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Abstract

While recognizing a face or kicking a ball may seem toelasy tasks for us, they still constitute challenging
problems for even the most sophisticated computer algorithms available nowadays. The brain has evolved complex
mechanisms to encode behaviorally relevant infdioma Here we review the types of codes used by the brain,
what their constraints are and how they map the sensory environment or the motor output. We start by defining
neural codes and briefly describing some of the current tools available to record activity from the brain. We give
several examples of coding strategies used by different systems and multiple organisms and discuss how spiking
patterns can be read out. Going beyond correlations between physiology and stimuli, we show what is currently
known about the direct causal link between neuronal responses and behavioral output or sensory input. Finally, we
identify what we consider to be some of the pressing questions in the field.
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1. Introduction and scope of thereview

It seems effortless for us to see, hear, smell and thus interpret what is outside in the environment.
Yet these processes involve complex interactions of large numbers of neurons. A three-year old performs
better at face recognition than the best computational algorithms available today. The intricate stimuli that
we are constantly subject to are represented by the neuronal activity in the approxim&telgurons in
our brains. Our internal thoughts, emotions and memories are also represented by these neurons and s
are the commands sent to the muscles for motor output. One of the main goals of Systems Neuroscience
is to try to comprehend how neuronal activity represents sensory input, cognitive processes and motor
output. However attractive the idea of a little homunculus in our brains trying to interpret the world
and issuing commands may be, our task is to explain these processes using only sensory receptors an
neuronal signals that are sent to other neurons, read by neurons and submitted to muscles for output.

Studies about coding in the nervous system have a long history. Perhaps one of the most influential
ideas came about with the realization that different brain areas are involved in processing different types
of signals[1]. A lucid review of the field of neural coding was published by Perkel and Bullock over
thirty years agd2]. Interestingly, they wondered back then whether the code was about to be broken.
There have been major advances in our understanding of coding in the brain as illustrated by many
theme-specific reviews related to neural codiBigl4] However, many questions about coding are more
complicated that they thought back then and many mysteries remain.
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We will start by asking what we mean by “coding” in the context of the nervous system and what
would constitute evidence that we can decipher particular types of codes. We will not devote much effort
to enumerating theoretically plausible codes (there are too many). We focus on patterns that are actu-
ally observed in the nervous systems of different species and for which we can find neurophysiological
evidence. Embedded in the idea of a code is the notion that some aspects of neuronal activity can be dis:
criminated as a signal while other aspects may be due to noise. The distinction between what constitutes
a signal and what constitutes noise will be a fundamental one. We are particularly interested in trying to
extract general principles that govern the encoding of information in the nervous system, the mechanisms
that are responsible for such neuronal patterns of activation and the way that those patterns are read ou
However, this does not imply that there is a single answer, a single universal code as in the case of the
mapping from nucleotides in DNA to amino acids in protdits].

We will draw examples from multiple species and systems throughout the review but we would like
to make some of our biases explicit at this point. We are particularly interested in the visual system
of primates (particularly the higher stages of the so-called ventral pathway in macaque monkeys and
humans). Therefore, we hope the reader will excuse us if there are more examples pertaining to the
visual system than from other sensory systems, cognitive processes or the motor side. The example:s
cited in later sections only constitute a small fraction selected for clarity. The examples do not attempt
to constitute an exhaustive list of all possible coding schemes nor of all possible examples for particular
coding schemes.

Throughout the review, we will focus on spiking patterns from one or more neurons. As we will
discuss below, spikes are not the only way of neuronal communication nor are they the only variables
one could study to identify neuronal codes. For example, photoreceptor neurons in the retina do not fire
spikes and encode the intensity of light in the form of graded poteijliél47] A special section of the
review will be devoted to understanding the state of the art of what can be measured and the different
trade-offs of different techniques. Coding can be studied at different levels of specificity and we still do
not know what the most appropriate levels are. The annual meeting of the Society for Neuroscience is
typically attended by approximately 30000 scientists. Some are concerned with the detailed structure
of ionic channels at the atomic level. Others present models and data averaging the activity of millions
of neurons. In the same way that it is not necessary to write complex quantum mechanics equations to
describe the movement of a ball in free fall, it is likely that there is a most appropriate scale to understand
coding in the nervous system.

2. Codesand features

We can generally think of a code as a way of mapping two spaces. In the particular case that we are
discussing here, the stimuli in the outside world are represented by the activity of neurons in our brains.
Most of the basic questions that one can ask about maps in general are still unanswered in the case o
the brain. Is it a one-to-one map (a particular neuronal signature for every stimulus) or many-to-one or
one-to-many? To what extent is it a deterministic or stochastic map? What is the domain (in stimulus
space and neuronal space) of the map? We start by constraining the definition of codes to the field of
Neuroscience.
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2.1. What is a code and what needs to be explained?

A code can be a substitution scheme (e.g., a coded language where each letter is substituted by the fol
lowing one as in “Ofvsptdjfodf”). The code(s) in the nervous system are somewhat different: (i) they are
not necessarily static (“n” always maps to “0” in the above example), (ii) it is unclear whether the num-
ber of symbols is fixed (and if they are fixed the number of combinations may be very large), (iii) neural
codes show considerable levels of noise (e.g., “n” sometimes may map to “o0”, other times to “n” and
other times to “m” with different frequencies). Some of these discrepancies are addressed by Shannon’s
information theoretic approad¢h8]. Indeed information theory has been used quite successfully in many
examples in Neurosciend&9—-21] One should be cautious, however, about the interpretation of these
results. In general, the ability to decode a signal from neuronal spike trains does not necessarily imply
that this decoding process is used by the nervous system. While the number of bits conveyed by neu-
rons about sensory stimuli can be very high and approximate the theoretical[#initsis still hard to
establish a direct link between information transmission rate and behavior.

Encoding the information through multiple stages of processing may be useful for an organism to
compress information, get rid of behaviorally irrelevant variables and extract the particular stimulus
features that are important to understand the environmental signals. For example, a neuron in inferior
temporal cortex might be interested in achieving a representation of complex stimuli (such as a face) in
a way that is invariant to changes in position, size, illumination, and even rotation in some cases.

What would it mean to understand the neural code? We would like to be able to predict the neuronal
activity from a given stimulus and guess which stimulus was presented based on the neuronal activity.
An analogy may be useful. It is common to store digital images in a computer. Given the pixels, there
are several different ways of storing the information into the pattern of zeros and ones that computers
understand. If we take one particular format, say JPEG, we know how to convert pixels to Os and 1s and
we know how to read the Os and 1s to re-create the digital image.

The question is more complicated in the case of neural coding. We generally do not know the equiv-
alent of the pixels, that is, exactly what is being encoded in different areas of the brain. And there are
potentially several million neurons that may be involved in the representation (it is estimated that the
human brain contains on the order off1@eurons making approximately ¥Gsynapse$22]). The task
seems daunting. However, we do not need to write quantum mechanics level equations for a large num-
ber of atoms to predict the trajectory of a ball in space. Maybe it is possible to derive similar “classical’
approximations for how neurons encode information.

As a first step, we can suspect that a particular area of the brain is relevant for certain tasks. This
type of information has initially come from cases of patients that had neurological lesions (see also the
comments below about functional imaging). In this way, it was initially established that areas of the
occipital cortex were important for visual process[@8]. This type of initial notions then gave way to
more detailed studies about the responses of individual neurons. A lesion in area V5 (also called MT) in
monkeys impairs the animals’ perception of motjad]. Several investigators reported that the neuronal
activity in this area was correlated with the direction of motion of the stimuli. Within this frame it is
possible to ask how to predict certain aspects of the stimulus (e.g., its direction of motion in this case)
from the neuronal activity.

A distinction must be made between explicit and implicit encoding of information. If we observe a
face, the information about that face is encoded in our retinae. This information is then submitted to
several stages of visual processing. The retinae contain information about the face in the same way that
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the pixels in a computer monitor contain information about a face photograph. However, the retinae know
little about faces. If the face is slightly rotated, or if luminosity changes, or if the face moves away from
the observer changing its size, most of the neurons in the retinae will completely alter their patterns of
firing. The retinae implicitly contain information about the face but faces are not the features encoded in
the retinae.

