












Fig. 2. Examples of decoding kinematic parameters using each of the 4 neural signal types separately from multiple electrodes in MI. Decoding of z-position (A–D) or
aperture (E–K), in monkey C, session 2, using the best combinations of inputs (as ascertained with the greedy algorithm, see METHODS) for each of the 4 neural signals
from MI, for the same time segment shown in Fig. 1. A and E: LF (0.3–2 Hz). B and F: H1 band (100–200 Hz). C and G: H2 band (200–400 Hz). D and H: spiking
activity (SA). Original kinematics in black, decoded in gray. r values were computed on the entire reconstruction for each parameter and not just for the time segment
displayed here. I: normalized aperture amplitude at grasp completion (i.e., at the time the object is actually grasped; 1 sample per trial) tended to cluster in 2 groups
corresponding to objects that required either a decrease or an increase in aperture relative to the mean aperture during the session. Decoders captured variations in this
aperture amplitude across the 2 clusters, as shown for the example of SA-based decoder in I. J and K: in some cases, it was also possible to capture trial-by-trial variations
in aperture amplitude within the same cluster. The slope for the best-fit line and corresponding coefficient of determination R2 for the fit are shown (P � 10�3).
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Mean squared error. Using nRMSE (see METHODS) as an-
other measure of decoding performance revealed the same
trend as for r. The r between original and reconstructed
kinematics can be high but contain signal reconstruction errors,
as for example when there is a constant offset between two
signals. Therefore, to gain an additional measure of the quality
of reconstruction using each of the different signals, we also
determined the least nRMSE between original and recon-
structed kinematics (Fig. 4, C and D) as a second measure of
decoding performance that captures bias in the reconstructions.

We found that the nRMSE was on average greatest (i.e.,
poorest reconstruction) for LF, followed by H1 and H2 bands,
and the least for spikes (Table 2.4), consistent with the results
found from the r measure. Spikes yielded the least nRMSE in
45 of 64 or 70% of cases (i.e., performed best). The order effect
from high to low error (LF � H1 or H2 � SA) was present in
22 of 64 (34%) individual cases, while H1 � LF � H2 � SA
was found in 13 of 64 (20%) cases. Thus these analyses
supported the generally better decoding of spiking as found
using r. We also found that the relative ranking of different

Fig. 3. Examples of greedy-selection-based decoding. This figure illustrates the impact of increasing the numbers used of each neural signal type’s inputs on
kinematic decoding performance. Results of greedy-selection decoding for each of the 4 different signals and for decoding aperture in monkey C, MI (A),
x-position in monkey G, MI (B) or ventral premotor cortex (PMv) (C), and z-velocity in monkey G, MI (D) (from session 1 for each monkey) are shown. Four
signals were compared: LF, H1, H2, and spiking units. Inverted triangular markers indicate the optimal subset of inputs and the corresponding maximal r for
each signal. Insets plot the correlation coefficient (r) when decoding from each of the top 48 (corresponding to those selected by the greedy algorithm) individual
units or channels separately in rank order determined by single-channel performance. The medians of the single unit or LF channel performances are indicated
with corresponding left-pointing triangles. Note that r for some of the LFP channels or SA units, when used 1 channel or 1 unit at a time respectively, could
sometimes be negative. Individual LFP channels or units that did not contain significant kinematic information sometimes gave negative r values on
cross-validated data. However, when decoding using multiple input channels or units, at the final step of the greedy algorithm we selected the best subset of LFP
channels or SA units, thereby eliminating the deleterious effect of these individual negative r inputs.
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Fig. 4. Summary of optimal kinematic decoding performance with each neural signal. Optimal subsets of input channels corresponding to those yielding the
maximum correlation coefficient between original and reconstructed kinematics were selected for each signal with a greedy-selection procedure (see METHODS).
Results are the individual kinematic parameter decoding data maximum correlation coefficients (r) (A, B) or the corresponding least normalized root mean
squared errors (nRMSEs) (C, D) for the entire data set [8 kinematic parameters decoded with data from 2 sessions in each of 2 monkeys (monkey C, light green;
monkey G, magenta) in MI (A, C), and PMv (B, D)]. In A–D, bars indicate the mean of the max r or mean nRMSE between original and decoded kinematics
(color convention similar to Fig. 3) and dot markers represent individual session results. Vertical line at r � 0.2 indicates the significance threshold (see METHODS).
Based on the random permutation test (see METHODS), all r averages (by kinematic parameter for each signal) were above chance except LF decoding of x-position
using MI data (average � 0.196). We also plot the r for MI vs. PMv comparing decoding performance in the same session, by signal type (E) or by kinematic
parameter (F). Note that decoding performance for both grasp aperture and reach parameters was comparable across PMv and MI.
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signals was not specific to the quantity optimized (Pearson’s
correlation coefficient) in the greedy subset selection but was
also maintained when the nRMSE was minimized instead.

