by Churchland and Se
([145], with permission).
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Fig. 1. (Continued).

Another important technique of wide use in Neuroscience is functional magnetic resonance i
(fMRI). The basic principle is based on the observation made by Linus Pauling several decades
the magnetic state of oxygen (O2), changes when it is bound to hemoglobin[35]. Given that increases i
neuronal activity lead to a concomitant increase in blood flow to a particular brain area, it is poss
indirectly infer neuronal activation based on blood flow[32,36]. The same principle is applied in positro
emission tomography(PET). The best current reports about spatial resolution come from investig
applying this technique in monkeys. Using magnetic fields of 4.7 Tesla, Logothetis and colleague
a resolution of 125× 125× 720 µm[37]. This technique is also non-invasive and several thous



G. Kreiman / Physics of Life Reviews 1 (2004) 71–102 79

papers have been published already using this technique in humans. Another important advantage is that
it permits to observe the activity in the whole brain at once. Unfortunately, the temporal resolution is
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rather poor and is limited by the speed of blood inflow to a particular area, typically on the orde
to 2 s[30]. At the present moment, it seems unlikely that the temporal resolution could be improv
several orders of magnitude to reach the ms or sub-ms level of electrophysiology.

It is worth mentioning other imaging techniques including optical imaging and two-photon
croscopy. Optical imaging uses the infrared frequency band (typically 600–750 nm) to meas
reflected light with a CCD camera. It is based on the change of absorption with neuronal activit[38].
The signal has a delay of several hundred ms and therefore also does not provide the temporal r
of electrophysiological recordings. However, it allows the investigators to observe larger areas o
[39]. Conventional microscopy has also been an important tool in Neuroscience, providing imp
anatomical insights but it lacks the temporal resolution required to study neuronal firing. Two-p
microscopy provides sub-neuronal resolution (see, for example, Refs.[40–42]). Optical imaging with
voltage sensitive dyes promises a high spatial and temporal resolution while still keeping many of
vantages of imaging[43]. This invasive technique achieves a spatial resolution<1 mm with ms precision
in the time domain.

Lesions have provided unique insights about the functioning of the brain (see, for example,[43–47])
and the historical account in[1]). This is, by nature, an invasive technique. In humans, we are lim
of course to natural lesions. In animals lesions can also strongly point to the areas of the brain i
in particular behaviors or sensations. Indeed, lesions have provided the foundation for many of t
trophysiological experiments that are described in this review. More restricted types of lesions a
possible in animals. As we will discuss inSection 7, the advent of tools from molecular biology promis
to radically change the lesion tools available today. However, the application of molecular tools a
resolution lesion tools only works for animal models.

Our hunch is that a detailed understanding of the mechanisms of coding and decoding will
very high temporal (ms) and spatial (neurons) resolution. If we ultimately want to understand qu
such as how many neurons represent a given stimulus, how the pattern of neuronal firing relate
stimulus, and what type of neuronal responses a given stimulus will elicit, it seems that we can
definition, rely exclusively on low spatial or low temporal resolution data. The same seems to
although this is far more tentative, to being able to predict the stimulus based on the neuronal
This is more tentative because it is possible that one could build rather accurate classifiers b
low-resolution non-invasive data at least for some aspects of the stimulus world. For example, it
possible to easily discriminate based on EEG data or fMRI data whether the subject saw a face or
[48–51] but it is unclear how to arbitrarily predict exactly what stimulus the subject saw from EE
fMRI data. It should be emphasized that currently we cannot do this with high spatial resolutio
either. Thus, functional imaging (including optical imaging and fMRI), EEG/MEG recordings and l
studies seem provide a fundamental foundation to guide the search for neuronal coding mechan

The focus of our review will be single neuron electrophysiology. Neurons emit all-or-none ele
signals, called action potentials, or spikes. These spikes can be monitored by inserting an electro
enough to the neuron. These impulses are on the order of a few µV when monitored extrace
and last about 1–2 ms. The path to neuroelectrophysiology was opened by the design of amplifi
to detect such small signals[1,52]. Extracellular recordings are based on measuring electrical cha
outside of the neuron. If the electrode is sufficiently close to the soma of one neuron, the signal
mostly from a single neuron. In some cases, the investigators can also insert the electrode in
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soma of the neuron to monitor the intracellular potential. However, it is generally difficult to maintain
stable intracellular recordings for prolonged periods of time. If the extracellular electrode is farther from
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the soma of the neuron, it may pick up the activity of multiple nearby neurons. Single unit a
can be obtained from multi-unit recordings using algorithms of spike sorting[53,54]. Spiking activity
is obtained by high-pass filtering the raw signal (typically with a corner frequency of 300–600
If, instead of taking the high-pass band of the extracellular recordings, the investigators use th
frequency band (from 0.5–300 Hz), the resulting recording is called local field potentials(LFP). LFPs
also show sub-ms temporal resolution and monitor the activity of large ensembles of neurons, p
on the order of several mm to cm[37].

3.2. About spikes and codes

The advent of electrophysiological recordings from single fibers made possible by Edgar Adri
colleagues revolutionized the field of Neuroscience[1]. This technique gave rise to eight decades n
where researchers monitor the activity of single neurons in different species and different brain are
initial studies of Edgar Adrian were concerned with motor output. He showed that there was a corr
between the number of impulses emitted by a single fiber and the strength of the output[16,52]. As
another major example of the application of this technique, Kuffler observed that neurons in the
enhanced their firing response when the stimulus was within a delimited area of the visual field
the receptive field[17]. Hubel and Wiesel inserted electrodes in the first cortical stage that receives
input, the so-called primary visual area or V1, and observed that neurons may prefer (meaning fi
action potentials) bars of particular orientations[55].

What is the business of spikes? Spikes provide a fast way of communicating signals between n
Furthermore, their regenerative properties imply that they can travel long distances with little atten
Textbooks typically indicate that all spikes from a given neuron are equal in height and duration (
for bursts of spikes). Are they really equivalent from the point of view of coding? An analogy may
illustrate the point. Suppose an investigator is interested in understanding human communica
could pay attention to what somebody says during a lecture to many students or he could pay atte
what the person sings while he is showering. Even during the lecture, the speaker may emphasiz
points. Similarly, the same neuron may carry different messages depending on which neurons wi
different messages at different time points, etc.

