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Single unit approaches to human vision and memory
Gabriel Kreiman

Research on the visual system focuses on using

electrophysiology, pharmacology and other invasive tools in

animal models. Non-invasive tools such as scalp

electroencephalography and imaging allow examining

humans but show a much lower spatial and/or temporal

resolution. Under special clinical conditions, it is possible to

monitor single-unit activity in humans when invasive

procedures are required due to particular pathological

conditions including epilepsy and Parkinson’s disease. We

review our knowledge about the visual system and

visual memories in the human brain at the single neuron

level. The properties of the human brain seem to be

broadly compatible with the knowledge derived from animal

models. The possibility of examining high-resolution brain

activity in conscious human subjects allows investigators to

ask novel questions that are challenging to address in animal

models.
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Introduction
Most of our knowledge at the neuronal level about the

visual system comes from studies in animal models such

as macaque monkeys, cats, rats or mice. Human studies

are largely restricted to non-invasive tools including

scalp electroencephalography, imaging or lesions. These

techniques have provided important insights about the

anatomy and function of different brain areas. Unfortu-

nately, the spatial resolution ranges from mm to cm and,

therefore, typical measurements report some indirect

assessment of the average activity over at least millions

of neurons. Some of these measurements also show a

slow temporal resolution, which may extend up to two

orders of magnitude slower than the neuronal firing time

scales.

Under some circumstances, it is possible to record

neuronal spiking activity in the human brain. These

invasive measurements are carried out in patients that

have electrodes implanted for clinical reasons. The most

typical scenarios involve either patients with movement

disorders such as Parkinson’s disease (e.g. [1]), patients

with psychiatric diseases including depression and obses-

sive compulsive disorder (e.g. [2]), patients with forms of

epilepsy that are resistant to treatment [3,4] and patients

with tetraplegia [5]. We focus here on studies on epileptic

patients because the work relates more directly to vision

and memory.

Visual information impinging on the retinae is conveyed

to visual cortex through the lateral geniculate nucleus in

the thalamus. In cortex, two main pathways can be dis-

tinguished: a dorsal ‘where’ pathway and a ventral ‘what’

pathway [6]. Visual information is then conveyed to areas

in the medial temporal lobe (MTL) and to frontal cortex

areas. Most single-unit recordings in epileptic patients

focus on areas of the MTL including the entorhinal

cortex, parahippocampal gyrus, hippocampus, subiculum

and amygdala. The MTL structures receive input from

multiple modalities and play an important role in the

formation of memories [7–9].

Here we discuss the recording of single neuron activity in

humans, what has been learnt about visually evoked

responses and the relationship to visual memory for-

mation.

Recording spiking activity in the human
brain
In many cases, intracranial recordings from the human

brain involve the use of large subdural grid electrodes or

intracranial EEG measurements (e.g. [10–13]). These

recordings show better spatial delimitation than scalp

EEG measurements but they are far from neuronal resol-

ution. Invasive recordings of spiking activity in humans

date back to the 1950s [13–15]. Thin microwires (about

40 mm in diameter, 1 MV impedance) are invasively

implanted during surgery. The number of electrodes

and their location depend on clinical considerations.

Recordings in patients are restricted to areas that are

clinically relevant (e.g. areas which are suspect of causing

epileptic seizures).

In some cases, investigators record neuronal activity

during surgery [13,16–18]. These acute recordings involve

difficult experiments because they need to be performed

in the context of brain surgery. The information gathered

from these recordings (combined sometimes with elec-
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trical stimulation) can be used to make clinical decisions

about the areas to resect.

In other cases, electrodes are chronically implanted for

approximately one week [19]. The patients stay in the

hospital and the electrodes record activity until sufficient

information about the seizure onset foci is accumulated.

The microwires are not moved by the clinicians after

surgery (until they are removed). These recording con-

ditions provide more time to collect data and also allow for

the possibility of following up neuronal activity over

longer periods of time.