Greedy selection outperforms average selection. The above
results could be attributed to the way the greedy-algorithm-
selected inputs for the decoder compared with an average-
selection approach used in previous studies (Mehring et al.
2003; Stark and Abeles 2007). Our preliminary analysis
(Bansal et al. 2011) had suggested that the greedy selection
might perform better than average selection, and could influ-
ence the relative ranking of low-frequency LFPs and spiking
signals even for decoding the same kinematic parameter. How-
ever, because of earlier computational resource constraints, we
were limited to analyzing only 4 of 256 instances (1 kinematic
parameter for 1 area in each monkey for 1 session, using LF or
SA). To comprehensively determine how greedy versus aver-
age selection influences the relative ranking of signal types in
decoding 3D reach and grasp kinematics, we performed the
same analysis as in Figs. 3 and 4 for all of the different types
of signals considered here (and all kinematic parameters in
both PMv and MI, so for all 256 instances), using an average-
selection approach (see METHODS). For this analysis, we se-
lected a random set of inputs (from each area) independently
with replacement 100 times, and then plotted the mean decod-
ing performance across those 100 sets. For visualization, we
averaged results across 8 kinematic parameters, 2 monkeys, 2
sessions, and 2 areas (MI and PMv) in Fig. 5, A and B. We
found that on average, when using �6 channels, the LF, H1,
and H2 signals’ performances were not significantly different
from SA performance (Fig. 5A). However, with increasing
channels (Fig. 5B), the mean r using SA was significant at 6
inputs over H1, at 10 inputs over LF, and at �16 inputs over
H2 (assessed with a 2-sample t-test: right tail, P � 0.05). By
comparison, the greedy case, which selected for optimal chan-
nels, on average yielded SA � H2 � LF or H1 for all numbers
of input (Fig. 5C; except H2 � H1 at �2 inputs). Furthermore,
the greedy case always performed better than the average-case
approach, indicated by all points being above the diagonal in
Fig. 5D. In addition, the greedy approach produced an earlier
peak, reflecting that fewer inputs were necessary to achieve
optimal performance compared with the average approach
(Fig. 5, E and F).

Our goal is to assess the maximum potential information that
might be extracted from each signal type and from combina-
tions of these signals. One simple option would be to include
all of the inputs in the fitting of a given decoder, e.g., all of the
recorded single units when building a spike decoder. However,

a decoder using smaller subsets of units or channels can
potentially outperform the full set, because of overfitting the
training data in the latter case. We therefore adopted a greedy
approach for the selection of subsets of inputs that provide
optimal performance. (An exhaustive search of all of the
possible combinations is not feasible in practice.)

We further examined whether our results were dependent on
type of decoding algorithm (e.g., Kalman filter vs. a hidden-
state model) or parameters such as the window size over which
the neural signal was averaged (150 ms). For comparison, we
used a hidden-state model decoding algorithm (Vargas-Irwin et
al. 2010) and different window sizes (50, 150, 250, 350, 450,
550 ms) but found that the relative ranking of the different
signals remained the same as our findings in Fig. 5C (data not
shown). We also briefly explored whether a nonlinear algo-
rithm [support vector regression (SVR)] would change the
relative performance of the different signals. In monkey C, for
one session, even though we observed an overall improvement
when using SVR instead of the Kalman filter, the relative
ranking of the signals was similar on average. Performing the
SVR decoding on all sessions was computationally prohibitive
given our greedy-selection approach under an n-fold cross-
validation scheme. Thus, for the remaining analysis combining
information across areas and/or signals, we proceeded with the
Kalman filter best-case “greedy” approach as it provided the
optimal trade-off between runtime computational complexity
and decoding performance.

Decoding Performance Plateaus When Combining Areas and
Signals at the Level of the Better Area or Best Signal
Performance

In the remainder of this study, we performed several anal-
yses with the aim of combining inputs across areas and across
signal types to exploit potentially independent information
across areas and across signals. For example, if PMv and MI
carry somewhat independent information about reach and
grasp, selecting signals from both areas should improve decod-
ing performance; on the other hand, if information is mostly
overlapping, minimal improvement should be observed. We
tested this by building MA decoders based on the same signal
drawn from pooling data across MI and PMv. We compared
decoding performance of the MA decoder to that of the single-
area-based decoder that gave the better performance. Indepen-
dent information could also be present across signal types.
Therefore, we also considered the effect of combing multiple
signal types from both MI and PMv. Although not physiolog-
ical, this approach can help define the best performance when

Table 2. Results for spike and LFP decoding

Signal/Comparison 1. Mean r (all parameters) 2. Mean r (x, y, z velocity) 3. Mean r (position parameters) 4. Mean nRMSE (all parameters)

Statistical test or note Mean sig. diff. (all pairs) Mean sig. diff. (all pairs) Mean sig. diff. (all pairs) Mean sig. diff. (all pairs)
LF 0.47 � 0.02 (†H1, H2) (*SA) 0.55 � 0.03 (*H1) (†H2, SA) 0.38 � 0.04 (*H1, H2, SA) 0.21 � 0.04 (†H1, H2) (*SA)
H1 0.46 � 0.02 (‡H2) (*SA) 0.37 � 0.03 (†H2) (*SA) 0.55 � 0.03 (†H2) (*SA) 0.20 � 0.04 (†H2) (*SA)
H2 0.55 � 0.02 (*SA) 0.47 � 0.03 (*SA) 0.62 � 0.02 (†SA) 0.19 � 0.03 (‡SA)
Spikes 0.66 � 0.02 0.61 � 0.03 0.71 � 0.03 0.17 � 0.04
All signals 0.53 � 0.01 0.50 � 0.02 0.57 � 0.02 0.19 � 0.04

Values are means � SE unless otherwise noted. LF, low-frequency local field potential (LFP) band; H1, H2, high-frequency LFP bands; SA, spiking activity;
r, correlation coefficient; nRMSE, normalized root mean squared error. ANOVA with Dunn-Sidek correction for multiple comparisons was used, unless indicated
otherwise: *P � 0.01, ‡P � 0.05, †not significant (P � 0.05). For example, *SA represents that the mean was found to be significantly different from the mean
performance for spikes at the P � 0.01 level. Significance relationships were symmetrical and hence are not listed repeatedly for both compared signals.
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multiple signals available from an intracortical electrode array
are considered. For this analysis, we built decoders using just
LFP signals, termed the multiband local field potential (mb-
LFP) decoder, or combinations of all signals including spikes
and LFPs, termed the hybrid signal (HS) decoder.