Spikes are accessible experimentally. What other variables may be relevant? It may be intere
consider the concentration of neurotransmitter released at the synaptic cleft as well as the Ca2+ concen-
tration in the pre-synaptic terminal and dendrites. It is generally harder to get detailed informatio
two-photon microscopy inSection 3.1) about these variables in a dynamic fashion with an accep
temporal resolution.

At least theoretically, there is enormous room to perform very fancy computations with spikes. P
a stimulus may be encoded by a neuron A firing a spike precisely 5.2 ms after another neuron
a spike and 14.2 ms before a spike from neuron C. Some investigators have spent considerab
trying to study some of these possibilities[11,56]. Experimental evidence for a direct role of any of the
complex spiking patterns in coding information is still hard to come by.

There may be a tacit assumption that individual neurons can only code simple features wherea
coding of complex features requires the coordination of thousands or hundreds of thousands of n
For example, a single neuron in the retina can be interested in the intensity in a particular sma
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of the visual field and several of these patches can be combined to form a line[17,55]. The activity of a
single neuron representing a face may appear to be more mysterious. However, one can think of complex
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stimuli as being composed of a certain number of more elementary features[29]. An elegant example
of coding complex computations in individual neurons is given by the so-called lobula giant mov
detector neuron in locusts which can encode the product of two separate variables that are imp
detect a looming object[57].

4. A gallery of examples

By reading the previous sections, it may be possible to assume that we are searching for on
neuronal code that can explain all available data. While indeed we want to find universal principle
encoding and decoding, it is not necessarily true that there should be one single type of represe
The nervous systems of different organisms are the product of very long periods of evolution. This
that multiple independent ways of representing information may have appeared through time
coding mechanisms may have remained available if they were in some sense efficient and usef
survival of the organism. For example, a certain coding scheme can have a selective advantage ov
through its efficient energy usage[58], through a higher capacity or through the possibility of separa
stimuli that are indistinguishable for other codes.

In this section we describe several coding strategies (Fig. 2), illustrating each one with specific exam
ples. The themes we summarize here are important coding strategies for which experimental su
currently available. However, this does not constitute an exhaustive list of coding schemes. We
the continuous distinction between “rate” coding and “time” coding. We show examples of sparse
and the encoding of time-varying signals. Finally, we discuss the particular properties of how ens
of neurons may encode information.

4.1. Rate codes

The most common notion of a neural code follows the paradigm laid out by Edgar Adrian (Section 3.2).
In a “rate code” the only variable of interest is the total number of action potentials emitted by a n
in a relatively long time period of several hundred ms or even seconds (Fig. 2A). “Spike timing” codes
and “rate” codes are part of a continuum that depends on the size of the time window used to coun
[7,9,14]. In a “spike timing” code, the precise time at which the spike occurs, at the ms level, is re
for encoding. In a rate code, the time of occurrence of spikes is considered to be noise; two spik
with the same number of action potentials are considered to be equivalent regardless of the timing
(Fig. 2A, top). For many electrophysiologists, a rate code constitutes the simplest and clearest n
how neurons encode information.

Several investigators have recorded the neuronal activity in visual area V5 in the monkey
(also called area MT) while the animal observed motion stimuli or performed a motion discrimin
task[59]. By counting the number of spikes in windows of several hundred ms (or even more th
[59]), it has been shown that: (i) neurons in this area are selective to the direction of motion[60], (ii) the
spike count correlates well with the motion discrimination performance of the monkey[59,61], (iii) the
timing of action potentials with respect to stimulus onset upon repeated presentations of the sam
lus is quite variable[4,62].
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Fig. 2. Schematic illustration of different coding schemes andtheir corresponding temporal resolutions. (A) In a rate coding
scheme, the number of spikes in windows of several hundred ms correlates with some stimulus feature or motor ou
two spike trains shown on the top part are considered to be equivalent for a rate code since they carry the same n
action potentials in spite ofthe different temporal patterns. Although a linear trend is illustrated here, the relationship betwee
stimulus and the spike count may be non-linear. Examples of rate codes are given in Refs.[59,63]. (B) In a sparse representatio
the neuron shows a very low spontaneous activity. The neuron reliably fires a single burst of spikes at a particular t
stimulus onset during multiple repetitions of the same stimulus. Examples of sparse representations are given inFig. 3 and
Refs. [69,71,72]. (C) A neuron shows very precise spike timing, with a trial-to-trial variation which can be less than
Examples of remarkable temporal precision in neuronal firing can be seen in Refs.[9,14,79,146]. (D) A time varying signal
(solid trace) is represented by a neuron that can follow the rapid changes in the stimulus (top, action potentials). The
can be reconstructed (dashed trace) from the instantaneous firing rate of the neuron (see Refs.[20,21,87]for examples of this
type of representation). (E) In this example, the synchronized activity of multiple neurons (symbolized by the spikes m
red) constitutes the code to represent information. Examples of this type of representation are given inFig. 4and Refs.[10,97,
101,103].
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Similarly, in the macaque inferior temporal cortex, spike counts correlate well with the identity of the
stimulus the monkey is viewing[63]. Charles Gross and colleagues showed that a neuron may enhance
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the number of spikes with respect to the baseline firing rate upon presenting to the animal a certa
ulus, such as a given face[25,63]. Upon repeatedly presenting the same stimulus, investigators typ
observe that the timing of the spikes, with respect to the stimulus onset, is highly variable. The m
the interspike interval distribution is typically on the order of the standard deviation, which corres
to the variability observed in a Poisson process[22]. The interpretation of these observations by m
investigators is that the variability in spike timing constitutes mostly noise that needs to be “av
out” and that neurons only care about the mean spike counts in windows of several hundred ms[4].

With an appropriate dynamic rate, a neuron could encode multiple different features in differen
count bands. For example, a V1 neuron could, in principle, signal the presence of a bar of a giv
entation with 10–20 spikes/s, a bar of a different orientation with 20–30 spikes/s, etc. In the brain, th
mechanism of encoding seems to be different. A V1 neuron may have an orientation preference
number of spikes per second correlates with how close the actual orientation is to the preferred o

How are rate codes read out? The “averaging out” of the variability could be performed by a
synaptic neuron that integrates input from large numbers of neurons. In this scheme, the input
are assumed to function independently and communicate a spike rate with some noise[4,64]. This view
greatly simplifies the tasks of recording, analyzing and decoding neuronal activity. Furthermore, th
gests that at least to a certain degree it is possible to ignore the complexities of where neurons
input, dendritic processing, spike timing and correlations between neurons. Rate codes are robus
ing jitter by definition. The degree of robustness to spike failures and spontaneous spikes depend
variability in spike counts compared to these sources of noise.

