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Abstract
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the
existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We
propose amechanisticmodel of visual search that is consistent with recent neurophysiological evidence, can localize targets in
cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area
selective for shape features receives global, target-specific modulation and implements local normalization through divisive
inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The
resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The
maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the
selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model
can localize objects both in array images andwhen objects are pasted in natural scenes. Themodel can also predict single-trial
human fixations, including those in error and target-absent trials, in a search task involving complex objects.
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Introduction
Searching for an object in a crowded scene constitutes a challen-
ging task. Yet, we can detect target objects significantly faster

than would be expected by random search, even in a complex
scene (Wolfe, Alverez et al. 2011). How does the brain identify

the locations that might contain a target object? An influential
concept suggests that the brain computes one or more “priority

maps,” which allocate a certain attentional value to every point
in the visual space (Itti and Koch 2000). A large body of evidence

shows that this attentional selection involves the frontal eye field
(FEF), the lateral intraparietal cortex (LIP), and sub-cortical struc-

tures such as the pulvinar and the superior colliculus (Reynolds

and Heeger 2009; Noudoost et al. 2010; Bisley 2011). How these

areas interact with those involved in shape recognition is poorly
understood. To understand the interactions between bottom-up
visual inputs and top-down task influences during visual search,
we seek a model with 3 main characteristics: (i) computationally
implemented so that it can perform search on images, (ii) con-
sistent with state-of-the-art understanding of neural circuit
function and cognitive science of visual search, and (iii) capable
of capturing human behavioral performance during visual
search.

In most models of visual search, the salience of an object is
defined by the contrast between the object and its local surround
along various features (Koch andUllman 1985; Tsotsos et al. 1995;
Itti and Koch 2000; Rao et al. 2002; Hamker 2005; Navalpakkam
and Itti 2005, 2007;Walther and Koch 2007;Wolfe 2007; Chikkerur
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et al. 2010). Additionally, search behavior is influenced by the
characteristics of the sought target (Williams 1967; Findlay
1997; Eckstein et al. 2000; Rao et al. 2002; Beutter et al. 2003; Bichot
et al. 2005; Najemnik and Geisler 2005; Navalpakkam and Itti
2007; Zelinsky 2008; Buschman and Miller 2009; Tavassoli et al.
2009; Carrasco 2011; Kowler 2011; Peelen and Kastner 2011; Tatler
et al. 2011).

Howdo the target characteristics influence visual search?One
possibility is that the brain could use the object recognition prop-
erties of the ventral pathway, culminating in the highly selective
responses of inferotemporal (IT) areas, to compare each portion
of space with the target’s known appearance. However, the
ventral pathway is relatively slow compared with the attentional
system (Monosov et al. 2010). Furthermore, the selectivity of IT
cells is strongly degraded by clutter in the absence of spatial
attention (Desimone 1998; Sheinberg and Logothetis 2001; Zocco-
lan et al. 2007; Zhang et al. 2011) (but see Li et al. (2009); Agam
et al. (2010)), making them a poor candidate to drive visual search
in complex environments.

Many existing models of visual search propose that the brain
selectively biases the activity of low-level visual feature detec-
tors, increasing the gain of cells selective for the target’s features
(e.g., when looking for a red object, red-selective cells are up-
modulated). As a result, on stimulus onset, regions in which
the target’s features are present elicit higher responses. This
idea extends the theoretical proposal of Wolfe’s “guided search”
(Wolfe 2007) and forms the basis of many computational models
of visual search. These models include Chikkerur et al.’s (2010)
elegant derivation of attentional effects by applying Bayesian
computations to image and target features (see also Yu and
Dayan (2005); Vincent et al. (2009)), Navalpakkam and Itti’s
(2005, 2007) extension of Itti and Koch’s (2000) bottom-up sali-
ency computation by introducing object-specific low-level fea-
ture biasing, Lanyon and Denham’s (2004) proposal based on
modulation and biased competition in extra-striate cortex, and
Hamker’s (2005) detailed biologically motivatedmodel of how at-
tentional selection emerges from the reentrant interactions
among various brain areas. In biologically motivated models,
themodulated feature detectors tend to be associatedwith visual
area V4, and the source of feature-specific modulation with the
highly selective regions of inferotemporal cortex (IT) or prefrontal
cortex (PFC), while the prioritymap itself is associated with areas
controlling visual attention and eye movements (FEF and LIP)
(Hamker 2005; Chikkerur et al. 2010).