While most experiments attempt to correlate physiologi-

cal measurements with the visual input, recordings in

humans can evaluate how neuronal signals represent

subjective percepts [20]. Multiple converging pieces of

evidence show that humans are largely unaware of a large

fraction of activity in their brains. Distinguishing sub-

jective perception from the visual input has been chal-

lenging in animal models. Still, significant progress has

been made recently by extensively training animals to

report their percepts (e.g. [21]). Invasive recordings from

the human brain offer the potential of directly asking

questions about perception at high spatial and temporal

resolution [22,23�].

Everything we know about single neuron activity in the

human brain comes from studies in patients. However, it

should be noted that in many cases, electrodes are placed

in areas that are far from the epileptic focus based on a
posteriori analyses.

Visually-evoked single neuron activity
Ascending through the visual hierarchy, neurons show

progressively longer latencies, larger receptive field sizes

and higher degrees of complexity in the preferred fea-

tures. In higher visual areas, such as inferior temporal

cortex, a neuron may respond selectively to complex

objects [24–27]. So far, only rarely have investigators

monitored spiking activity in early visual areas in humans

[13–15]. The overall properties of lateral geniculate

thalamic and occipital human neurons seem to be gener-

ally compatible with the observations in animal models

(based on recordings from tens of neurons only) [28].

LGN neurons show latencies of about 30 ms; occipital

neurons showed latencies of about 60 ms and were tuned

to certain spatial frequencies. In area V5/MT (an area

specialized for visual motion, not to be confused with the

medial temporal lobe, MTL), coherent visual motion

evoked a strong spiking response with a latency of about

110 ms [29]. The neuronal activity could distinguish

between stationary and moving stimuli and also between

coherent and incoherent motion stimuli.

Responses to faces and to a perceptual matching task

were observed in the superior and middle temporal gyrus

[17,18]. Neurons in the lateral temporal cortex also

responded selectively during a visual spatial memory task

[16]. Neurons in human medial temporal lobe areas also

show strong selectivity preferences upon presentation of

different complex visual stimuli. For example, neurons

respond selectively upon visual presentation of photo-

graphs depicting human faces [30,31] and can discrimi-

nate between faces and household objects [32,33]. In a

more extensive set of images that included human faces

denoting emotional expressions (see also [34]), human

faces from famous people including photographs and line

drawings, household objects, spatial layouts, animals,

vehicles and abstract patterns, MTL neurons showed

selective responses to either broad categories of objects

or to specific objects within those categories [35] (see also

[36]). MTL neurons also responded to specific views and

landmarks while the subjects were engaged in a virtual

maze navigation task [37]. Some MTL cells also modu-

lated their activity in response to conjunctions of beha-

vioral goals, place in the environment and specific views.

Visually evoked responses were also found outside visual

cortex and the MTL. For example, visual presentation of

aversive stimuli evoked responses in the ventral prefron-

tal cortex [38]; responses after eye movements (which

could potentially be visually evoked responses) were

found in the subthalamic nucleus [39�].

Selectivity and invariance in object
recognition
One of the essential characteristics of visual recognition is

the high selectivity and strong robustness to stimulus

transformations. The combination of invariance and

selectivity constitutes one of the main achievements of

the primate recognition machinery [25–27]. The selective

responses of neurons in the MTL show robust tolerance

to strong changes in the input images. For example,

broadly tuned neurons show responses to multiple differ-

ent objects within a category [35]. During the virtual

navigation task described above, neurons that were acti-

vated when the subject was in a particular location within

the environment showed robustness to the particular

ways of defining the place [37].

A particularly remarkable degree of invariance in the

MTL neuronal responses was recently demonstrated

by Quian Quiroga and colleagues [40��]. Upon finding

a neuron responding to a particular face or object, subjects

were shown several images containing modified versions

of the particular face or object. Many MTL neurons

showed robust invariance to these transformations (an

example is shown in Figure 1). The striking degree of

sparseness and selectivity of these responses has

prompted some investigators to suggest that these may

represent ‘grandmother’ neurons, that is, neurons that

respond in a very specific fashion to a single object [41].

However, careful analyses suggest that each neuron is
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likely to respond to many objects/concepts and that

individual objects/concepts may be represented also by

many neurons [40��,42�].