2.2. Which features are encoded?

An area of the cortex called V1 receives visual input from the lateral geniculate nucleus in the thalamus
which, in turn, receives visual input from the retifi&r]. Investigators have studied the receptive fields
and response characteristics of neurons in this area to visual stimuli. Searching for a response to tactile
stimuli in this area would not yield much success. This obvious point shows that in order to study how
neurons encode information one also needs to understand what kind of information is being encoded.
However, it seems that in order to understand what kind of information is being encoded, one needs to
understand what to look for in the neuronal response. This chicken and egg dilemma emphasizes the
strong link between neural coding and the study of feature selectivity. In fact, the two issues could very
well be considered to be part of the same problem. The above example appears trivial but consider the
case of recordings in inferior temporal (IT) cortex in the macaque brain. We know that neurons in this area
change their firing rate in response to complex stimuli such as faces and[B&r@8] Does this mean
that neurons in IT are actually interested in the whole face or just the eyes, or a particular combination
of eyes and mouth, or some other complex features? A model of object recognition posits that selectivity
and invariance of neurons in IT can be derived from a hierarchical arrangement of different visual areas
with distinct feature selectivitieR9]. Still, understanding what particular features are being encoded in
IT has proved to be a rather difficult task in spite of over three decades of active research in the field.

Detecting what features are encoded is difficult because the stimulus universe is multidimensional and
potentially quite complex and recording time is highly limited. A typical recording session for a given
neuron may allow the investigator to present a set of approximately a few hundred stimuli and this is
typically not enough to fully characterize or extract what features are encoded. Investigators may para-
metrically vary the stimuli according to some particular features they have in mind but these parameters
may be as relevant to the neurons as the tactile stimuli may be to V1.

2.3. Comparison to coding in modern computers

The brain has often been compared to computers. In computer science, the word “code” is sometimes
used to refer to a program or set of instructions that a computer will follow but this is unrelated to our
discussion. Closer to neural codes are the ways in which information is encoded in the bits of a computer.
Gross estimates of the number of neurons in the human brain give numbers oflions and on the
order of 13“ synaptic connection@2]. The Intel chip in the CPU of a modern computer contains on the
order of 1@ transistors. The clock speed may be on the order of 1 ns for the Pentium chip, a number that
is several orders of magnitude faster than the type of communications present in the brain. One of the
major differences lies in the connectivity; the brain has an average of approximatedpririections per
neuron. Another remarkable difference is the reliability. At the single transistor level, the voltage may be
very stable whereas the timing of firing of a neuron may vary by several hundred ms from one trial to
the next under apparently similar conditions. Even in the most remarkable cases of timing accuracy (see
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Section 4.3 transistors would appear to be more precise. Furthermore, transmission of action potentials

and neurotransmitter release from action potentials is also very unreliabl&ésten 5. While it is

unclear how to accurately estimate the storage capacity of the human brain, common sense seems t
indicate that in terms of sheer memory storage, computers highly surpass humans. Still, the mundane
and apparently simple tasks of recognizing objects, understanding an arbitrary conversation and walking
around the house still constitute hard tasks for modern computers.

Suppose an investigator tries to understand how information is stored in a computer. The task of
reverse-engineering a computer to find out the codes may by highly nontrivial. We could further assume
that his tools are far from ideal. For example, he can start only by monitoring the voltage at a particular
transistor within the circuit. Trying to correlate this measurement to the processes going on in the com-
puter or to its output (e.g., what is shown in the screen) may not be easy. This trivial analogy, though
flawed in many aspects, illustrates how difficult the task of understanding the codes used by a computer
or a brain can be. One way to start is by using large-scale models and measurements (e.g., what happern
if this chip is removed?), and then fine-tune the techniques to study the smaller components.

3. What kind of experimental data and resolutions do we need to study neural coding?

As in many other areas of science, what can and what cannot be measured influences the kind of
hypotheses that can be directly tested. There are many theoretical ideas and models about coding b
large groups of neurons and multiple brain areas. Unfortunately, at this point many of these hypotheses
are necessarily highly speculative given the kind of evidence that experimentalists can gather. We will
give a brief overview here of the most common type of measurements that neuroscientists use nowadays
to interrogate the activity within the brain. We will describe the temporal and spatial resolution of each
technique Fig. 1). The description is brief and the reader is referred to other more comprehensive experi-
mental treatises for further information (see, for example, R&#s-32)). The list of techniques indicated
here corresponds to some of the most prominent experimental tools used by neuroscientists today; they
are not intended to represent theoretical limits of what can be measured. It should be kept in mind, of
course, that this is a highly dynamic discipline and that techniques can be dramatically improved over
the course of a decade.

3.1. Asuccinct description of experimental techniques

One of the oldest techniques is electroencephalography (EEG). EEG measurements have a very higt
temporal resolution€1 ms), but the spatial resolution is highly limitgtb]. Several investigators have
tried to improve models used to attempt to derive the precise location of the sources of EEG activity but
it is still at best on the order of several mm (several cm in most cases). This is due to the necessity of
solving an ill-posed problem in which multiple solutions exist for electric fields inside the head that can
give rise to a given pattern of EEG measurements. For a density of approximateigdrons per msh
in cortex, a resolution of 1 cirimplies listening to the activity of on the order of millions of neurons. An
important advantage of EEGs is that this is a non-invasive technique. This implies that it is possible to
work in humans as well as in other species. A related technique is magnetic encephalography to which
similar comments appl§833,34]
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Fig. 1. Experimental techniques used to study neural coding. Schematic illustration of the spatial and temporal resolution of dif-
ferent experimental techniques used in Neuroscience. The resolution limits indicated here are only approximate and may depenc
on experimental conditions. In some cases, combining difféeshniques can improve the resolution. The limits shown here

only indicate what has been experimentally reported and do not necessarily imply fundamental physical limits in the techniques.
We exclude from these diagrams measurements from psychophgsigchology, and computational models. (A) Techniques

that measure neuronal activity directly or indirectly. Electrophysiology-based techniques are shown in gray, optical techniques
are shown in blue, PET and fMRI are shown in green. (B) Techniques that interfere with neuronal activity. Lesion techniques
are shown in red, stimulation techniques are shown in yellow. Further comments about each technique and references are giver
in the text (seeSection 3.1 EEG= electroencephalography, MES magnetoencephalography, LEFocal field potentials,

MUA = multiunit activity, SUA= single unit activity, PET= positron emission tomography, fMR functional magnetic res-

onance imaging, TMS: transcranial magnetic stimulation. This is an update of a figure prepared by Churchland and Sejnowski
([145], with permission).
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Fig. 1. (Continued).

Another important technique of wide use in Neuroscience is functional magnetic resonance imaging
(fMRI). The basic principle is based on the observation made by Linus Pauling several decades ago that
the magnetic state of oxygen §pchanges when it is bound to hemoglof3s]. Given that increases in
neuronal activity lead to a concomitant increase in blood flow to a particular brain area, it is possible to
indirectly infer neuronal activation based on blood fl@&,36] The same principle is applied in positron
emission tomographyPET). The best current reports about spatial resolution come from investigators
applying this technique in monkeys. Using magnetic fields of 4.7 Tesla, Logothetis and colleagues report
a resolution of 125¢< 125 x 720 um|[37]. This technique is also non-invasive and several thousand
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papers have been published already using this technique in humans. Another important advantage is tha
it permits to observe the activity in the whole brain at once. Unfortunately, the temporal resolution is
rather poor and is limited by the speed of blood inflow to a particular area, typically on the order of 1
to 2 s[30]. At the present moment, it seems unlikely that the temporal resolution could be improved by
several orders of magnitude to reach the ms or sub-ms level of electrophysiology.

It is worth mentioning other imaging techniques including optical imaging and two-photon mi-
croscopy. Optical imaging uses the infrared frequency band (typically 600—-750 nm) to measure the
reflected light with a CCD camera. It is based on the change of absorption with neuronal §88Yity
The signal has a delay of several hundred ms and therefore also does not provide the temporal resolutior
of electrophysiological recordings. However, it allows the investigators to observe larger areas of cortex
[39]. Conventional microscopy has also been an important tool in Neuroscience, providing important
anatomical insights but it lacks the temporal resolution required to study neuronal firing. Two-photon
microscopy provides sub-neuronal resolution (see, for example, R8fs42). Optical imaging with
voltage sensitive dyes promises a high spatial and temporal resolution while still keeping many of the ad-
vantages of imaginft3]. This invasive technique achieves a spatial resoluti@rmm with ms precision
in the time domain.