Figure 6 shows examples of decoding for z-position and grip
aperture combining signals from both areas, spikes (MA
spikes), all three field potential bands (mb-LFP), or all signals
(HS), to give a qualitative presentation of the benefits of
combining areas or signals for the same time segment as in Fig.

Fig. 5. Comparison of greedy-selection decoding vs. average-case decoding. A and B: comparison of decoding performance using an average-case approach (see
METHODS) instead of the greedy-selection approach used in previous figures for 1–5 inputs to highlight the relationship in the mean decoding performance between
the signals (A) and 1–30 inputs to demonstrate the relationship with larger numbers of inputs (B). Note that for very few inputs (�4), average decoding
performance based on LFPs is not significantly different from that based on spikes, but with �17 inputs spikes outperform LFP-based decoders. C: similar
comparison using a greedy-selection approach. Note that spikes outperform LFP-based decoders at all numbers of inputs. D: comparison of the best performance
using the average-case approach and the greedy approach for the same data (comparing data for 8 kinematic parameters, 4 signal types, 2 areas each in 4 sessions).
Note that all points are above the diagonal, indicating that the greedy approach performed better than the average-case approach. E and F: fractions of inputs
required for each reconstruction to attain 95% of its maximum correlation coefficient achievable with up to a maximum of 50 inputs vs. maximum correlation
coefficient for average (E) and greedy-selection-based (F) decoding. Starred markers represent medians on each axis for each signal. Note that the lower fractions
of inputs for the greedy-selection-based decoding indicate that maximal decoding performance is achieved with fewer inputs with the greedy approach compared
with the average-case approach.

1346 HYBRID DECODING OF 3D REACH AND GRASP

J Neurophysiol • doi:10.1152/jn.00781.2011 • www.jn.org

 on F
ebruary 23, 2012

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


2. Because decoding saturates at �30 inputs and large ensem-
bles entail high computational costs, we limited ensemble size
to a maximum of 50 inputs, selected with the greedy procedure
from the total pool (see METHODS). Next, we summarized the
decoding performance using the MA, mb-LFP, and HS ap-
proaches (Fig. 7; Table 3.1, 3.2). When combining a signal
type using two areas (Fig. 7, bottom 4 bars for each kinematic
parameter;), the general rank-order trend between the signals
(i.e., LF � H2 � SA) was still observed. Spiking, on average,
provided 14% higher r than the next best signal, H2.

Next, we compared MA, mb-LFP, and HS decoders’ perfor-
mance to single-area, single-LFP band, and single-band decod-
ers, respectively.

Improvements (�r) when combining areas. If MI and PMv
were to contain independent information, then combining a
signal type across both areas should substantially improve
decoding performance. Hence, we quantified the improvements
in combining the same signal type across areas versus using
just one area. We found that the improvements in r when
selecting the best ensembles from the pool of MI and PMv data
(vs. the better of these 2 areas) were significantly greater than
zero for each signal band, but very small (�r � 0.03 � 0.03;
Fig. 8A, Table 3.3), suggesting that the reach and grasp
information across areas was similar. However, when compar-
ing the improvement of MA decoding over using the signal
from the single area that individually gave the lower decoding
performance of the two areas, we found that the improvement
in r could be more substantial and significant (�r � 0.15 �
0.08; Fig. 8B, Table 3.4). Comparison to the “better” or
“worse” area was performed for each decoding instance be-
cause no one area (MI or PMv) was consistently better than the
other (Fig. 4, E and F).

Improvements (�r) when combining LFP signals. Similar to
the approach used in the previous section, the independence of
information represented in the LFP bands can be evaluated by
measuring the improvement in decoding performance when
LFP signals are combined. Hence, we used signals from both
areas and compared decoding quality when combining LFP
bands (mb-LFP) to using any single band. Improvements were
largest when the mb-LFP signal was compared with the LF
band (�r � 0.16 � 0.17) and smallest for the H2 band (�r �
0.05 � 0.05) (Table 4.1). We mentioned above that LF on
average performed better than the H1 band for velocity and H1

and H2 bands performed better than the LF band for position
(Table 2.2, 2.3; Fig. 4, A and B). Thus one might predict that
combining LF, H1, and H2 bands should considerably improve
position decoding for LF and velocity decoding for H1. As
seen in Table 4.2 and 4.3, combining LFP bands allowed the
pooling of information across LF, H1, and H2 bands to achieve
more consistent decoding across both position and velocity
parameters. Improvements by pooling suggest that each band
contains unique kinematic information not available from the
other bands. However, on average combining LFP bands still
gave 0.04 � 0.01 worse r than using spikes from both areas.

Improvements (�r) when combining spikes and LFPs. Fi-
nally, we evaluated the independence of information repre-
sented in the LFP bands and spiking signals by measuring the
improvement in decoding performance when combining LFPs
and spikes. Hybrid decoders produced a small, but significant,
improvement versus using spikes alone (0.02 � 0.03; Table
4.5). Stated differently, when combining LFP with spikes, the
r saturates at a level just 0.02 over that achieved by spiking
alone, suggesting that the information in LFPs was largely, but
not entirely, contained within spiking information. The hybrid
decoder was slightly better than the mb-LFP decoder (0.06 �
0.01) or spiking alone, but considerably better than single LFP
bands (Table 4.5).