4.2. Sparse codes

In stark contrast with neurons that constantly fire many spikes per second and then briefly chan
firing rate by several tens of spikes per second, there are some remarkable examples where in
neurons seem to respond selectively to specific stimuli using only a few spikes (Fig. 2B). Suchsparse
representations have caught the attention of many scientists[65,66].

As an example of a sparse representation, Kreiman and colleagues have studied the resp
individual neurons in the human medial temporal lobe (MTL). Subjects are patients who show
macologically intractable forms of epilepsy. Electrodes are implanted, typically in the hippoca
amygdala, entorhinal cortex and parahippocampal gyrus, in order to localize the seizure ons
[67–69]. Single neurons in the human MTL show selective responses to visual presentation of c
stimuli including faces, objects and spatial layouts[67]. Some neurons showed a sparse response
very low background rate (less than 1 spike/s) and an enhancement of only a few additional spike
the presence of their preferred stimuli[69,70]. An example of this is shown inFig. 3A. This neuron,
located in the right amygdala, fired a few extra spikes upon presenting to the subject a drawing o
one of the characters in a famous American TV series. This should not be interpreted as indicat
this is the only visual stimulus that the neuron would respond to. Recording time is highly limite
the investigators could only present less than 60 different pictures[69]. This observation does not imp
either that this is the only neuron in the human brain that would be selective to Curly. Apart from
highly unlikely, such a representation would not be robust.
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Fig. 3. Examples of sparse neuronal responses. (A) Responsesof a neuron in the amygdala of a human epileptic patient
planted with depth electrodes in order to localize the seizure focus[70]. The subject was presented with pictures of comp
stimuli (top, only a subset of the images is shown here). Below each image, a raster plot indicates all the spikes a
stimulus onset. The post-stimulus time histograms (PSTHs) show the average response of the neuron to multiple repetitio
of each image (the number of repetitions of each image is indicated above the PSTH). The dashed vertical lines indicate
stimulus onset and offset respectively. This neuron transiently increased its activity when the subject saw an image
(from [69], with permission). (B) Responses of an olfactory neuron located in the so-called mushroom body of a locu
different odors. The stimulus presentation time (1 s) is denoted by the gray rectangles. Each tick indicates an action
and multiple repetitions of each odor are shown. The neuron remained silent most of thetime, with a baseline firing rate of les
than 1 spike/s. The neuron reliably fired a few spikes at a specific time in response to 2 odors only (from[71], with permission).
(C) Responses of 10 neurons in an area called the hyperstriatum ventralis pars caudalis (HVC) nucleus of the songbird
animal was singing. The top part shows thevocalizations as a sonogram (frequency versus time, the intensity is color coded
The song is divided into motifs which are, in turn, composed of different syllables. The bottom part shows the neuron
plot, with multiple repetitions for each of the 10 neurons; each neuron is shown in a different color. The spikes are a
the onset of the nearest song syllable. The neurons showed a very low rate and fired a brief burst of spikes during
syllable. In general, different neurons selectively responded during distinct syllables or parts of a syllable, some neuron
respond during this song motif (from[72], with permission).

Another example of sparse coding comes from the study of encoding of olfactory informati
individual neurons in the mushroom body of locusts[12]. Remarkably, these neurons show, on avera
interspike intervals longer than 20 s. Some of these neurons responded specifically to one or a fe
16 possible odorants by firing only one or two spikes at specific times[71]. One such neuron is shown
Fig. 3B. It is striking to note how the neuron is basically silent most of the time. The baseline firin
of this type of neurons was 0.025 spikes/s.



G. Kreiman / Physics of Life Reviews 1 (2004) 71–102 85

one of
ikes at
-
dmother’
ted
ion

read-out
sentation

reliable,
e strong
e average

dly pre-
cases
t
omplex

ocal
t
at
Fig. 3. (Continued).

Another interesting example is the study of the songbird’s auditory system. Single neurons in
the nuclei important in producing songs (the so-called HVC nucleus) show a short burst of sp
specific time periods with respect to certain syllables of the song (Fig. 3C, [72]). The investigators sug
gested that these neurons show similar responses to those in the controversial proposal of ‘gran
cells in the case of object recognition[72]. A “grandmother cell” is a neuron that would be activa
exclusively when the subject saw his grandmother[65,73]. This example shows that the representat
of motor output, not only that of sensory stimuli, can also be sparse.

How are sparse representations decoded? While many modeling studies have addressed the
of rate codes, fewer studies have focused on how to interpret sparse representations. For a repre
using very few spikes to be efficiently decoded, the transmission of these spikes should be very
the spontaneous activity should be low and the neurons sending sparse information should mak
synapses. One may also speculate that the post-synaptic neurons receive fewer inputs than th
neuron in cortex.

4.3. Spectacular timing

There are some examples where neurons display a striking temporal precision upon repeate
senting the same stimulus (Fig. 2C). We review some of those examples here but we leave those
related to synchronous interaction of two or more neurons forSection 4.5.2. Multiple other ideas tha
take into account the timing of action potentials have been suggested including the existence of c
spiking patterns in multiple neurons[11], the precise timing with respect to a given phase of the l
field potential[12], encoding based on first spikes or spike latency[74]. For an overview of differen
spike timing codes and their resolutions, see references[9,14]. In this section, we focus on cases th
illustrate that neurons can be precise at the ms or even sub-ms level.
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Owls can localize sounds using two cues, the difference in the arrival time of a sound to its right
and left ears and the difference in the intensity of the sound at the two ears. The circuit and algorithms
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involved in this process have been the subject of intensive study[75,76]. The time difference betwee
the two ears is in the sub-ms range. An elegant mechanism involving delay lines from neurons
phase-locked information from each ear converges on a part of the brain called the nucleus lam
owls. Neurons in the nucleus laminaris are sensitive to coincidences in the spike arrival times a
detect interaural time differences on the order of tens to hundreds of µs[76,77].