Lesions have provided unique insights about the functioning of the brain (see, for expB8pk?])
and the historical account ii]). This is, by nature, an invasive technique. In humans, we are limited
of course to natural lesions. In animals lesions can also strongly point to the areas of the brain involved
in particular behaviors or sensations. Indeed, lesions have provided the foundation for many of the elec-
trophysiological experiments that are described in this review. More restricted types of lesions are also
possible in animals. As we will discuss8ection 7the advent of tools from molecular biology promises
to radically change the lesion tools available today. However, the application of molecular tools as high-
resolution lesion tools only works for animal models.

Our hunch is that a detailed understanding of the mechanisms of coding and decoding will require
very high temporal (ms) and spatial (neurons) resolution. If we ultimately want to understand questions
such as how many neurons represent a given stimulus, how the pattern of neuronal firing relates to the
stimulus, and what type of neuronal responses a given stimulus will elicit, it seems that we cannot, by
definition, rely exclusively on low spatial or low temporal resolution data. The same seems to apply,
although this is far more tentative, to being able to predict the stimulus based on the neuronal activity.
This is more tentative because it is possible that one could build rather accurate classifiers based on
low-resolution non-invasive data at least for some aspects of the stimulus world. For example, it may be
possible to easily discriminate based on EEG data or fMRI data whether the subject saw a face or a house
[48-51] but it is unclear how to arbitrarily predict exactly what stimulus the subject saw from EEG or
fMRI data. It should be emphasized that currently we cannot do this with high spatial resolution data
either. Thus, functional imaging (including optical imaging and fMRI), EEG/MEG recordings and lesion
studies seem provide a fundamental foundation to guide the search for neuronal coding mechanisms.

The focus of our review will be single neuron electrophysiology. Neurons emit all-or-none electrical
signals, called action potentials, or spikes. These spikes can be monitored by inserting an electrode close
enough to the neuron. These impulses are on the order of a few uV when monitored extracellularly
and last about 1-2 ms. The path to neuroelectrophysiology was opened by the design of amplifiers able
to detect such small signal$,52]. Extracellular recordings are based on measuring electrical changes
outside of the neuron. If the electrode is sufficiently close to the soma of one neuron, the signal derives
mostly from a single neuron. In some cases, the investigators can also insert the electrode inside the
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soma of the neuron to monitor the intracellular potential. However, it is generally difficult to maintain
stable intracellular recordings for prolonged periods of time. If the extracellular electrode is farther from
the soma of the neuron, it may pick up the activity of multiple nearby neurons. Single unit activity
can be obtained from multi-unit recordings using algorithms of spike soffigh4] Spiking activity

is obtained by high-pass filtering the raw signal (typically with a corner frequency of 300—600 Hz).
If, instead of taking the high-pass band of the extracellular recordings, the investigators use the lower
frequency band (from 0.5-300 Hz), the resulting reawgds called local fil potentials(LFP). LFPs

also show sub-ms temporal resolution and monitor the activity of large ensembles of neurons, probably
on the order of several mm to cf87].

3.2. About spikes and codes

The advent of electrophysiological recordings from single fibers made possible by Edgar Adrian and
colleagues revolutionized the field of Neuroscielfitle This technique gave rise to eight decades now
where researchers monitor the activity of single neurons in different species and different brain areas. The
initial studies of Edgar Adrian were concerned with motor output. He showed that there was a correlation
between the number of impulses emitted by a single fiber and the strength of the [@6{H2]. As
another major example of the application of this technique, Kuffler observed that neurons in the retina
enhanced their firing response when the stimulus was within a delimited area of the visual field, called
the receptive fieldil7]. Hubel and Wiesel inserted electrodes in the first cortical stage that receives visual
input, the so-called primary visual area or V1, and observed that neurons may prefer (meaning fire more
action potentials) bars of particular orientatighbs].

What is the business of spikes? Spikes provide a fast way of communicating signals between neurons.
Furthermore, their regenerative properties imply that they can travel long distances with little attenuation.
Textbooks typically indicate that all spikes from a given neuron are equal in height and duration (except
for bursts of spikes). Are they really equivalent from the point of view of coding? An analogy may better
illustrate the point. Suppose an investigator is interested in understanding human communication. He
could pay attention to what somebody says during a lecture to many students or he could pay attention to
what the person sings while he is showering. Even during the lecture, the speaker may emphasize certair
points. Similarly, the same neuron may carry different messages depending on which neurons will listen,
different messages at different time points, etc.

Spikes are accessible experimentally. What other variables may be relevant? It may be interesting to
consider the concentration of neurotransmitter released at the synaptic cleft as well a&'theran-
tration in the pre-synaptic terminal and dendrites. It is generally harder to get detailed information (see
two-photon microscopy isection 3.] about these variables in a dynamic fashion with an acceptable
temporal resolution.

At least theoretically, there is enormous room to perform very fancy computations with spikes. Perhaps
a stimulus may be encoded by a neuron A firing a spike precisely 5.2 ms after another neuron B fired
a spike and 14.2 ms before a spike from neuron C. Some investigators have spent considerable efforts
trying to study some of these possibilitigsl,56] Experimental evidence for a direct role of any of these
complex spiking patterns in coding information is still hard to come by.

There may be a tacit assumption that individual neurons can only code simple features whereas the en-
coding of complex features requires the coordination of thousands or hundreds of thousands of neurons.
For example, a single neuron in the retina can be interested in the intensity in a particular small patch
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of the visual field and several of these patches can be combined to form[27i5&] The activity of a

single neuron representing a face may appear to be more mysterious. However, one can think of complex
stimuli as being composed of a certain number of more elementary fef2®e#\n elegant example

of coding complex computations in individual neurons is given by the so-called lobula giant movement
detector neuron in locusts which can encode the product of two separate variables that are important to
detect a looming objed¢b7].

4. A gallery of examples

By reading the previous sections, it may be possible to assume that we are searching for one single
neuronal code that can explain all available data. While indeed we want to find universal principles about
encoding and decoding, it is not necessarily true that there should be one single type of representation.
The nervous systems of different organisms are the product of very long periods of evolution. This implies
that multiple independent ways of representing information may have appeared through time. These
coding mechanisms may have remained available if they were in some sense efficient and useful to the
survival of the organism. For example, a certain coding scheme can have a selective advantage over other
through its efficient energy usaffeB], through a higher capacity or through the possibility of separating
stimuli that are indistinguishable for other codes.

In this section we describe several coding stratedi@s @), illustrating each one with specific exam-
ples. The themes we summarize here are important coding strategies for which experimental support is
currently available. However, this does not constitute an exhaustive list of coding schemes. We discuss
the continuous distinction between “rate” coding and “time” coding. We show examples of sparse codes
and the encoding of time-varying signals. Finally, we discuss the particular properties of how ensembles
of neurons may encode information.

4.1. Rate codes

The most common notion of a neural code follows the paradigm laid out by Edgar A8eati¢n 3.2
In a “rate code” the only variable of interest is the total number of action potentials emitted by a neuron
in a relatively long time period of several hundred ms or even secdtigsdA). “Spike timing” codes
and “rate” codes are part of a continuum that depends on the size of the time window used to count spikes
[7,9,14] In a “spike timing” code, the precise time at which the spike occurs, at the ms level, is relevant
for encoding. In a rate code, the time of occurrence of spikes is considered to be noise; two spike trains
with the same number of action potentials are considered to be equivalent regardless of the timing pattern
(Fig. 2A, top). For many electrophysiologists, a rate code constitutes the simplest and clearest notion of
how neurons encode information.