Is There a Bias in PMv for Grasp Information?

The results so far revealed no significant difference between
MI and PMv in the decoding performance of any kinematic
parameter (including grasp aperture) when comparing data
over all sessions across both monkeys (Fig. 4; Table 5.2, 5.3).
On the other hand, prior work suggests that PMv may prefer-
entially encode grasp parameters compared with MI (Kurata
and Tanji 1986; Rizzolatti et al. 1988; Umilta et al. 2007).
When comparing MI and PMv decoding performance for each
individual monkey, we found that MI decoding performance (r,
averaged across kinematic parameters) in monkey C was 21%
better than that in monkey G (and 16% better than PMv
performance in monkey C), while PMv performance in monkey
G was 27% better than that in monkey C (and 32% better than
MI performance in monkey G). In monkey C, x-velocity was on
average consistently better decoded in MI compared with PMv
(MI: 0.46 � 0.04; PMv: 0.30 � 0.04), but the decoding
performance of other kinematics parameters when considered

Fig. 6. Examples of hybrid decoders. This
figure illustrates the effect of using from both
areas MI and PMv, optimal combinations of
spiking activity [multiarea (MA) spikes],
only multiband LFPs (mb-LFPs), or SA and
mb-LFPs [hybrid signal (HS)]. Examples of
true and decoded z-position and aperture are
shown for the same time segment as dis-
played in Fig. 2. Original kinematics in black,
decoded in gray. r values were computed on
the entire reconstruction for each parameter
and not just for the time segment displayed
here.
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individually was not significantly different between MI and
PMv. It is unclear whether these results reflect variability in the
organization of information in MI and PMv across monkeys, or
if they merely reflect sampling biases for limited ensemble
sizes (also note monkey G, session 2 decrease in number of
units; Table 1) and compositions randomly detected by the
fixed electrode array. Nevertheless, in our sample of two
monkeys, there was no consistent bias for PMv or MI prefer-
entially encoding grasp or any other decoded parameter such as
position or velocity.

Biases in representation between PMv and MI were also
evaluated by comparing whether a greedy algorithm would
select more inputs from PMv when decoding aperture and
more inputs from MI when decoding reach. Although there
was a general bias such that PMv H1 and spiking signals were
chosen more often than MI signals, this effect was mostly due
to monkey G (Table 6). We did not find significant differences
in this input selection bias between aperture and the reach
parameters when using the MA, mb-LFP, or HS decoders
(unpaired 2-sample t-test, P � 0.1; Fig. 9).

Spikes are the Dominant Contributor in Hybrid Decoding

Do greedy algorithms select greater fractions of one signal
type? We hypothesized that LFPs might significantly contrib-
ute in hybrid decoders by dominating the fractions of inputs
selected in the HS pool. Contrary to this hypothesis, we found
that large fractions of inputs selected for inclusion in hybrid
decoders were spiking units (Fig. 9C, Fig. 10A; mean fraction
across sessions, monkeys, and kinematic parameters: 0.56 �
0.03). However, we did find that small, but consistent, fractions
of the signals in the optimal subset selected by the greedy
method were LFPs (mean fraction of LFP channels selected,
averaged across sessions, monkeys, and kinematic parameters:
LF 0.12, H1 0.13, H2 0.19) Thus, even though the accuracy for
the HS decoder saturated at the level of spiking-based perfor-
mance, LFP input channels did contribute toward the decoding
(Fig. 9C, Fig. 10A). In addition, in the decoders using mb-LFP
bands, the fractions of inputs of each type were biased in favor
of H2 inputs over H1 and LF inputs (Fig. 9B; Table 4.4).

Although spiking channels dominated the HS pool, LFPs
constituted the majority in the HS pool for 7 of 32 instances (4
sessions � 8 kinematic parameters). Most of these (6/7)
occurred for monkey G, session 2, during which the numbers of
spiking units were lower in both MI (to 30 units, �47%) and
PMv (to 108 units, �37%). (The other instance was monkey C,
session 1 for x-position). However, a LFP band (H2) had
performed better than spike-based decoding (of y-position and
aperture, by 9% and 3%, respectively) for only two of these six
instances. Furthermore, in three of four sessions (across mon-
keys) for decoding x-position, the majority of inputs in the HS
pool were LFP channels, even though when the signals were
used individually (LF, H1, H2, or spiking ensembles) spiking
inputs achieved the highest performance (Fig. 7). For other
kinematic parameters, in at least three of the four sessions,
spikes were the majority input in the HS pool. These examples
illustrate that the fraction of inputs, when combining input
signal types selected with the greedy process, only provides an
indirect measure of signal performance as it does not reveal the

Fig. 7. Summary of hybrid decoding. Decoding performance when pooling the
same type of signal across MI and PMv or using all (LF, H1, and H2) field
potentials (MB) or all signals (HS) from both areas in 2 monkeys (monkey C,
light green; monkey G, magenta).