A similar algorithm is used by electric fish in a behavior used to avoid jamming of frequencies
nearby fish[75,78]. The fish are able to detect phase differences of 400 ns in the signals arriv
different parts of its body. Interestingly, at the neuronal level, the primary afferents in the phase p
show a response jitter on the order of 30 µs. In contrast to what might be expected, accuracy in
in higher processing stages and phase neurons in the midbrain show a jitter of 11 µs[79]. This shows a
striking contrast with the variabilities of tens to hundreds of ms of some of the cortical neurons dis
in Section 4.1.

A somewhat different example comes from adjacent retinal ganglion cells that communicate t
gap junctions in the retina. Cross-correlation analysis of the spike trains of ganglion cells in the sa
der retina during spontaneous activity shows that a neuron can fire on average within 600 µs of t
neuron[80]. Retinal ganglion cells that share a common input show correlated firing with timesca
the order of 10–50 ms.

What does all this imply? We take these cases as evidence that neurons can show high t
precision. Furthermore, even the sub-ms precision of spike timing can be relevant to encode info
at least in these examples. This seems to be particularly true of situations in which time is an e
component of the signal itself (e.g., auditory time differences or phase of electrical signals). This
not be taken to imply that the timing of all spikes in the nervous system needs to be studied a
level but, at the very least, the machinery for timing accuracy is there[81,82]. Therefore, this certainly
casts a doubt on arguments suggesting that neurons cannot keep precise timing. It is possible tha
to encode a stimulus that remains present on the order of several hundred ms or more, neuron
need to show such striking temporal precision. For example, in the case of macaque monkeys
stimuli may be stable for 100 ms or more and therefore a different coding strategy may have e
This stresses the importance of studying coding of natural rather than artificial stimuli; see for e
[83–86]. It is rather interesting and important to question how neurons can show this type of tem
hyperacuity when the spikes last on the order of 1 ms and interspike intervals may last 10 ms o
How decoding works for signals that have extraordinary precision is still unclear but the detec
coincident firing may play an important role (seeSection 4.5.2).

4.4. Time varying signals

Another situation where time is essential is the case of dynamic signals (Fig. 2D). For example, for
a fly, estimating motion with relatively high precision may be crucial for its survival. The encodin
time-varying signals imposes some constraints on the types of codes that can be used and p
the system from integrating spikes over hundreds of ms. All signals in the natural world are dy
either because things move or because the animal moves or moves his eyes but the speed of c
a monkey deciding whether a face is friend or foe, is much slower than for a fly deciding which w
turn.
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An example of the encoding of time-varying information is the work on an identified neuron called
H1 in the fly. Bialek and colleagues were able to show that they could quite accurately reconstruct the

neuron,
and the
cisions

phase
arkable
sh are

ns are
gher
tes and
ted by
n-
nce for

rapidly
next

l
recon-

e pyra-
lations.
tric field)

many
tivity of
nforma-
d with
of neu-
typically
indepen-
ses, the
important

he same
only af-
here they
m

motion stimuli experienced by the animal from the spikes recorded from a single H1 neuron[7,20]. An
information theoretic analysis can put a bound on the number of bits transmitted by such a spiking
reaching values of 3 bits per spike. Interestingly, when considering the flight speed of the animal
firing rates of the H1 neuron, Bialek and colleagues also concluded that in many instances de
about direction of motion are based on a very small number of spikes[7,20].

Another example of encoding of time-varying signals comes from a very different system. The
pathway in the weakly electric fish was already mentioned in this article as one of the most rem
examples of timing precision. In parallel to this pathway, electrosensory neurons in the electric fi
sensitive to the amplitude of electric field modulations in the environment. Amplitude modulatio
used to locate objects and for communication[78]. The amplitude and phase pathways converge in hi
brain centers of the electric fish. So-called P-type primary receptor afferents show high firing ra
their activity is modulated by amplitude changes. Up to 80% of the stimulus can be reconstruc
applying a linear filter to the spiking activity of these neurons[87]. Interestingly, the code shows a co
siderable degree of robustness to spike failures, spontaneous activity and timing jitter. The tolera
timing jitter depends on the cut-off frequency of the stimulus and can be on the order of 3 ms for
changing signals[21]. Signals from approximately ten of these afferent neurons converge on the
stage of signal processing, the pyramidal neurons in the electrolateral line lobe (ELL). The pyramida
neurons show much lower firing rates and typically fire bursts of 10–20 ms duration. Stimulus
struction from pyramidal cells is very poor compared to P-receptors[88]. The possibility of studying
both stages allows for investigating how time-varying signals could be decoded. In this case, th
midal cells in the ELL do not seem to represent the detailed time course of the amplitude modu
Instead, they extract behaviorally relevant features (such as upstrokes or downstrokes in the elec
by firing bursts of spikes[88].

4.5. Coding by multiple neurons

The brain solves a different problem than the decoding of single electrode activity performed by
electrophysiologists. Cognitive processing and decisions about motor output depend on the ac
large numbers of neurons. Therefore, it is important to ask how groups of neurons can encode i
tion in the nervous system. A large fraction (but not all) of the available data has been recorde
single electrodes. Investigators recording from individual neurons still wondered how ensembles
rons could encode information. Because of the lack of simultaneous recordings, these studies
assumed independent firing. Here we review some of the ideas about coding by ensembles of
dent neurons. We also discuss findings obtained from multiple electrode recordings. In some ca
independence assumptions seem to hold but there is also evidence that dependencies may be
in several other cases.

4.5.1. Independent neurons
In some cases, investigators recorded from single electrodes on multiple sessions using t

stimuli. From these types of recordings, it is possible to extrapolate to ensembles of neurons
ter assuming independence. One such example is the study of Georgopoulos and colleagues w
studied how a population of neurons could encode the direction of movement of the monkey’s ar[89].
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Each single neuron was only broadly tuned to a specific direction of movement but the population vec-
tor obtained by adding the vectors denoting the “votes” of each neuron was a much better indicator of
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the direction of movement. Using a total of 224 neurons, this population vector was, on average◦
away from the actual direction of movement (the direction of movement in the plane could be any
between 0◦ and 360◦) [89]. A similar example is given by the attempts to assess the capacity of in
temporal cortex neurons for complex objects of Rolls and colleagues[90]. Other models and analyse
have been proposed beyond the simple voting schemes[91,92] but the underlying assumption is that
independence.