Several investigators have recorded the neuronal activity in visual area V5 in the monkey brain
(also called area MT) while the animal observed motion stimuli or performed a motion discrimination
task[59]. By counting the number of spikes in windows of several hundred ms (or even more than 1 s
[59)]), it has been shown that: (i) neurons in this area are selective to the direction of fe@jiofi) the
spike count correlates well with the motion discrimination performance of the mdbRey1], (iii) the
timing of action potentials with respect to stimulus onset upon repeated presentations of the same stimu-
lus is quite variabl¢4,62].
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Fig. 2. Schematic illustration of different coding schemes #&ir corresponding temporalselutions. (A) In a rate coding
scheme, the number of spikes in windows of several hundred ms correlates with some stimulus feature or motor output. The
two spike trains shown on the top part are considered to be equivalent for a rate code since they carry the same number of
action potentials in spite dhe different temporal patterns. Although a lineanil is illustrated here, ¢hrelationship between
stimulus and the spike count may be non-linear. Examples of rate codes are given [BR68]. (B) In a sparse representation,

the neuron shows a very low spontaneous activity. The neuron reliably fires a single burst of spikes at a particular time from
stimulus onset during multiple repetitions of the same stimulus. Examples of sparse representations areFigveaind
Refs.[69,71,72] (C) A neuron shows very precise spike timing, with a trial-to-trial variation which can be less than 1 ms.
Examples of remarkable temporal precision in neuronal firing can be seen in[R&#579,146] (D) A time varying signal

(solid trace) is represented by a neuron that can follow the rapid changes in the stimulus (top, action potentials). The stimulus
can be reconstructed (dashed trace) from the instantaneous firing rate of the neuron (420 R&f87]for examples of this

type of representation). (E) In this example, the synchronized activity of multiple neurons (symbolized by the spikes marked in

red) constitutes the code to represent information. Examples of this type of representation are [gigeAamd Refs[10,97,
101,103]
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Similarly, in the macaque inferior temporal cortex, spike counts correlate well with the identity of the
stimulus the monkey is viewinf3]. Charles Gross and colleagues showed that a neuron may enhance
the number of spikes with respect to the baseline firing rate upon presenting to the animal a certain stim-
ulus, such as a given fa¢e5,63] Upon repeatedly presenting the same stimulus, investigators typically
observe that the timing of the spikes, with respect to the stimulus onset, is highly variable. The mean of
the interspike interval distribution is typically on the order of the standard deviation, which corresponds
to the variability observed in a Poisson procgx?]. The interpretation of these observations by many
investigators is that the variability in spike timing constitutes mostly noise that needs to be “averaged
out” and that neurons only care about the mean spike counts in windows of several hundd¢d ms

With an appropriate dynamic rate, a neuron could encode multiple different features in different spike
count bands. For example, a V1 neuron could, in principle, signal the presence of a bar of a given ori-
entation with 10-20 spikes, a bar of a different orientation with 20—-30 spikgsetc. In the brain, the
mechanism of encoding seems to be different. A V1 neuron may have an orientation preference and the
number of spikes per second correlates with how close the actual orientation is to the preferred one.

How are rate codes read out? The “averaging out” of the variability could be performed by a post-
synaptic neuron that integrates input from large numbers of neurons. In this scheme, the input neurons
are assumed to function independently and communicate a spike rate with somg j&dike his view
greatly simplifies the tasks of recording, analyzing and decoding neuronal activity. Furthermore, this sug-
gests that at least to a certain degree it is possible to ignore the complexities of where neurons receive
input, dendritic processing, spike timing and correlations between neurons. Rate codes are robust to tim-
ing jitter by definition. The degree of robustness to spike failures and spontaneous spikes depends on the
variability in spike counts compared to these sources of noise.

4.2. Sparse codes

In stark contrast with neurons that constantly fire many spikes per second and then briefly change their
firing rate by several tens of spikes per second, there are some remarkable examples where individual
neurons seem to respond selectively to specific stimuli using only a few spile28). Suchsparse
representations have caught the attention of many scief@&s66]

As an example of a sparse representation, Kreiman and colleagues have studied the responses c
individual neurons in the human medial temporal lobe (MTL). Subjects are patients who show phar-
macologically intractable forms of epilepsy. Electrodes are implanted, typically in the hippocampus,
amygdala, entorhinal cortex and parahippocampal gyrus, in order to localize the seizure onset focus
[67—-69] Single neurons in the human MTL show selective responses to visual presentation of complex
stimuli including faces, objects and spatial layol%]. Some neurons showed a sparse response with
very low background rate (less than 1 spikeand an enhancement of only a few additional spikes in
the presence of their preferred stim[60,70] An example of this is shown ifig. 3A. This neuron,
located in the right amygdala, fired a few extra spikes upon presenting to the subject a drawing of Curly,
one of the characters in a famous American TV series. This should not be interpreted as indication that
this is the only visual stimulus that the neuron would respond to. Recording time is highly limited and
the investigators could only present less than 60 different picf683sThis observation does not imply
either that this is the only neuron in the human brain that would be selective to Curly. Apart from being
highly unlikely, such a representation would not be robust.
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Fig. 3. Examples of sparse neuronal responses. (A) Respohseseuron in the amygdala of a human epileptic patient im-
planted with depth electrodes in order to localize the seizure fiflJs The subject was presented with pictures of complex
stimuli (top, only a subset of the images is shown here). Below each image, a raster plot indicates all the spikes aligned to
stimulus onset. The post-stimulus timistograms (PSTHs) show the averagepmsse of the neuron to multiple repetitions

of each image (the number of repetitions of each image is ireticabove the PSTH). The dashed vertical lines indicate the
stimulus onset and offset respectively. This neuron transiently increased its activity when the subject saw an image of Curly
(from [69], with permission). (B) Responses of an olfactory neuron located in the so-called mushroom body of a locust to 16
different odors. The stimulus presentation time (1 s) is denoted by the gray rectangles. Each tick indicates an action potential
and multiple repetitions of each odor are showheTeuron remained silent most of tiirae, with a baseline firing rate of less

than 1 spik¢s. The neuron reliably fired a few spikessaspecific time in response to 2 odors only (frpf], with permission).

(C) Responses of 10 neurons in an area called the hyperstriatum ventralis pars caudalis (HVC) nucleus of the songbird while the
animal was singing. The top part shows tleealizations as a sonogram (frequency verune, the intensity is color coded).

The song is divided into motifs which are, in turn, composed of different syllables. The bottom part shows the neuronal raster
plot, with multiple repetitions for each of the 10 neurons; each neuron is shown in a different color. The spikes are aligned to
the onset of the nearest song syllable. The neurons showed a very low rate and fired a brief burst of spikes during a specific
syllable. In general, different neurons selectively responded during distinct syllables or parts of a syllable, some neurons did not
respond during this song motif (frofii2], with permission).

Another example of sparse coding comes from the study of encoding of olfactory information by
individual neurons in the mushroom body of locugi2]. Remarkably, these neurons show, on average,
interspike intervals longer than 20 s. Some of these neurons responded specifically to one or a few out of
16 possible odorants by firing only one or two spikes at specific t[iflds One such neuron is shown in
Fig. 3B. It is striking to note how the neuron is basically silent most of the time. The baseline firing rate
of this type of neurons was 0.025 spikes
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Fig. 3. (Continued).

Another interesting example is the study of the songbird’s auditory system. Single neurons in one of
the nuclei important in producing songs (the so-called HVC nucleus) show a short burst of spikes at
specific time periods with respect to certain syllables of the sbigg 8C [72]). The investigators sug-
gested that these neurons show similar responses to those in the controversial proposal of ‘grandmother
cells in the case of object recognitigri2]. A “grandmother cell” is a neuron that would be activated
exclusively when the subject saw his grandmotféé&r, 73] This example shows that the representation
of motor output, not only that of sensory stimuli, can also be sparse.

How are sparse representations decoded? While many modeling studies have addressed the read-ol
of rate codes, fewer studies have focused on how to interpret sparse representations. For a representatic
using very few spikes to be efficiently decoded, the transmission of these spikes should be very reliable,
the spontaneous activity should be low and the neurons sending sparse information should make strong

synapses. One may also speculate that the post-synaptic neurons receive fewer inputs than the averac
neuron in cortex.