An attractive feature of this proposal is that a similar phenom-
enonhas indeed been observed in a different type of task, namely
feature-based attention (attending to a particular feature or ob-
ject rather than a location [Treue and Martinez-Trujillo 1999]).
In these tasks, lower-level cells are indeed modulated according
to how much their preferences match the target, rather than the
stimulus in their receptive field (RF), and this observation has
been described in a “feature-similarity gain” model (Martinez-
Trujillo and Treue 2004). A similar effect has also been reported
in human imaging and MEG data (O’Craven et al. 1999; Puri
et al. 2009; Baldauf and Desimone 2014).

However, recent experimental evidence raises the possibility
of an alternative explanation and flow of information processing
during visual search. First, in visual search tasks, modulation
specific for target similarity was observed in FEF before V4
(Zhou and Desimone 2011) or IT (Monosov et al. 2010), even
though target-independent feature selectivity can be detected
in V4 before FEF (Zhou andDesimone 2011). The earlier activation
in FEF during search suggests that attention-controlling circuits
may “find” visual areas that look like the target (and control the

next attentional selection) before low-level detectors and high-
level identifiers. Furthermore, some studies show that during
visual search the target-selective modulation in V4 is actually
spatial, rather than feature based: V4 cells seem to be modulated
according to the similarity between the local stimulus and target,
rather than based on their feature preference (Zhou and
Desimone 2011) (see also [Martinez-Trujillo 2011]).

These observations suggest that similarity between local fea-
tures and target features may be computed elsewhere, and then
redistributed as “feature-guided spotlights” of spatial modula-
tion down to V4: The brain determines which locations of the
visual input “look like” the target and then applies a spatial
modulation on the visual areas around these locations. This
leaves open the question of how feature-guidance occurs, that
is, how the priority map that tracks local similarity to target
features is computed in the first place.

We propose a model for visual search that is motivated by
these recent neurophysiological observations. Briefly, the pro-
posed model suggests that the priority map is computed directly
in a retinotopic, feature-selective area within the attentional sys-
tem, tentatively ascribed to LIP/FEF (seeDiscussion).We showhow
feed-forward visual input, interacting with object-specific, top-
downmodulationand local divisivemutual inhibition (normaliza-
tion) creates a priority map with higher activation around stimuli
that are similar to the target. Themaximumof thismap is then se-
lected as the next locus of attentional selection. Attentional selec-
tion (either covert or overt—see Discussion) spatially enhances a
small portion of the visual input around this locus andde-empha-
sizes the rest. This enhancement allows the ventral visual system
todeterminewhether the target is actually present at that location
or not. If the target is not found at this location, the process (atten-
tional selection followed by local recognition in the selected loca-
tion) is iterated until the target is found or search is aborted. We
show that theproposedmodel can locate target objects in complex
images. Furthermore, we compare the model with human behav-
ior on a common non-trivial visual search task involving complex
objects. Themodel predicts human behavior during visual search,
not only in overall performance, but also in single trials, including
error and target-absent trials.

Materials and Methods
Ethics Statement

All the psychophysics experiments (described later) were con-
ducted under the subjects’ consent according to the protocols
approved by the Institutional ReviewBoard at Children’s Hospital
Boston.

Model Sketch

We first provide a high-level intuitive outline of ourmodel (Fig. 1);
later sections provide a full description of the implementation
details.