The question of independence has been hotly debated for the past two decades. An experim
sessment requires recording from multiple electrodes. One study where investigators attempted to
evaluate the independence hypothesis is the work of Nirenberg and colleagues in retinal ganglion
the isolated mouse retina[93]. By comparing the amount of information conveyed by multiple neur
assuming independent firing versus the information without this assumption, the investigators o
that more than 90% of the information about the natural stimuli could be retrieved without studyin
certed firing[93]. In another example, by recording from pairs of pyramidal cells in the electrola
line lobe of theEigenmania electric fish, Krahe et al. observed that they could consider the cells t
independently[94]. In other words, the degree of correlation between pairs of neurons was the
after randomly shuffling the trials. This suggests that, for those experimental conditions, simult
recordings did not add to the information encoded by pairs of neurons.Fig. 4A shows the probability o
misclassifying upstrokes and downstrokes in the electric field amplitude from single neuron reco
and also from pairs of pyramidal cells. Shuffling the trials did not change the classification perfor
for pairs of neurons, therefore suggesting that the responses of the two neurons could be cons
be independent. Similar results were reported by other investigators (see, for example,[95,96]).

The degree of independence may depend on several experimental parameters including the
itself and the state of the animal (e.g., anesthetized versus awake). Furthermore, the correlatio
firing of two neurons may be a function of the distance between them. Inserting two electrode
close to each other may not be easy and in some cases the connectivity may be such that it ma
difficult to find two neurons that are connected or have common input.

4.5.2. Synchrony
In spite of these caveats, other investigators have shown cases where the independence as

breaks and it is important to consider synchronous firing. The group of Singer and colleagu
shown several examples of synchronous firing in the cat visual cortex[10,97]. In one such example
the investigators recorded from multiple neurons in the cat visual cortex and observed that two n
synchronized their firing only when their activating stimulus belonged to a single object[98]. In many
of these papers the idea of synchronous firing has been linked to the solution to the so-called
problem. In brief, if you see a red apple falling from a tree, some color neurons may be detect
red, some movement neurons may be detecting the motion and some object neurons may be inte
the shape of the apple. How does the subject distinguish the red apple falling from the tree from
car moving in the street, the red apple hanging in the tree, and the green leaf falling next to the
This is the so-called binding problem. One proposal (oversimplified here) has been that the key lie
synchronous firing between “red” neurons, “apple” neurons and “downward” movement neuron[10].
This notion is still hotly debated (see, for example,[99,100]).
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Fig. 4. Examples of correlations in spike timing between two neurons. (A) Feature extraction performance by pyrami
in the anterior lateral line lobe of theEigenmania electric fish. Pyramidal neurons signal changes in the amplitude o
electric field around the fish. The classification of upstrokes and downstrokes in the electric field is characterized
the probability of misclassifying the stimulus,pe, ranging from 0.5 (chance performance) to 0 (perfect classification).
diagram shows that bursts of spikes from pyramidal cells are better indicators of environmental signals than isolate
Synchronized spikes from two pyramidal neurons are even better at classifying the changes in electric field. The
distinction between shuffled and non-shuffled trials suggests that neurons can be considered to fire independently under
experimental conditions. Results shown here correspond to the I-type neurons. Error bars represent standard errors o
The numbers below the bars give the overall number of stimulus conditions for all cells or cell pairs analyzed (fro[94],
with permission). (B) Change in synchrony between an attended (solid line) and unattended (dashed line) condition
two neurons recorded from macaque SII motor area. A monkey was trained to switch attention between two differen
visual task and a tactile task. Steinmetz et al. found that the attentional state was correlated with the level of synchronous fi
between neurons. Synchrony was assessed by the degree of correlated firing after subtracting coincidences expected
in firing rate. Thex-axis indicates the time delay between the firing of the two neurons and they-axis shows the number o
coincidences normalized to coincidences/s; bin size= 50 ms Shuffling the trials significantly affected the results; this indic
that, in contrast to the example shown in part A, the neurons could not be considered to respond independently (re
from [101], with permission).

In a different example of synchronous interactions between pairs of neurons, Steinmetz and co
showed that the degree of attention to different stimuli is correlated with the degree of synchro
tween neurons in the somatosensory cortex of awake monkeys (Fig. 4B). Their careful statistical analys
showed that the synchrony observed between neurons is independent of changes in the firing ra
neurons involved[101]. Other examples of synchronous interactions have been observed betwee
of neurons in the lateral geniculate nucleus in monkeys and also in primary visual cortex[8,102].

The most dramatic demonstration to date that synchrony can have a direct role in the behavio
organism has been the study of Stopfer and colleagues in the olfactory system of honeybees[103]. The
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authors showed that inhibiting synchronous firing by injecting picrotoxin, a GABAA channel antagonist
caused poor performance in an olfactory discrimination task. This constitutes the first direct evidence
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that synchrony can introduce an important dimension to encode different stimuli.

5. The biophysical point of view

We have given several examples of different types of representations. These codes need to be
to ultimately exert any effects on behavior. At the processing stages near the motor output, the d
can be the muscle cells themselves. Muscle cells have to interpret the commands by the pre-
neurons and transform those into appropriate behavior. For other processing stages more rem
the output, a set of post-synaptic neurons is in charge of decoding and recoding. This schem
oversimplification. For example, it is very common in the nervous system to observe that higher
in turn project back to earlier processing modules.

The question of how neurons can “read” the representation made by other neurons leads u
How are action potentials generated, propagated and transmitted to other neurons? We do no
to give a detailed description of the biophysics of action potentials. Instead, here we will argu
some particular patterns of firing may be more easily transmitted to post-synaptic neurons tha
patterns. For a detailed description of experimental and computational studies of the biophysics o
potentials, see[22,31].

5.1. Action potential propagation and neurotransmitter release

One of the first questions to ask is whether the action potential can reach the pre-synaptic te
Branch points where there is an impedance change can pose a challenge to the propagation of t
[22]. Given that an axon may reach several thousand targets, it is important to understand what fra
these sites will be reached by the spike. An important study by Cox and colleagues recently show
at least in the large initial branches, action potentials propagate quite reliably in neocortical pyr
cells [40]. Data from the smaller branches is very hard to acquire and therefore the question
reliability of spike propagation still remains open.