4.3. Spectacular timing

There are some examples where neurons display a striking temporal precision upon repeatedly pre-
senting the same stimulukig. 20). We review some of those examples here but we leave those cases
related to synchronous interaction of two or more neuronsStmgtion 4.5.2Multiple other ideas that
take into account the timing of action potentials have been suggested including the existence of complex
spiking patterns in multiple neurori$l], the precise timing with respect to a given phase of the local
field potential[12], encoding based on first spikes or spike latef¥@]. For an overview of different
spike timing codes and their resolutions, see referef;dd]. In this section, we focus on cases that
illustrate that neurons can be precise at the ms or even sub-ms level.
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Owls can localize sounds using two cues, the difference in the arrival time of a sound to its right
and left ears and the difference in the intensity of the sound at the two ears. The circuit and algorithms
involved in this process have been the subject of intensive §i&ly6] The time difference between
the two ears is in the sub-ms range. An elegant mechanism involving delay lines from neurons sending
phase-locked information from each ear converges on a part of the brain called the nucleus laminaris in
owls. Neurons in the nucleus laminaris are sensitive to coincidences in the spike arrival times and can
detect interaural time differences on the order of tens to hundreds[ 66 %]

A similar algorithm is used by electric fish in a behavior used to avoid jamming of frequencies with
nearby fish[75,78] The fish are able to detect phase differences of 400 ns in the signals arriving at
different parts of its body. Interestingly, at the neuronal level, the primary afferents in the phase pathway
show a response jitter on the order of 30 ps. In contrast to what might be expected, accuracy increases
in higher processing stages and phase neurons in the midbrain show a jitter of78]. I$is shows a
striking contrast with the variabilities of tens to hundreds of ms of some of the cortical neurons discussed
in Section 4.1

A somewhat different example comes from adjacent retinal ganglion cells that communicate through
gap junctions in the retina. Cross-correlation analysis of the spike trains of ganglion cells in the salaman-
der retina during spontaneous activity shows that a neuron can fire on average within 600 us of the other
neuron[80]. Retinal ganglion cells that share a common input show correlated firing with timescales on
the order of 10-50 ms.

What does all this imply? We take these cases as evidence that neurons can show high temporal
precision. Furthermore, even the sub-ms precision of spike timing can be relevant to encode information
at least in these examples. This seems to be particularly true of situations in which time is an essential
component of the signal itself (e.g., auditory time differences or phase of electrical signals). This should
not be taken to imply that the timing of all spikes in the nervous system needs to be studied at the us
level but, at the very least, the machinery for timing accuracy is tf8r@2] Therefore, this certainly
casts a doubt on arguments suggesting that neurons cannot keep precise timing. It is possible that in orde
to encode a stimulus that remains present on the order of several hundred ms or more, neurons do no
need to show such striking temporal precision. For example, in the case of macague monkeys, visual
stimuli may be stable for 100 ms or more and therefore a different coding strategy may have evolved.
This stresses the importance of studying coding of natural rather than artificial stimuli; see for example
[83—-86] It is rather interesting and important to question how neurons can show this type of temporal
hyperacuity when the spikes last on the order of 1 ms and interspike intervals may last 10 ms or more.
How decoding works for signals that have extraordinary precision is still unclear but the detection of
coincident firing may play an important role (sgection 4.5.2

4.4, Timevarying signals

Another situation where time is essential is the case of dynamic sigrigls2D). For example, for
a fly, estimating motion with relatively high precision may be crucial for its survival. The encoding of
time-varying signals imposes some constraints on the types of codes that can be used and preclude
the system from integrating spikes over hundreds of ms. All signals in the natural world are dynamic
either because things move or because the animal moves or moves his eyes but the speed of change ft
a monkey deciding whether a face is friend or foe, is much slower than for a fly deciding which way to
turn.
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An example of the encoding of time-varying information is the work on an identified neuron called
H1 in the fly. Bialek and colleagues were able to show that they could quite accurately reconstruct the
motion stimuli experienced by the animal from the spikes recorded from a single H1 rj@é26h An
information theoretic analysis can put a bound on the number of bits transmitted by such a spiking neuron,
reaching values of 3 bits per spike. Interestingly, when considering the flight speed of the animal and the
firing rates of the H1 neuron, Bialek and colleagues also concluded that in many instances decisions
about direction of motion are based on a very small number of spikeg].

Another example of encoding of time-varying signals comes from a very different system. The phase
pathway in the weakly electric fish was already mentioned in this article as one of the most remarkable
examples of timing precision. In parallel to this pathway, electrosensory neurons in the electric fish are
sensitive to the amplitude of electric field modulations in the environment. Amplitude modulations are
used to locate objects and for communicafie8]. The amplitude and phase pathways converge in higher
brain centers of the electric fish. So-called P-type primary receptor afferents show high firing rates and
their activity is modulated by amplitude changes. Up to 80% of the stimulus can be reconstructed by
applying a linear filter to the spiking activity of these neur@®ig]. Interestingly, the code shows a con-
siderable degree of robustness to spike failures, spontaneous activity and timing jitter. The tolerance for
timing jitter depends on the cut-off frequency of the stimulus and can be on the order of 3 ms for rapidly
changing signal$21]. Signals from approximately ten of these afferent neurons converge on the next
stage of signal processing, the pyramidal neurons enellectrolateral linedbe (ELL). The pyramidal
neurons show much lower firing rates and typically fire bursts of 10—20 ms duration. Stimulus recon-
struction from pyramidal cells is very poor compared to P-reced@&38F The possibility of studying
both stages allows for investigating how time-varying signals could be decoded. In this case, the pyra-
midal cells in the ELL do not seem to represent the detailed time course of the amplitude modulations.
Instead, they extract behaviorally relevant features (such as upstrokes or downstrokes in the electric field)
by firing bursts of spike§38].

4.5, Coding by multiple neurons

The brain solves a different problem than the decoding of single electrode activity performed by many
electrophysiologists. Cognitive processing and decisions about motor output depend on the activity of
large numbers of neurons. Therefore, it is important to ask how groups of neurons can encode informa-
tion in the nervous system. A large fraction (but not all) of the available data has been recorded with
single electrodes. Investigators recording from individual neurons still wondered how ensembles of neu-
rons could encode information. Because of the lack of simultaneous recordings, these studies typically
assumed independent firing. Here we review some of the ideas about coding by ensembles of indepen:
dent neurons. We also discuss findings obtained from multiple electrode recordings. In some cases, the
independence assumptions seem to hold but there is also evidence that dependencies may be importa
in several other cases.

4.5.1. Independent neurons

In some cases, investigators recorded from single electrodes on multiple sessions using the same
stimuli. From these types of recordings, it is possible to extrapolate to ensembles of neurons only af-
ter assuming independence. One such example is the study of Georgopoulos and colleagues where the
studied how a population of neurons could encode the direction of movement of the monke{89hrm
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Each single neuron was only broadly tuned to a specific direction of movement but the population vec-
tor obtained by adding the vectors denoting the “votes” of each neuron was a much better indicator of
the direction of movement. Using a total of 224 neurons, this population vector was, on average, 15.8
away from the actual direction of movement (the direction of movement in the plane could be any value
between 0 and 360) [89]. A similar example is given by the attempts to assess the capacity of inferior
temporal cortex neurons for complex objects of Rolls and colleaffi3§s Other models and analyses
have been proposed beyond the simple voting sch¢®igg82] but the underlying assumption is that of
independence.

The question of independence has been hotly debated for the past two decades. An experimental as
sessment requires recording from multiple electrodes. One study where investigators attempted to directly
evaluate the independence hypothesis is the work of Nirenberg and colleagues in retinal ganglion cells in
the isolated mouse retirj@3]. By comparing the amount of information conveyed by multiple neurons
assuming independent firing versus the information without this assumption, the investigators observed
that more than 90% of the information about the natural stimuli could be retrieved without studying con-
certed firing[93]. In another example, by recording from pairs of pyramidal cells in the electrolateral
line lobe of theEigenmania electric fish, Krahe et al. observed that they could consider the cells to fire
independenthy{94]. In other words, the degree of correlation between pairs of neurons was the same
after randomly shuffling the trials. This suggests that, for those experimental conditions, simultaneous
recordings did not add to the information encoded by pairs of neurogs4A shows the probability of
misclassifying upstrokes and downstrokes in the electric field amplitude from single neuron recordings
and also from pairs of pyramidal cells. Shuffling the trials did not change the classification performance
for pairs of neurons, therefore suggesting that the responses of the two neurons could be considered tc
be independent. Similar results were reported by other investigators (see, for e{ampie).