Table 3. Results for multiple-area decoding

Signal/Comparison
1. Mean r (MA, combined

areas)
2. Mean RMSE (MA,

combined areas)
3. Mean r Improvement (using both

areas over just the better area)
4. Mean r Improvement (using both

areas over just the worse area)

Statistical test/notes Mean sig. diff. (all pairs) Mean sig. diff. (all pairs) t-Test for mean sig. diff. from zero t-Test for mean sig. diff. from zero
LF 0.54 � 0.03 (†H1) (‡H2) (*SA) 0.20 � 0.04 (†H1, H2) (*SA) 0.02 � 0.02* 0.11 � 0.07*
H1 0.57 � 0.02 (†H2) (*SA) 0.19 � 0.03 (†H2) (*SA) 0.03 � 0.03* 0.19 � 0.09*
H2 0.65 � 0.02 (‡SA) 0.18 � 0.03 (‡SA) 0.03 � 0.03* 0.17 � 0.08*
Spikes 0.74 � 0.02 0.15 � 0.03 0.02 � 0.03* 0.14 � 0.07*
All signals 0.62 � 0.01 0.18 � 0.04 0.03 � 0.03* 0.15 � 0.08*

Conventions similar to Table 2. MA, multiarea decoding.
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magnitude of decoding improvement each signal contributes.
We examine this next.

Relative contribution of LFPs vs. spiking units in hybrid
decoding. Even though LFPs did not constitute the majority of
the inputs in the hybrid pool, it was possible that they may have
had a disproportionate contribution toward the improvement of
r compared with spiking signals. To clarify this issue, we
compared the relative contributions of spiking units and LFP
channels to the overall reconstruction performance. Conse-
quently, we adopted the following strategy: We split the pool
of all inputs used for HS into the 10 inputs providing the initial
best decoding performance and the up to 40 remaining inputs.
Figure 10A plots the order in which signals of different types
were added to the pool of signals used for decoding. Spiking
units tended to be the dominant signal type in the first 10 inputs
that were added with the greedy procedure (mean across
kinematic parameters, sessions, and monkeys: 68% in the first
10, 53% in the next 40; see Fig. 10A for comparison by signal
and Fig. 10B for comparison by area). Next, we compared the
decoding accuracy obtained with the best 10 inputs (Table 5.1)
versus the 50 best inputs. Most of the improvement was with
the first 10 inputs (mean improvement with first 10 inputs vs.
last 40 inputs, averaged across kinematic parameters, sessions,
and monkeys: 0.70 � 0.02 vs. 0.06 � 0.01). This suggests that

even though there were signals from LFP bands contributing in
the pool of all signals, their contribution was smaller. How-
ever, the 32% LFP inputs in the top 10 of the HS ensemble
indicate that there were some LFP inputs that outperformed
spiking units in their contribution to the greedy-selection-based
decoding.

In summary, these results demonstrate that spiking contrib-
utes the majority of the decoding gain when combining all
types of inputs. Furthermore, combining all signals improves
decoding by only �3% versus using spiking. Spiking inputs
constitute 68% of the top 10 of ensemble sizes up to 50 when
combining all signals, and the top 10 inputs achieve 92% of the
maximum performance. The maximum improvement of a hy-
brid decoder over one using only spikes was just 9%. Even
though LFP signals contribute in the top 50 channels used, they
fall largely in the flat portion of the “greedy curves,” showing
that the relative improvement by using these LFP signals is
minimal.

Correlation among signal types. We also briefly examined
the correlation coefficient among LFP channels in different
frequency bands and among spikes (among all pairwise chan-
nels or units within each area). We found that the LF band was
most highly correlated (r � 0.79), followed by the H1 band
(r � 0.48) and the H2 band (r � 0.46). Spikes were less
correlated than any of these LFP bands (r � 0.14).

DISCUSSION

This study demonstrates that although different LFP fre-
quency bands and spikes relate to different ongoing processes
and could carry complementary movement information, reach
and grasp information added by various LFP frequency bands
is typically less than and primarily contained within that
already available in SA ensembles. Spikes typically outper-
form LFPs in reconstructing the kinematics of free reach and
grasp actions, resolving inconsistent results in the field. This
finding is based, for the first time to our knowledge, on a
naturalistic 3D reach and grasp task, dual-area 96-multielec-
trode array recordings, and computationally intensive greedy-
selection-based decoding applied to a broad range of neural
signals including spikes, low- and high-frequency LFPs, and
MUA in high-frequency broadband LFPs. Furthermore, al-
though previous studies using somewhat indirect approaches
suggested a bias for grasp representation in PMv signals
(Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta et al.
2007), we show directly that both reach and grasp can be
similarly reconstructed from small, local neuronal populations

Fig. 8. Improvements when using multiarea (MI and PMv) decoders. A: im-
provement in decoding performance (�r) when pooling across areas (MA) vs.
the better of MI and PMv decoding performance for each signal in each session
(mean � SE: 0.03 � 0.03). B: improvement in decoding performance when
pooling across areas (MA) vs. the worse of MI and PMv decoding performance
for each signal in each session (0.15 � 0.08). Note that the improvement
compared with the worse area is significantly greater than the improvement
compared with the better area. Note also that the better area could be either MI
or PMv for each session/monkey/kinematic parameter and neither area was
always better (see Fig. 4, E and F). Each plot is a box and whisker plot. The
box represents the 25th and 75th percentile range of the values obtained for r
across monkeys, sessions, and kinematic variables. The line inside the box
represents the median, and the whiskers extend to �2.7	, or up to points not
considered outliers (which in turn are plotted as plus signs).