When an action potential arrives at the pre-synaptic terminal, there is an influx of calcium to
microdomains that causes neurotransmitter vesicles to release their contents in a quantal fa
the synaptic cleft. The number of vesicles released depends on the number of available vesi
the release probability. According to the standard Katz model, the number of vesicles released
approximated by a binomial distribution[16]. It has been suggested that the probabilistic nature of
rotransmitter release constitutes the main cause of failures in synaptic transmission[104].

Are there particular patterns of spikes that are more likely to be transmitted than others? T
topic that has undeservingly received rather little attention in the field. The best studied such s
pattern is a burst of action potentials. In some cases, a neuron may fire several action potentials
short period of 10–30 ms. These bursts of spikes are typically manifested by a bimodal interspike
distribution with a narrow peak at short ISIs for spikes belonging to a burst and a broader peak a
intervals for isolated spikes[88,105]. Bursts can be triggered by depolarization caused by calcium in
to the cell. Bursts show a higher probability of being transmitted to the post-synaptic neuron (seeFig. 5C
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and[105–108]). Furthermore, it has been shown that bursts can outperform isolated spikes in conveying
information about stimuli (seeFig. 4A and[72,88,94,108–110]).
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In addition to failures in spike propagation or neurotransmitter release, another potential so
noise is the spontaneous occurrence of action potentials. A look at most areas of the brain at a
time shows a bewildering amount of firing activity (see, for example,[69,80,111]). Any decoding mech
anism at the post-synaptic level must have incorporated somehow the probability that some of th
(or some patterns of spikes) may have occurred spontaneously and bear little information about t
ulus. There is still little information about the reliability of propagation and neurotransmitter relea
spontaneous spikes in comparison with spikes emitted during a particular task.

5.2. Generation of action potentials

Hodgkin and Huxley pioneered the research into the ionic conductances responsible for the ge
and propagation of action potentials[16,22,112]. This has given us a considerable degree of underst
ing of the processes that may occur when the voltage, in most cases near the soma of the neuron
a certain threshold. In order to understand how signals are decoded at the neuronal level, we a
to study the map that relates input spikes (or input neurotransmitter concentrations) to the gener
spikes. Unfortunately, it is not easy to construct this map with the available data. How neurona
relates to neuronal output constitutes the core of extensive debate that directly parallels the q
about coding by groups of spikes[22,113–115].

According to some models, a neuron may act as a noisy integrator of large numbers of ex
post-synaptic potentials (EPSPs[64], see however[113]). Other studies suggest that the probability
generating an action potential might depend on the pattern ofEPSPs arrivingat different dendrites or eve
different locations within the same dendrite[116]. An important factor that may play a role in achievi
the right amount of depolarization to trigger an action potential is the relative timing of multiple i
[117,118]. One indication of how sensitive a neuron can be to timing differences is given by the st
changes in synaptic strength. Bi and Poo have shown that differences of less than 10 ms between
and a post-synaptic spike can dramatically change the direction of change in strength of a syna
Fig. 5A, [119]). Another study also suggests that the relative timing of inputs may play an importan
As discussed inSection 4.1, in many cases the standard deviation of the interspike interval distrib
is very close to the mean value; this is typical of a Poisson process. What kind of inputs can give
such variable responses? Zador and Stevens showed that synchronous input, but not purely exc
mixed excitatory and inhibitory input, can give rise to responses with a level of variability that is s
to that observed in vivo (Fig. 5B).

5.3. Where do action potentials go?

Another important aspect of the decoding process is who receives the information. By and large
neurons project to has been largely ignored in many electrophysiological experiments. Wiring, ho
can be part of the code. As an example, it has been shown in several areas of the brain that
form topographical maps of the environment (see, for example,[16,75,94,120]). Part of the experimenta
difficulty is that an electrophysiologist registering the activity of a neuron with an extracellular elec
rarely knows with precision where the neuron may project. One experimental approach towards
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Fig. 5. Spiking patterns that may lead to enhanced transmission and neurotransmitter release. (A) Small differences
between a pre-synaptic spike and a post-synaptic EPSP can exert a major influence in synaptic strength. The figure
change in excitatory post-synaptic current (EPSC) measured 30 minutes after stimulation of hippocampal neurons in
a function of the relative timing between excitatory post-synaptic potentials (EPSP) and a post-synaptic action poten
scheme on the top shows the relative timing between EPSP and action potential. A positive change in EPSC indicate
potentiation whereas a negative change shows synaptic depression. Note that there is a narrow band around�t = 0 ms that
can change the direction of change from potentiation to depression (reproduced from[119], with permission). (B) Synchronou
firing leads to irregular spike trains. This figure shows the effect of different kinds of input (E= purely excitatory input,
E/I = mixed excitatory and inhibitory input, sync.= synchronous input) on the degree of irregularity of the post-syna
spike train. Irregularity of the spike train is assessed by the coefficient of variation (CV) of the interspike interval distributio
A Poisson process shows CV= 1 (dotted line); CV values very close to 1 are observed in electrophysiological recordin
vivo in cortex. Error bars indicate standard errors of the mean (reproduced from[114], with permission). (C) Effectiveness o
spikes in bursts to elicit a post-synaptic action potential. Cumulative probability distribution of generating a post-synapt
potential as a function of the number of spikes per burst in the pre-synaptic neuron. This study was based on electrophy
recordings in the cat visual cortex using sine wave gratings as stimuli. Putative connectivity was defined by a shi
short-latency peak in the cross-correlogram of responses between the pre- and post-synaptic neurons. The data show
of several spikes are more reliable than isolated spikes in eliciting spiking activity in the next information processin
(reproduced from[105], with permission).
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out the projections of a neuron is to inject a tracer[94]. This may be possible, though laborious, for some
species, but it is not always feasible in the context of electrophysiology in some animals like macaques.
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At least in principle, the message conveyed by a neuron may depend on who receives the
A given spiking pattern by a neuron in inferior temporal cortex may be decoded differently by the
neurons in the amygdala than by the target neurons in the prefrontal cortex. A deeper understa
the decoding process could arise from knowledge of the detailed anatomy of neuronal connectio

6. Correlations and cause

The examples of coding schemes discussed inSection 4show correlations between neurophysiologi
variables (such as particular patterns of action potentials) and actions or percepts. However, ph
ical measurements per se do not establish a causal link between neuronal activity and perce
action. The distinction between cause and correlation is an important one because it may help u
understand the functional role of a particular coding scheme. Unfortunately, establishing a cau
between physiology and perception or behavior constitutes, in general, an extremely difficult tas
the methods and technologies available today.