The representation of visual memories
Several pieces of evidence suggest that the highly selective

responses by MTL neurons should not be exclusively

attributed to visual recognition or visual perception. These

responses could well reflect a role of the MTL in memory

trace formation, memory consolidation and information

retrieval: (i) The MTL receives information from different

modalities [8]; (ii) Subjects with MTL lesions or excisions

show profound deficits in the formation and consolidation

of novel declarative memories. Yet, the visual recognition

capabilities seem to remain largely intact [7–9]; (iii) The

latencies of human MTL neurons are rather long for

immediate visual object recognition [26]; (iv) Assuming

parsimony and extrapolating from animal studies, exten-

sive evidence from molecular and physiological exper-

iments strongly suggest a prominent role for the MTL

in memory formation and consolidation (e.g. [8,9]), (v)

Electrical stimulation in the human MTL can disrupt

memory formation [43].

There is a close link between memory and recognition

[25,26,44]. Most models of visual object recognition pos-

tulate a comparison between the incoming input and

existing templates or centers from radial basis function

units (e.g. [25–27,44]). Consistent with this notion,

recordings in the human MTL suggest that these neurons

may play an important role in memory processes.

In a word-pair association task, the activity of hippo-

campus neurons during the association/encoding phase

could predict whether the subjects would remember

those word pairs [45]. In another study, neurons in the

human MTL were selectively activated when subjects

mentally recalled information about an image that had

been visually presented several seconds before [46]. After

seeing images presented on a monitor, the subjects were

instructed to mentally recall one image or the other.

Several MTL neurons modulated their activity in a se-

lective fashion during visual recall ([46] see also [47]).

An important first step in the formation of new memories

may be the distinction between familiar and novel infor-

mation. Repeating a stimulus within a short time (sec-

onds) does not seem to have an effect on the MTL

neuronal responses ([30], see however [48�] for longer

intervals). Fried and colleagues recorded single neuron

activity in response to visual presentation of faces and

objects, some of which had been shown to the subjects

about 10 hours before the recordings and observed that

many neurons could differentiate between familiar and

Single unit approaches to human vision and memory Kreiman 473

Figure 1

Example of selectivity and invariance in the human MTL [40��] showing the responses of a single unit in the right amygdala of an epileptic

patient. Depth electrodes were implanted to localize areas responsible for seizure onset [3,4,13,19]. Here we show the responses of the unit to

12 of the 53 images that were presented during this session (the neuron did not respond above baseline for any of the other stimuli which are

not shown here). The raster plot shows the spikes aligned to stimulus presentation (shaded box). The post-stimulus time histograms below the

raster plots show the average activity of the neuron across the repetitions of each image (bin size = 200 ms). The horizontal dashed line

shows the average activity of the unit during the entire experimental session.
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novel stimuli [32]. How much information is needed to

label an object as ‘familiar’ or ‘novel’? Rutishauser and

colleagues showed subjects only a single instance of each

of 12 possible images during a learning phase; 30 min

later, they presented subjects with familiar and novel

stimuli ([49��], see also [48�]). Several hippocampus

neurons could distinguish whether the image had been

shown before or not (see example in Figure 2). A decod-

ing analysis using a statistical classifier showed that

the population of neurons could correctly indicate

whether a stimulus was familiar or not even when the

subject made an incorrect behavioral response, empha-

sizing that the neurons did not represent the decision

process but, rather, directly reflected the actual memory

of previous presentation.

Conclusions
The study of single neuron activity in the human brain

offers the potential to bridge between high-resolution

studies in animal models and low-resolution studies in

human subjects. The motivation for inserting electrodes

in the human brain comes from clinical considerations

such as the need to map where seizures are coming from

and the function of brain areas that may need to be

removed. For this reason, data is non-uniformly distrib-

uted in the brain and most of the information comes from

areas in the medial temporal lobe structures. By and large,

the observations in visual cortex seem to be broadly

compatible with knowledge derived from recordings in

animal models. Single neuron recordings in human

patients offer the possibility of asking questions that

are very challenging to address in studies in animals.

This includes the possibility of directly studying at high

spatial and temporal resolution questions about the

relationship between vision and language, the formation

of episodic visual memories, single-trial learning and the

relationship between neuronal activity and subjective

perceptual sensations.
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