Table 4. Results for multiband LFP and hybrid signal decoding

Signal/Comparison

1. Mean r Improvement
(using all LFP bands

vs. just 1)

2. Mean r Improvement
[using all LFP bands
vs. just 1 (position)]

3. Mean r Improvement
[using all LFP bands
vs. just 1 (velocity)]

4. Mean Fraction of
Inputs of Each Type in

mb-LFP Decoding
5. Mean r Improvement (using

all signals vs. just 1 signal)

Statistical test/notes t-Test for mean sig.
diff. from zero

t-Test for mean sig.
diff. from zero

t-Test for mean sig.
diff. from zero

Mean sig. diff. (all
pairs)

t-Test for mean sig. diff. from
zero

LF 0.16 � 0.17* 0.31 � 0.18* 0.04 � 0.06* 0.22 � 0.03 (†H1) (*H2) 0.22 � 0.18*
H1 0.13 � 0.08* 0.09 � 0.05* 0.19 � 0.07* 0.30 � 0.02 (*H2) 0.19 � 0.10*
H2 0.05 � 0.05* 0.03 � 0.02* 0.10 � 0.04* 0.48 � 0.02 0.12 � 0.07*
Spikes 0.02 � 0.03*
All signals 0.11 � 0.12* 0.14 � 0.16* 0.11 � 0.09* 0.14 � 0.13*

0.02 � 0.02 (compared to best)

Conventions similar to Table 2. mb-LFP, multiband LFP.
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in either MI or PMv for this naturalistic task, which also has
grasp complexity comparable to tasks used in previous studies.
In an applied context, the results demonstrate the general
superiority of spike-based population decoding overall, but
also show that multiband LFP signals are nearly as good. These
findings suggest that both spikes and various LFP frequency
bands collected from intracortical sensors can be useful sources
for human BCI command signals (Ajiboye et al. 2010). These
neural signals can to some degree substitute for each other,
adding potential robustness to BCIs based on intracortically
recorded signals. The results also suggest that MI and PMv
could provide similar command signals on average to generate
naturalistic reach and grasp actions for BCI applications, but
they do not determine whether this similarity would apply for
other types of hand or reaching tasks.

In our previous work (Bansal et el. 2011), we focused on the
information in low-frequency LFPs (LFs). We did not examine
the advantages of combining the same class of signal from MI
and PMv or combining from both these areas different classes
of signals: LF, H1, and H2 bands and SA. Because of the focus
on LFs, our analysis of the greedy- and average-selection
approaches was restricted to just 4 of a possible 256 instances
(256 instances � 2 monkeys � 2 sessions � 2 areas � 8
kinematic parameters � 4 signals) in that study. In addition, a
comparison of relative information in LF, H1, H2, and SA
based strictly on our three previous studies (Bansal et al. 2011;
Vargas-Irwin et al. 2010; Zhuang et al. 2010) would be
hindered by the different choices of algorithms, parameters,
etc., made in each of these studies. Thus, besides addressing
hybrid decoding, in the present study we kept the decoding
algorithm and parameters the same when decoding using each
signal to facilitate this comparison.

Spikes as Optimal Signals

Spiking in neuronal ensembles typically outperformed mul-
tichannel, multiband LFP signals in decoding 3D kinematic
parameters. We conclude that this effect was not simply a
reflection of our decoding approach, or the choice of r or

nRMSE as the optimization measure in the greedy selection of
channels and signal types. In addition, the superiority of spikes
was not highly dependent on the greedy algorithm itself be-
cause similar results were obtained with the average-selection
method as long as populations typically comprised �16 units.
Combining spikes and LFPs across areas only marginally
improved decoding performance over using only spikes but did
increase decoding performance substantially over that achieved
by using LFPs alone. This is consistent with the interpretation
that kinematic information in LFPs is largely contained within
that already available in neuronal ensemble spiking.

The differences in decoding performance based on spikes
and LFPs contrasts with previous studies, which used single-
electrode recordings (or at most 16 electrodes within a session)
and averaged results across days. In one set of studies, LF
decoding exceeded spiking (Mehring et al. 2003) and hf-LFPs
(Rickert et al. 2005), and in another study MUA yielded a
higher decoding performance than LFs and SA (Stark and
Abeles 2007). These results seem, in part, to be counterintui-
tive, because if neurons are the output that ultimately generate
movements and control kinematics, then one would predict that
SA information would best capture details of kinematics. Our
data show that these discrepancies are largely a consequence of
sample size: The ranking of signal success is dependent on the
number of units/channels used in the decoder. We demonstrate
that LFPs can contain more information than spikes when
relatively small numbers of units are used, consistent with this
earlier work. To explain this result, consider, for example,
decoding of wrist position in the following scenario. Wrist
decoding would be worse when using spiking from a single
unit that is only correlated with elbow joint angle, compared
with a more global LFP signal that contains some wrist
information. However, when many spiking units become avail-
able, the likelihood of finding cells that are tuned for wrist
decoding would increase and for some large enough neuronal
ensemble the decoding performance would exceed that
achieved by using FP signals alone. Our data in Fig. 5, A and
B, support this scenario. The fact that the greedy algorithm was

Table 5. Results for top 10 inputs in hybrid decoding or only MI or PMv inputs

Signal/Comparison 1. Mean r (top 10 inputs only) 2. Mean r (MI only) 3. Mean r (PMv only)

Statistical test/notes Mean sig. diff. (all pairs) n/a n/a
LF 0.44 � 0.02 (†H1) (‡H2) (*SA) 0.46 � 0.03 0.49 � 0.03
H1 0.43 � 0.02 (‡H2) (*SA) 0.43 � 0.03 0.50 � 0.03
H2 0.51 � 0.02 (*SA) 0.53 � 0.02 0.56 � 0.03
Spikes 0.62 � 0.02 0.65 � 0.03 0.67 � 0.02
All signals 0.50 � 0.01

Conventions similar to Table 2. n/a, Not applicable.