The degree of independence may depend on several experimental parameters including the stimulus
itself and the state of the animal (e.g., anesthetized versus awake). Furthermore, the correlation in the
firing of two neurons may be a function of the distance between them. Inserting two electrodes very
close to each other may not be easy and in some cases the connectivity may be such that it may be ven
difficult to find two neurons that are connected or have common input.

4.5.2. Synchrony

In spite of these caveats, other investigators have shown cases where the independence assumptic
breaks and it is important to consider synchronous firing. The group of Singer and colleagues has
shown several examples of synchronous firing in the cat visual cft@®27] In one such example,
the investigators recorded from multiple neurons in the cat visual cortex and observed that two neurons
synchronized their firing only when their activating stimulus belonged to a single dBgictin many
of these papers the idea of synchronous firing has been linked to the solution to the so-called binding
problem. In brief, if you see a red apple falling from a tree, some color neurons may be detecting the
red, some movement neurons may be detecting the motion and some object neurons may be interested i
the shape of the apple. How does the subject distinguish the red apple falling from the tree from the red
car moving in the street, the red apple hanging in the tree, and the green leaf falling next to the apple?
This is the so-called binding problem. One proposal (oversimplified here) has been that the key lies in the
synchronous firing between “red” neurons, “apple” neurons and “downward” movement n¢Lopns
This notion is still hotly debated (see, for examp@9,100).
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Fig. 4. Examples of correlations in spike timing between two neurons. (A) Feature extraction performance by pyramidal cells
in the anterior lateral line lobe of theigenmania electric fish. Pyramidal neurons signal changes in the amplitude of the
electric field around the fish. The classification of upstrokes and downstrokes in the electric field is characterized here by
the probability of misclassifying the stimulug,, ranging from 0.5 (chance performance) to 0 (perfect classification). The
diagram shows that bursts of spikes from pyramidal cells are better indicators of environmental signals than isolated spikes.
Synchronized spikes from two pyramidal neurons are even better at classifying the changes in electric field. The lack of a
distinction between shuffled and non-shuffled trials suggestsrieurons can be considered to fire independently under these
experimental conditions. Results shown here correspond to the I-type neurons. Error bars represent standard errors of the mear
The numbers below the bars give the overall number of stimulus conditions for all cells or cell pairs analyzef@4from

with permission). (B) Change in synchrony between an attended (solid line) and unattended (dashed line) condition between
two neurons recorded from macaque Sl motor area. A monkey was trained to switch attention between two different tasks, a
visual task and a tactile taskteshmetz et al. found that the atiional state was correlated with the level of synchronous firing
between neurons. Synchrony was assessed by the degree of correlated firing after subtracting coincidences expected by chang:
in firing rate. Thex-axis indicates the time delay between the firing of the two neurons angtéixés shows the number of
coincidences normalized to coincidentgshin size= 50 ms Shuffling the trials significantly affected the results; this indicates

that, in contrast to the example shown in part A, the neurons could not be considered to respond independently (reproduced
from [101], with permission).

In a different example of synchronous interactions between pairs of neurons, Steinmetz and colleagues
showed that the degree of attention to different stimuli is correlated with the degree of synchrony be-
tween neurons in the somatosensory cortex of awake monkeys4g). Their careful statistical analysis
showed that the synchrony observed between neurons is independent of changes in the firing rate of the
neurons involved101]. Other examples of synchronous interactions have been observed between pairs
of neurons in the lateral geniculate nucleus in monkeys and also in primary visual [&1@X]

The most dramatic demonstration to date that synchrony can have a direct role in the behavior of the
organism has been the study of Stopfer and colleagues in the olfactory system of hor&9Bgéshe
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authors showed that inhibiting synchronous firing by injecting picrotoxin, a GAB#annel antagonist
caused poor performance in an olfactory discrimination task. This constitutes the first direct evidence
that synchrony can introduce an important dimension to encode different stimuli.

5. Thebiophysical point of view

We have given several examples of different types of representations. These codes need to be decode
to ultimately exert any effects on behavior. At the processing stages near the motor output, the decoders
can be the muscle cells themselves. Muscle cells have to interpret the commands by the pre-synaptic
neurons and transform those into appropriate behavior. For other processing stages more remote fron
the output, a set of post-synaptic neurons is in charge of decoding and recoding. This scheme is an
oversimplification. For example, it is very common in the nervous system to observe that higher stages
in turn project back to earlier processing modules.

The question of how neurons can “read” the representation made by other neurons leads us to ask:
How are action potentials generated, propagated and transmitted to other neurons? We do not attemp
to give a detailed description of the biophysics of action potentials. Instead, here we will argue why
some particular patterns of firing may be more easily transmitted to post-synaptic neurons than other
patterns. For a detailed description of experimental and computational studies of the biophysics of action
potentials, se§22,31]

5.1. Action potential propagation and neurotransmitter release

One of the first questions to ask is whether the action potential can reach the pre-synaptic terminal.
Branch points where there is an impedance change can pose a challenge to the propagation of the spike
[22]. Given that an axon may reach several thousand targets, it is important to understand what fraction of
these sites will be reached by the spike. An important study by Cox and colleagues recently showed that,
at least in the large initial branches, action potentials propagate quite reliably in neocortical pyramidal
cells [40]. Data from the smaller branches is very hard to acquire and therefore the question of the
reliability of spike propagation still remains open.

When an action potential arrives at the pre-synaptic terminal, there is an influx of calcium to small
microdomains that causes neurotransmitter vesicles to release their contents in a quantal fashion tc
the synaptic cleft. The number of vesicles released depends on the number of available vesicles anc
the release probability. According to the standard Katz model, the number of vesicles released can be
approximated by a binomial distributidt6]. It has been suggested that the probabilistic nature of neu-
rotransmitter release constitutes the main cause of failures in synaptic transri€gipn

Are there particular patterns of spikes that are more likely to be transmitted than others? This is a
topic that has undeservingly received rather little attention in the field. The best studied such specific
pattern is a burst of action potentials. In some cases, a neuron may fire several action potentials within a
short period of 10—-30 ms. These bursts of spikes are typically manifested by a bimodal interspike interval
distribution with a narrow peak at short ISls for spikes belonging to a burst and a broader peak at longer
intervals for isolated spikg88,105] Bursts can be triggered by depolarization caused by calcium influx
to the cell. Bursts show a higher probability of being transmitted to the post-synaptic neuréing(se@
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and[105-108]). Furthermore, it has been shown that bursts can outperform isolated spikes in conveying
information about stimuli (seEig. 4A and[72,88,94,108-110]

In addition to failures in spike propagation or neurotransmitter release, another potential source of
noise is the spontaneous occurrence of action potentials. A look at most areas of the brain at any given
time shows a bewildering amount of firing activity (see, for exami@,80,111]. Any decoding mech-
anism at the post-synaptic level must have incorporated somehow the probability that some of the spikes
(or some patterns of spikes) may have occurred spontaneously and bear little information about the stim-
ulus. There is still little information about the reliability of propagation and neurotransmitter release of
spontaneous spikes in comparison with spikes emitted during a particular task.

5.2. Generation of action potentials

Hodgkin and Huxley pioneered the research into the ionic conductances responsible for the generation
and propagation of action potentidli6,22,112] This has given us a considerable degree of understand-
ing of the processes that may occur when the voltage, in most cases near the soma of the neuron, exceec
a certain threshold. In order to understand how signals are decoded at the neuronal level, we also nee
to study the map that relates input spikes (or input neurotransmitter concentrations) to the generation of
spikes. Unfortunately, it is not easy to construct this map with the available data. How neuronal input
relates to neuronal output constitutes the core of extensive debate that directly parallels the questions
about coding by groups of spik§2,113-115]

According to some models, a neuron may act as a noisy integrator of large numbers of excitatory
post-synaptic potentials (EPS[3l], see howevefl13]). Other studies suggest that the probability of
generating an action potential might depend on thieepacfEPSPs arrivingt different dendrites or even
different locations within the same dendrjfel6]. An important factor that may play a role in achieving
the right amount of depolarization to trigger an action potential is the relative timing of multiple inputs
[117,118] One indication of how sensitive a neuron can be to timing differences is given by the study of
changes in synaptic strength. Bi and Poo have shown that differences of less than 10 ms between an EPS
and a post-synaptic spike can dramatically change the direction of change in strength of a synapse (se¢
Fig. 5A, [119]). Another study also suggests that the relative timing of inputs may play an important role.
As discussed irsection 4.1in many cases the standard deviation of the interspike interval distribution
is very close to the mean value; this is typical of a Poisson process. What kind of inputs can give rise to
such variable responses? Zador and Stevens showed that synchronous input, but not purely excitatory o
mixed excitatory and inhibitory input, can give rise to responses with a level of variability that is similar
to that observed in vivoHig. 5B).