One important clue towards understanding the relationship between activity in a given brain a
perception comes from brain lesions. For example, ablation of area IT in the macaque monke
causes impairment in the monkey’s ability to visually discriminate between objects[46]. As discussed
in Section 3.1, current lesion techniques still involve very large numbers of neurons (Fig. 1B). This is
particularly true in humans where neurological lesions are poorly defined and rarely involve exclu
one area. Therefore, lesions can provide fundamental data and can direct attention to the area of
to study, but they do not provide mechanistic details about coding at neuronal resolution.

Another line of evidence to establish a causal link comes from stimulation studies. The most im
non-invasive method to stimulate the human brain is transcranial magnetic stimulation (TMS, s
example, Refs.[121,122]). The spatial resolution of this technique is on the order of 1 cm, which m
that TMS probably interferes with the activity of at least hundreds of thousands of neurons (Fig. 1B).
The invasive nature of electrical microstimulation makes it very difficult to directly stimulate the h
brain. However, under particular circumstances, it has been possible to invasively stimulate the
brain while the subjects are conscious. Some classical and intriguing stimulation studies in the
brain were performed in epileptic patients by Penfield and colleagues[123]. In some striking examples
patients would recall faces, events or places during stimulation of the temporal lobe. Recent ex
of the usage of this technique on epileptic patients can be seen in the work of Libet, Ojeman, Fr
colleagues[124–126]. The difficult nature of these experiments precludes from drawing strong stat
conclusions. However, it is reassuring and suggestive that it is possible to elicit complex perceptu
by stimulation of groups of neurons in the temporal lobe.

It is possible to perform more detailed and elaborate microstimulation studies in monkeys. A se
landmark studies by Newsome and colleagues has revealed that stimulation within the MT cortic
in macaques can bias the performance of the monkey in a motion discrimination task[127]. In a typical
situation, the animal was presented with a series of randomly moving dots. If a certain percentage
move coherently in the same direction instead of randomly, the subject can discriminate this do
direction of motion and motion-selective neurons in MT are strongly activated. The task becomes
for 100% coherence and performance is at chance levels for 0% coherence. Newsome’s group
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Fig. 6. Microstimulation of cortical neurons to assess causality. (A) Microstimulation in visual area MT can bias the d
of the monkey in a motion discrimination task. A monkey was shown dots moving randomly in the screen. When
percentage of dots moved coherently in one direction, the monkey had to discriminate the direction of motion; perf
increased with higher percentages of coherent dots. For a correlation of 0%, the decision is arbitrary. The investigators recor
extracellular neuronal activity; performance here denotes the proportion of times that the animal reported the directio
tion aligned to the preferred direction of the recorded neurons. Open symbols indicate trials without electrical microstim
whereas solid symbols indicate trials where electrical current was injected through the recording electrode. Microsti
shifts the psychometric curve up suggesting that it biased the monkey’s perception of motion direction (reproduced fro[127],
with permission). (B) Microstimulation in area 3b within motor area S1 in the monkey brain. In this experiment, the
key was trained to discriminate the frequency of tactile vibration. A first stimulus was presented at 20 Hz and then a
comparison stimulus was presented at a different frequency. The task was to assess which frequency was higher.
circles indicate trials where the second stimulus was an actual tactile stimulus whereas the open circles represent ca
the second stimulus was electrical microstimulation in the absence of any tactile stimulation. Remarkably, performanc
microstimulation trials was indistinguishable from that during real stimulation trials (reproduced from[132], with permis-
sion). (C) Electrical stimulation of a single layer 6 neuron in the rat motor cortex can elicit deflection of the rat’s w
The left plot shows the displacement of the whisker and the intracellular potential of an individual neuron in a sing
Large deviations of the intracellular potential correspond to action potentials. The right plot shows the average of 3
neuron stimulation trials and 30 control trials. The dashed line indicates the onset of stimulation (reproduced from[134] with
permission).

that extracellularly stimulating in an area near neurons that prefer a certain direction of motion
the performance of the monkey in that direction (Fig. 6A). These remarkable observations provide
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important link between neuronal activity and the perception of motion (the assumption being here that
perception is correlated with the behavior of the animal[128,129]). This work was followed by several
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other microstimulation studies (see, for example,[130,131]).
Would it be possible to elicit a perceptual state in the absence of any stimulus, just by electrical m

timulation? Romo and colleagues showed that microstimulation in somatosensory area S1 in the
of any sensory input can elicit a perception that seems to be indistinguishable from that occurrin
presence of a real stimulus (Fig. 6B, [132]). Monkeys were trained to discriminate between two train
tactile stimulation by indicating which one had higher frequency. When the second tactile stimul
replaced by electrical microstimulation in area S1, the animals could still perform the task at a lev
was statistically not different from the one with a real stimulus.

The exact extent and spread of microstimulation is unclear[133]. It seems likely that the studie
reported above involve the activation of large ensembles of neurons (perhaps on the order of
cortical columns). While these studies provide important insights about the putative causal relat
between neuronal activity and perception or behavior, they still do not directly answer what the
mechanisms are. It is extremely hard to disambiguate different coding schemes such as the ones
in Section 4by using microstimulation. Furthermore, it is possible to argue that the actual effe
microstimulation is due to the activation of another area which is elicited by microstimulation onl
secondary effect. The involvement of large numbers of neurons precludes the direct study of how
encode information. Recently, Brecht and colleagues have provided the most direct evidence to d
stimulation of an individual neuron can be related to, in this case, eliciting a particular motor output[134].
By recording intracellularly from a neuron in the motor cortex of rats, they were able to induce w
deflections by injecting enough current to drive the neuron to fire multiple action potentials (Fig. 6C).
Furthermore, the whisker motor output depended on the pattern of electrical stimulation and
stimulation layer. This kind of experiment is almost impossible to conduct in humans. Establishin
a direct link between perception and the activity of an individual neuron may be difficult in most
given that the behavioral repertoire in which animals are tested is limited.