Table 6. Fractions of PMv inputs by signal for MA decoders

Mean

Monkey C Monkey G

S1 S2 S1 S2

LF 0.56 � 0.03 0.52 � 0.01 0.51 � 0.02 0.46 � 0.05 0.73 � 0.07
H1 0.60 � 0.02* 0.55 � 0.03 0.59 � 0.05 0.60 � 0.05 0.66 � 0.05
H2 0.54 � 0.03 0.50 � 0.03 0.61 � 0.05 0.50 � 0.06 0.53 � 0.07
SA 0.60 � 0.03* 0.46 � 0.05 0.47 � 0.04 0.66 � 0.04* 0.83 � 0.02*

Values are means � SE over kinematic parameters (t-test for significant difference from 0.5; *P � 0.01). The range of mean fraction of PMv inputs was
0.46–0.83. S1 and S2, sessions 1 and 2.
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consistently better when using spikes than when using other
signal types is explained by the selective nature of that algo-
rithm: It identified for each step the very best neuron out of a
larger pool of possible choices (Fig. 5C). This reasoning pre-

dicts that the decoding differences observed here [i.e., SA �
H2 (MUA) � LF] could become more evident with larger-
scale recordings where the selection is larger. This assertion is
also supported by our observation that spiking units were

Fig. 9. Fractions of inputs of each type of signal from each area
in the optimal pool of input signals used for decoding. Frac-
tions of inputs across all kinematic parameters that came from
PMv vs. MI in the multiarea decoder (MA) for each neural
signal (A), all field potential bands-based decoder (mb-LFP;
B), or all signals-based decoder (HS; C), for a maximum pool
of 50 inputs that were tested with the greedy procedure. Pie
chart plots the mean proportion of each type of signal (out of
all selected signals) selected by the corresponding decoder.
Reach refers to the average fractions obtained for decoding
across x, y, and z positions, x, y, and z velocities, and hand
speed. Grasp refers to similar average fractions for decoding
aperture. A slight overall bias for PMv spikes for both reach
and grasp was observed, in part due to the reduced number of
units in monkey G, MI, session 2. However, there were no
differences in this bias for reach vs. grasp.
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generally less correlated than any LFP band, and could there-
fore potentially add more independent information with in-
creasing number of units. Note also that our electrode arrays
allow for no bias in selection, so that these results reflect the
available information from an arbitrary pool of cells within a
small (4 � 4 mm) region of MI or PMv.

Nature of Signals

LFPs have been associated with cortical inputs, while spikes
are output. Based on this oversimplified view, a comparison of
these signals could potentially reveal the input-output transfor-
mations performed by a cortical area. Insofar as LFPs reflect
inputs into an area, their lower decoding performance could
thus reflect differences in information between the input and
output in PMv and MI. However, there are many issues that
make it difficult to relate LFP to simple inputs to an area. For
example, LFP reflects input but also dendritic processing,
which is “diluted” by the spatial averaging of synaptic currents
inherent in extracellular recording (Rasch et al. 2008). Intra-
cellular recordings would be required to measure input currents
on a single-cell basis. Spikes are recorded extracellularly from
single neurons, but it is important to recognize that spikes
likely reflect intrinsic processing as well as the output of an
area because cortical neurons have extensive recurrent axonal
networks. These features of spiking and fields complicate

inferences about input-output transformations that the signals
reflect.

Our data agree with previous suggestions (Logothetis 2002)
in that H2 may primarily reflect the spiking of a collection of
cells (MUA) because decoding performance of H2 and spiking
was generally similar. Nevertheless, H2 could also contain
other fast synaptic components. Our filter settings during
recording limited the LFP bandwidth to 0.3–500 Hz, which
removed discriminable single units from this band. Thus we
cannot determine whether movement information available in
H2 was related primarily to spiking or synaptic currents. On
the other hand, power in the H2 band averaged over small time
windows as done here has similarities, from a signal processing
view, to what Stark and Abeles (2007) called MUA. By
contrast, Mehring et al. (2003) defined MUA as thresholded
but unsorted neuronal spikes [referred to as multiple single
units in Stark and Abeles (2007)], while MUA in Stark and
Abeles consisted of root-mean-squared high-pass-filtered po-
tentials. Thus comparisons with MUA-based decoding require
a careful analysis of the actual signal employed. The relative
performance of decoders based on sorted (our SA signal) or
thresholded but unsorted spikes (Chestek et al. 2009) is a
subject of ongoing research for BCI applications.

Among the FP signals analyzed in this study H1 was
generally the worst for decoding. H1 might reflect more of a
contribution by LFPs and less of spikes. Work by other groups
(Belitski et al. 2008; Rickert et al. 2005) and ours (Zhuang et
al. 2010) has observed a trend that the predominant informa-
tion about stimuli or motor responses occurs in the low- and
high-frequency LFPs, with a reduced information content in
the middle-frequency bands (beta band, cf. introduction). Con-
sistent with this idea, middle-frequency bands as considered
for the same data in Zhuang et al. (2010) performed even
worse. We did not consider midbands in the present study
because of this known poor performance.