5.3. Where do action potentials go?

Another important aspect of the decoding process is who receives the information. By and large, where
neurons project to has been largely ignored in many electrophysiological experiments. Wiring, however,
can be part of the code. As an example, it has been shown in several areas of the brain that neurons
form topographical maps of the environment (see, for exaniple?5,94,120] Part of the experimental
difficulty is that an electrophysiologist registering the activity of a neuron with an extracellular electrode
rarely knows with precision where the neuron may project. One experimental approach towards finding
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Fig. 5. Spiking patterns that may lead to enhanced transmission and neurotransmitter release. (A) Small differences in timing
between a pre-synaptic spike and a post-synaptic EPSP can exert a major influence in synaptic strength. The figure shows the
change in excitatory post-synaptic current (EPSC) measured 30 minutes after stimulation of hippocampal neurons in culture as
a function of the relative timing between excitatory post-synaptic potentials (EPSP) and a post-synaptic action potential. The
scheme on the top shows the relative timing between EPSP and action potential. A positive change in EPSC indicates synaptic
potentiation whereas a negative change shows synaptic depression. Note that there is a narrow bardt ardunts that

can change the direction of change from potentiation to depression (reproducgd I&@nwith permission). (B) Synchronous

firing leads to irregular spike trains. This figure shows the effect of different kinds of input fErely excitatory input,

E/l = mixed excitatory and inhibitory input, syne: synchronous input) on the degree of irregularity of the post-synaptic
spike train. Irregularity of the spike train is assessed by the caffiof variation (CV) of the interspike interval distribution.

A Poisson process shows G¥1 (dotted line); CV values very close to 1 are observed in electrophysiological recordings in
vivo in cortex. Error bars indicate standard errors of the mean (reproduced ety with permission). (C) Effectiveness of

spikes in bursts to elicit a post-synaptic action potential. Cumulative probability distribution of generating a post-synaptic action
potential as a function of the number of spikes per burst in the pre-synaptic neuron. This study was based on electrophysiological
recordings in the cat visual cortex using sine wave gratings as stimuli. Putative connectivity was defined by a shifted and
short-latency peak in the cross-correlogram of responses between the pre- and post-synaptic neurons. The data show that burs
of several spikes are more reliable than isolated spikes in eliciting spiking activity in the next information processing stage
(reproduced fronj105], with permission).
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out the projections of a neuron is to inject a traf@]. This may be possible, though laborious, for some
species, but it is not always feasible in the context of electrophysiology in some animals like macaques.

At least in principle, the message conveyed by a neuron may depend on who receives the signal.
A given spiking pattern by a neuron in inferior temporal cortex may be decoded differently by the target
neurons in the amygdala than by the target neurons in the prefrontal cortex. A deeper understanding of
the decoding process could arise from knowledge of the detailed anatomy of neuronal connections.

6. Correlations and cause

The examples of coding schemes discuss&kiction 4how correlations between neurophysiological
variables (such as particular patterns of action potentials) and actions or percepts. However, physiolog-
ical measurements per se do not establish a causal link between neuronal activity and perception or
action. The distinction between cause and correlation is an important one because it may help us better
understand the functional role of a particular coding scheme. Unfortunately, establishing a causal link
between physiology and perception or behavior constitutes, in general, an extremely difficult task given
the methods and technologies available today.

One important clue towards understanding the relationship between activity in a given brain area and
perception comes from brain lesions. For example, ablation of area IT in the macaque monkey brain
causes impairment in the monkey’s ability to visually discriminate between oljfgltsAs discussed
in Section 3.1 current lesion techniques still involve very large numbers of neurBigs {B). This is
particularly true in humans where neurological lesions are poorly defined and rarely involve exclusively
one area. Therefore, lesions can provide fundamental data and can direct attention to the area of the brai
to study, but they do not provide mechanistic details about coding at neuronal resolution.

Another line of evidence to establish a causal link comes from stimulation studies. The most important
non-invasive method to stimulate the human brain is transcranial magnetic stimulation (TMS, see, for
example, Refd121,122). The spatial resolution of this technique is on the order of 1 cm, which means
that TMS probably interferes with the activity of at least hundreds of thousands of ne&ignd B).

The invasive nature of electrical microstimulation makes it very difficult to directly stimulate the human
brain. However, under particular circumstances, it has been possible to invasively stimulate the human
brain while the subjects are conscious. Some classical and intriguing stimulation studies in the human
brain were performed in epileptic patients by Penfield and collead283. In some striking examples,
patients would recall faces, events or places during stimulation of the temporal lobe. Recent examples
of the usage of this technique on epileptic patients can be seen in the work of Libet, Ojeman, Fried and
colleagueg124-126] The difficult nature of these experiments precludes from drawing strong statistical
conclusions. However, it is reassuring and suggestive that it is possible to elicit complex perceptual states
by stimulation of groups of neurons in the temporal lobe.

It is possible to perform more detailed and elaborate microstimulation studies in monkeys. A series of
landmark studies by Newsome and colleagues has revealed that stimulation within the MT cortical area
in macaques can bias the performance of the monkey in a motion discriminatigd2&@§kn a typical
situation, the animal was presented with a series of randomly moving dots. If a certain percentage of dots
move coherently in the same direction instead of randomly, the subject can discriminate this dominant
direction of motion and motion-selective neurons in MT are strongly activated. The task becomes trivial
for 100% coherence and performance is at chance levels for 0% coherence. Newsome’s group showec
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Fig. 6. Microstimulation of cortical neurons to assess causality. (A) Microstimulation in visual area MT can bias the decision
of the monkey in a motion discrimination task. A monkey was shown dots moving randomly in the screen. When a given
percentage of dots moved coherently in one direction, the monkey had to discriminate the direction of motion; performance
increased with higher percentages of coherent dots. For a cornetditd8o, the decision is arbitrary. The investigators recorded
extracellular neuronal activity; performance here denotes the proportion of times that the animal reported the direction of mo-
tion aligned to the preferred direction of the recorded neurons. Open symbols indicate trials without electrical microstimulation
whereas solid symbols indicate trials where electrical current was injected through the recording electrode. Microstimulation
shifts the psychometric curve up suggesting that it biased the monkey’s perception of motion direction (reprodufEzirfrom

with permission). (B) Microstimulation in area 3b within motor area S1 in the monkey brain. In this experiment, the mon-
key was trained to discriminate the frequency of tactile vibration. A first stimulus was presented at 20 Hz and then a second
comparison stimulus was presented at a different frequency. The task was to assess which frequency was higher. The solic
circles indicate trials where the second stimulus was an actual tactile stimulus whereas the open circles represent cases wher
the second stimulus was electrical microstimulation in the absence of any tactile stimulation. Remarkably, performance during
microstimulation trials was indistinguishable from that during real stimulation trials (reproduced[I82h with permis-

sion). (C) Electrical stimulation of a single layer 6 neuron in the rat motor cortex can elicit deflection of the rat's whisker.
The left plot shows the displacement of the whisker and the intracellular potential of an individual neuron in a single trial.
Large deviations of the intracellular potential correspond to action potentials. The right plot shows the average of 30 single
neuron stimulation trials and 30 control trials. The dashed line indicates the onset of stimulation (reprodudé84tamith
permission).

that extracellularly stimulating in an area near neurons that prefer a certain direction of motion biases
the performance of the monkey in that directidfig; 6A). These remarkable observations provide an
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important link between neuronal activity and the perception of motion (the assumption being here that
perception is correlated with the behavior of the anifi@B,129). This work was followed by several
other microstimulation studies (see, for examfl&0,131).