7. Directions

We finish this review by highlighting some questions that we consider will be important in adva
the field. While some of these are areas of active research others seem to be largely neglecte
because of the experimental difficulties involved.

(i) As discussed inSection 5, action potentials need to propagate through axons, reach the pre-sy
terminals and lead to neurotransmitter release. It will be important to understand the process th
from the generation of action potentials to neurotransmitter release in further detail. For exam
certain spike patterns and certain interspike intervals (in addition to bursts) show higher probab
eliciting neurotransmitter release than others? Under what circumstances will isolated spikes lead
rotransmitter release? Is there a particular processing or signaling mode that can distinguish spo
spikes from stimulus related spikes? Do different coding schemes require different types of neur
synapses? To what extent are the coding mechanisms determined by the type of input?

(ii) Few experimenters insert multiple electrodes in spite of the fact that the basic technolog
couple of decades old[2,135]. This implies that the studies are restricted to studying the responses
dividual neurons or assuming independence in the responses of separate neurons. However, as
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in Section 4.5.2, several investigators have shown that correlated firing can increase the amount of infor-
mation conveyed by groups of neurons. The degree to which correlated firing represents information that
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is independent of changes in firing rate still remains controversial. Whether synchronous firing con
a mechanism to enhance post-synaptic response or to bind specific features into a whole also r
matter of heated debate. What proportion of neurons show concerted firing? How does concerte
depend on the distance between the neurons and on the neuronal types? Are there other mech
population coding? It is likely that novel and important insights will emerge from recording from l
ensembles of neurons.

(iii) An important coding dimension is the spatial arrangement of selective neurons. In many
investigators have observed a topographical map where adjacent neurons code for similar fea
stimulus space[16,55,76]. While we think that the ultimate details about coding will depend on the s
of spikes and single neurons, it may be important to study in further detail the activity from loca
potentials. The simple observation that LFPs show selectivity[36,91]suggests that the average activity
large numbers of neurons within a small region isnot just noise. The selectivity from LFPs is notentirely
redundant with the information carried by spikes, suggesting that there may be emergent cha
information that may become apparent only by studying multiple neurons. Furthermore, in some c
has been reported that the relationship between spikes and the LFP is important (e.g., the phase
the two signals[12,136]).

(iv) What constitutes noise to some investigators may be an important part of the signal for ot
has been observed that repeated presentations of the same stimulus in higher cortical areas lead
different times of action potentials (Section 4.1and Ref.[4]). This is partly what led to the idea of a ra
code. However, some other investigators have suggested that this timing noise would turn out to b
important signal if looked at appropriately (e.g., in conjunction with the responses of other neuron

(v) Although several investigators have studied the structure of neural circuits, efforts in neuroan
have substantially diminished. In order to fully understand coding, we will need to know who sen
formation to the neurons under study and whom these neurons talk to (seeSection 5.3). Details about
connectivity are not easy to acquire and require laborious efforts. For example, consider the c
neuron in inferior temporal cortex. In which layer is this neuron located? Does it receive feed-fo
input from pyramidal neurons in V4? Does it receive inhibitory connections from interneurons?
kind of interneurons? Any feedback from frontal cortex or other areas? Any direct input from othe
tral or dorsal visual areas? Does it project to pyramidal neurons? What type of frontal cortex n
does it project to? Does it also send the information to the entorhinal cortex and/or to the amy
To complicate matters further, some investigators have suggested that the particular location o
tic spines (specializations within dendrites that receive a large fraction of excitatory synapses)
relevant[137].

(vi) Not all neurons are equal. The responses of a pyramidal cell in layer 4 may be completely d
from those of an interneuron in layer 2 in terms of the spiking patterns, the input and output proje
etc. It is still unclear how many different types of neurons there are[138]. It will be interesting to be able
to characterize neurons in terms of their firing patterns, their functional selectivities, and also the
expression, morphology and connectivity.

(vii) The distinction between correlation and causation is important to separate coding from e
nomena or indirect correlations (Section 6). We need novel tools to study the causal relationship (if a
between particular spiking patterns of certain neurons and perception or action. Microstimulatio
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need to be refined to better understand how many neurons are being activated (and what types of neurons
and how). It will also be interesting to stimulate from multiple nearby electrodes.
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(viii) Current lesion techniques have provided fundamental insights but they lack the specific
quired to understand mechanistic aspects of coding at the neuronal level. It seems that spec
ablating specific neuronal types or neuronal networks will come from molecular biology tools. F
ample, we may ask: what would change in the selectivity of a pyramidal neuron in layer 4 in in
temporal cortex if we could temporarily silence all the GABA-ergic interneurons that project to it?
would require a selective molecular marker of those interneurons and then neuronal silencing tec
[139,140]. One difficulty with this line of ideas is that molecular biology tools are well established in
and mouse (e.g., making transgenic or knock-out mice). However, some cognitive questions are
study in mice (e.g., the visual system of mice is quite poor compared to primates). On the othe
developing the molecular biology tools for macaque monkeys seems to be quite expensive and
cated. One promising technique to circumvent these difficulties is the usage of virus that can be t
applied[141].

This constitutes only a small sample of important questions that come up in the study of ne
codes. Progress in some of these areas is taking place rapidly. For example, methods are becom
common to record from large ensembles of neurons[142] and neuroscientists are becoming ever m
interested in applying molecular tools, e.g.,[143,144].

8. Summary

We have described several different strategies that neurons use in different systems to en
formation about the environment, internal processing or motor output. These strategies inclu
coding, sparse coding, encoding by spike timing and encoding by concerted firing of multiple
rons. For any type of neuronal representation, there should also be a corresponding mechan
can interpret and process the corresponding spike patterns. This establishes a direct relation
tween encoding and the biophysics of generation and propagation of action potentials. Evid
correlations between spike patterns and sensory stimuli or motor output still does not provid
dence for the functional significance of a coding scheme. A full understanding of neural coding
require proving that the spiking activity can be causally linked to the stimulus or behavior. The
bination of tools from molecular biology, biophysics, electrophysiological recordings and micros
lation promises to provide many novel insights in the near future about how neurons encode in
tion.
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