Comparison of MI and PMv

Surprisingly, we found roughly the same amount and type of
information about reach and grasp in PMv and MI neuronal
populations, although the better of the two areas differed
between the monkeys. To our knowledge, this is the first
demonstration that PMv contains continuous 3D reach and
grasp kinematic information in SA and H1 and H2 bands and
is the first comparison between PMv and MI. Our results
suggest that the information in PMv and MI about both reach
and grasp is overlapping, because decoding improved margin-
ally if at all when the two were combined (see also Bansal et
al. 2011). These results are remarkable because previous stud-
ies have indicated that PMv is dominated by signals related to
grasping (Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta
et al. 2007), while MI contains both grasp and reach informa-
tion in small local ensembles (Vargas-Irwin et al. 2010). We
suggest three possible explanations. First, our task required
continuous naturalistic movements and updates that may en-
gage networks in different ways than the more sequentially or
discretely organized and stereotyped tasks used in previous
studies for either MI or PMv. Other studies have suggested that
PMv neural properties may be subject to context (Fluet et al.
2010; Xiao et al. 2006). Second, our decoding approach ex-
tracted kinematic information from any possible set of cells in

Fig. 10. Composition of the optimal input pool for hybrid signal (HS) decoding
by signal type and cortical area. The order in which the inputs were added to
the HS pool to decode each signal for each session with the greedy-selection
algorithm (see METHODS) is shown. A: summary of fractions of inputs of each
signal type added at each rank. B: summary of fractions of inputs added at each
rank from PMv (gray) and the corresponding cumulative fraction of PMv
inputs added (black).
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the recorded neural ensemble, whereas previous approaches
(Kurata and Tanji 1986; Rizzolatti et al. 1988; Umilta et al.
2007) quantified fractions of individual cells that were best
tuned to either reaching or grasping. We might therefore have
obtained significant kinematic information even from a minor-
ity of tuned cells in one area, which with a large enough
sampled population can achieve similar decoding performance
compared with another area with a larger fraction of tuned
cells. This sort of distributed coding has been previously
demonstrated in MI, PMd, and other cortical areas, but this is
the first comprehensive comparison of ensembles across MI
and PMv (Bansal et al. 2011; Carmena et al. 2003; Nicolelis
and Lebedev 2009; Wessberg et al. 2000). Also note that
single-cell studies select recorded cells, while we did not.
Third, our electrodes sampled only from the cortical surface
representation of MI and PMv, and may not be representative
of the properties of cells deeper in the arcuate or central sulci.
However, to the best of our knowledge, reach and grasp
neurons have been reported both on the surface and in the
depth of the arcuate sulcus, with no clear organization of reach-
versus grasp-preferring neurons with depth (Stark et al. 2007).
The fixed �1-mm length of the electrodes also restricts us to
sampling around the layer 3/5 boundary in MI and PMv. While
the representation in cells and LFP signals might change in dif-
ferent layers, there is no evidence for this conjecture. In
summary, our results suggest that the nature of information in
PMv could depend on task types or other variables, which may
explain recent conflicting views of motor cortex representation
(Graziano and Aflalo 2007).

Since we used anatomical landmarks (see METHODS) for
placing electrodes, we cannot completely rule out the possibil-
ity that our PMv electrodes straddled PMd, which might make
the observed lack of difference in reach and grasp encoding
less surprising. However, in one monkey we explored the
region further ventral to the locations of the PMv implants in
this study and found no arm or hand representation, but only a
face representation. Within the PMv array, we found no clus-
tering of reach along more dorsal electrodes or grasp along the
ventral electrodes. These observations suggest that we are not
straddling PMd.

Implications for BCI Applications

Our results suggest that when recording from ensembles of
neurons (e.g., via 96-channel microelectrode arrays), spiking
signals are the richest signal source of motor commands for
BCI applications. However, this conclusion is conditioned on
the number of units used. For very small ensembles, LFP
signals could provide a better command signal because single
units might be more restricted in their information content.
While this hypothesis requires testing in BCI applications,
results of open-loop decoding have guided decoding ap-
proaches in prosthetics research using both able-bodied mon-
keys and humans with paralysis. Thus our results provide
important guidance for neuroprosthetics that aim to restore
movement ability in people with paralysis using intracortical
LFP or spiking signals.

One implication of our results is that the many different
signals available on an intracortical array may be useful to
ensure longevity. Spikes may be stable only across days to
weeks, and even then only for a subset of channels (Chestek et

al. 2009; Dickey et al. 2009), necessitating the frequent updat-
ing of decoding filters (Hochberg et al. 2006). On an array
where the number of spiking units is small or decreases over
time, LF, H1, and H2 signals may provide a substitute signal to
create a robust decoder. LFPs may provide other advantages as
BCI signal sources such as signal and tuning stability across
several months (Chao et al. 2010), while recorded SA and its
properties might change across days because spike sampling
is sensitive to small motions of the electrode.

Learning might be another way to enhance BCI control, and
it may be possible to learn to control some signals better than
others. There is considerable evidence that spiking can be
modified through learning (Carmena et al. 2003; Fetz 1969;
Ganguly and Carmena 2009; Moritz et al. 2008), but it is not
clear whether individual LFP bands are more or less readily
adaptable in BCI applications (Nowlis and Kamiya 1970;
Pfurtscheller et al. 2010; Plotkin 1976; Wolpaw and McFar-
land 2004). It is also not clear how well each of these signals
is amenable to volitional control in a closed-loop setting. The
comparison of LFP, spike, and hybrid decoders remains to be
tested in BCI users.

Finally, in BMI applications, one does not know a priori
which area (of MI and PMv) is going to give the better
decoding performance. For example, in monkey C, MI was
typically the better area, and in monkey G, PMv was typically
the better area. In this study, we provide an estimate of the
difference in decoding performance between implanting only
one array (and it being in the worse area for that kinematic
parameter/monkey/session) and having two implanted arrays
(Fig. 8B), allowing for future studies to determine the trade-off
in improved decoding performance versus surgical risks/costs
with dual versus single arrays. Future studies might also enable
the use of noninvasive methods (e.g., functional brain imaging)
to determine a priori which area might yield better perfor-
mance.
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