Would it be possible to elicit a perceptual state in the absence of any stimulus, just by electrical micros-
timulation? Romo and colleagues showed that microstimulation in somatosensory area S1 in the absence
of any sensory input can elicit a perception that seems to be indistinguishable from that occurring in the
presence of a real stimuluBi§. 6B, [132]). Monkeys were trained to discriminate between two trains of
tactile stimulation by indicating which one had higher frequency. When the second tactile stimulus was
replaced by electrical microstimulation in area S1, the animals could still perform the task at a level that
was statistically not different from the one with a real stimulus.

The exact extent and spread of microstimulation is uncl&a8]. It seems likely that the studies
reported above involve the activation of large ensembles of neurons (perhaps on the order of several
cortical columns). While these studies provide important insights about the putative causal relationship
between neuronal activity and perception or behavior, they still do not directly answer what the coding
mechanisms are. It is extremely hard to disambiguate different coding schemes such as the ones describe
in Section 4by using microstimulation. Furthermore, it is possible to argue that the actual effect of
microstimulation is due to the activation of another area which is elicited by microstimulation only as a
secondary effect. The involvement of large numbers of neurons precludes the direct study of how spikes
encode information. Recently, Brecht and colleagues have provided the most direct evidence to date that
stimulation of an individual neuron can be related to, in this case, eliciting a particular motor Bt
By recording intracellularly from a neuron in the motor cortex of rats, they were able to induce whisker
deflections by injecting enough current to drive the neuron to fire multiple action potefigls6Q).
Furthermore, the whisker motor output depended on the pattern of electrical stimulation and on the
stimulation layer. This kind of experiment is almost impossible to conduct in humans. Establishing such
a direct link between perception and the activity of an individual neuron may be difficult in most cases
given that the behavioral repertoire in which animals are tested is limited.

7. Directions

We finish this review by highlighting some questions that we consider will be important in advancing
the field. While some of these are areas of active research others seem to be largely neglected, partly
because of the experimental difficulties involved.

() As discussed irsection 5action potentials need to propagate through axons, reach the pre-synaptic
terminals and lead to neurotransmitter release. It will be important to understand the process that leads
from the generation of action potentials to neurotransmitter release in further detail. For example, do
certain spike patterns and certain interspike intervals (in addition to bursts) show higher probability of
eliciting neurotransmitter release than others? Under what circumstances will isolated spikes lead to neu-
rotransmitter release? Is there a particular processing or signaling mode that can distinguish spontaneou
spikes from stimulus related spikes? Do different coding schemes require different types of neurons and
synapses? To what extent are the coding mechanisms determined by the type of input?

(i) Few experimenters insert multiple electrodes in spite of the fact that the basic technology is a
couple of decades ol@,135] This implies that the studies are restricted to studying the responses of in-
dividual neurons or assuming independence in the responses of separate neurons. However, as discusst
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in Section 4.5.2several investigators have shown that correlated firing can increase the amount of infor-
mation conveyed by groups of neurons. The degree to which correlated firing represents information that
is independent of changes in firing rate still remains controversial. Whether synchronous firing constitutes
a mechanism to enhance post-synaptic response or to bind specific features into a whole also remains .
matter of heated debate. What proportion of neurons show concerted firing? How does concerted firing
depend on the distance between the neurons and on the neuronal types? Are there other mechanisms
population coding? It is likely that novel and important insights will emerge from recording from larger
ensembles of neurons.

(iif) An important coding dimension is the spatial arrangement of selective neurons. In many cases,
investigators have observed a topographical map where adjacent neurons code for similar features in
stimulus spac§l6,55,76] While we think that the ultimate details about coding will depend on the study
of spikes and single neurons, it may be important to study in further detail the activity from local field
potentials. The simple observation that LFPs show selec{®@y®1]suggests that the average activity of
large numbers of neurons within a small regionas just noise. The selectly from LFPs is noentirely
redundant with the information carried by spikes, suggesting that there may be emergent channels of
information that may become apparent only by studying multiple neurons. Furthermore, in some cases, it
has been reported that the relationship between spikes and the LFP is important (e.g., the phase betwee
the two signalg12,136).

(iv) What constitutes noise to some investigators may be an important part of the signal for others. It
has been observed that repeated presentations of the same stimulus in higher cortical areas lead to widel
different times of action potential$Séction 4.1and Ref[4]). This is partly what led to the idea of a rate
code. However, some other investigators have suggested that this timing noise would turn out to be a very
important signal if looked at appropriately (e.g., in conjunction with the responses of other neurons).

(v) Although several investigators have studied the structure of neural circuits, efforts in neuroanatomy
have substantially diminished. In order to fully understand coding, we will need to know who sends in-
formation to the neurons under study and whom these neurons talk t&éstden 5.3 Details about
connectivity are not easy to acquire and require laborious efforts. For example, consider the case of a
neuron in inferior temporal cortex. In which layer is this neuron located? Does it receive feed-forward
input from pyramidal neurons in V4? Does it receive inhibitory connections from interneurons? What
kind of interneurons? Any feedback from frontal cortex or other areas? Any direct input from other ven-
tral or dorsal visual areas? Does it project to pyramidal neurons? What type of frontal cortex neurons
does it project to? Does it also send the information to the entorhinal cortex and/or to the amygdala?
To complicate matters further, some investigators have suggested that the particular location of synap-
tic spines (specializations within dendrites that receive a large fraction of excitatory synapses) may be
relevant[137].

(vi) Not all neurons are equal. The responses of a pyramidal cell in layer 4 may be completely different
from those of an interneuron in layer 2 in terms of the spiking patterns, the input and output projections,
etc. Itis still unclear how many different types of neurons therd238]. It will be interesting to be able
to characterize neurons in terms of their firing patterns, their functional selectivities, and also their gene
expression, morphology and connectivity.

(vii) The distinction between correlation and causation is important to separate coding from epiphe-
nomena or indirect correlationSé¢ction §. We need novel tools to study the causal relationship (if any)
between particular spiking patterns of certain neurons and perception or action. Microstimulation will
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need to be refined to better understand how many neurons are being activated (and what types of neuron
and how). It will also be interesting to stimulate from multiple nearby electrodes.

(viii) Current lesion techniques have provided fundamental insights but they lack the specificity re-
quired to understand mechanistic aspects of coding at the neuronal level. It seems that specificity in
ablating specific neuronal types or neuronal networks will come from molecular biology tools. For ex-
ample, we may ask: what would change in the selectivity of a pyramidal neuron in layer 4 in inferior
temporal cortex if we could temporarily silence all the GABA-ergic interneurons that project to it? This
would require a selective molecular marker of those interneurons and then neuronal silencing techniques
[139,140] One difficulty with this line of ideas is that molecular biology tools are well established in flies
and mouse (e.g., making transgenic or knock-out mice). However, some cognitive questions are hard to
study in mice (e.g., the visual system of mice is quite poor compared to primates). On the other hand,
developing the molecular biology tools for macaque monkeys seems to be quite expensive and compli-
cated. One promising technique to circumvent these difficulties is the usage of virus that can be topically
applied[141].

This constitutes only a small sample of important questions that come up in the study of neuronal
codes. Progress in some of these areas is taking place rapidly. For example, methods are becoming mor
common to record from large ensembles of neurfdd®] and neuroscientists are becoming ever more
interested in applying molecular tools, e]d43,144]

8. Summary

We have described several different strategies that neurons use in different systems to encode in-
formation about the environment, internal processing or motor output. These strategies include rate
coding, sparse coding, encoding by spike timing and encoding by concerted firing of multiple neu-
rons. For any type of neuronal representation, there should also be a corresponding mechanism tha
can interpret and process the corresponding spike patterns. This establishes a direct relationship be
tween encoding and the biophysics of generation and propagation of action potentials. Evidence of
correlations between spike patterns and sensory stimuli or motor output still does not provide evi-
dence for the functional significance of a coding scheme. A full understanding of neural coding would
require proving that the spiking activity can be causally linked to the stimulus or behavior. The com-
bination of tools from molecular biology, biophysics, electrophysiological recordings and microstimu-
lation promises to provide many novel insights in the near future about how neurons encode informa-
tion.
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