We consider the problem of localizing a target object in a clut-
tered scene (e.g., Fig. 2A–D). The model posits that a priority map
determines the locus of attentional selection, by conjugating
local visual inputs with top-down target information (Fig. 1
—“Priority map”). This map is computed by a high-level, retino-
topic area, selective for complex shape features. The area in our
model that performs the necessary computations has properties
inspired by macaque LIP and FEFs; we therefore refer to this area
as “LIP/FEF” in our description of the model (Fig. 1). Yet, we em-
phasize that this is a descriptive naming convention rather
than a firm biological equivalence (see Discussion).
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The key inputs to this priority map area are (i) bottom-up sig-
nals from retinotopic shape-selective cells in earlier visual areas
and (ii) top-down signals that modulate the responses according
to the identity of the target object. This top-down modulation
involves target-specific multiplicative feedback on each cell in
the area. This feedback input F(O, P) (where O is the target object
and P is the cell’s preferred feature) is proportional to how much
feature P is present in the target object and is learnt by exposure

to images of the object (eq. 4). In addition, the priority map
undergoes local normalization through divisive feed-forward
inhibition at every point (eq. 4), effectively normalizing the
bottom-up inputs. The interaction between feed-forward visual
input, top-down object-specific modulation, and local divisive
normalization produces a priority map of the visual scene, in
which aggregate activity at each location tracks the overall
similarity of local visual input with target features.
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Figure 1. Sketch of the attentionalmodel.When a target objectO is presented (here a top hat, upper right), themodel generates a set of attentionalmodulation coefficients F

(O, P) (red arrow). During a search task, an image containing a target object among other distractors (bottom) is passed to a cascade of linear filters (Gabor functions [S1] and

radial basis functions [S2b]) and non-linear filters (max operation, C1) (Serre et al. 2005; Kouh 2007) (Methods). The output of S2b cells in response to the image ismodulated

multiplicatively by the attentional signal F(O, P) and normalized by the total incoming S2b activity at each point (blue arrow). The total resulting activation at every point,

summed across all scales and prototypes, constitutes the final priority map AO(x, y) (top), corresponding to the output of the attentional system for guidance of attentional

selection. In this example, as expected, the priority map’s maximum value (bright yellow) lies at the location of the target object within the input image. The priority map

enhances the selected location at the S2b level (green arrow). The S2b signals are conveyed to a target presence validation step to identify objects at the selected location

unhindered by clutter in the scene. In this example, the model identifies the target object at the selected location, successfully completing the search.
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The attentional focus at any time is defined as the point of
maximum local activity in the priority map (eq. 6). This selection
is then projected back onto the ventral pathway of the visual

system, by “cropping” activity around the current attentional
focus. By emphasizing the selected areas, attentional selection
allows the ventral pathway to perform fine-grained object

I

K

DBA

HFE

C

G

J

L

Figure 2. Model performance in object array images and natural-background images. Example object array images (A,C) and natural-background images (B,D) used for

testing the model. The target object is a top hat in A,B and an accordion in C,D. (E–H) Output of the model for each of the images in A–D. We show the priority map

(AO(x, y), top layer in Figure 1), after smoothing (see color map on the right, arbitrary units, Methods). (I–K) Performance of the model (asterisks) in locating 40 target

objects in 40 object array images containing 9 objects (I,J) and 40 natural-background images (J,K). For each possible number x of fixations (1 ≤ x ≤ 5)), the y-axis

indicates the proportion of all images in which the target was found within the first x fixations. Error bars indicate standard error of the mean across all 40 objects.

Dashed line with circles: model performance when the normalization step is omitted (no denominator in eq. 5). Dotted lines with hexagons: model performance

when feedback weights are randomly shuffled among objects for each input image. Dashed line with squares: priority maps generated by a purely bottom-up saliency

model that has no information about the target object (Walther and Koch 2006). The gray horizontal lines in I and J indicate increasing multiples of 1/9. I and K use an

“oracle” verification at each fixation point to determine whether the target fixation is correct or not. In contrast, J and L use a target validation system as illustrated in

Figure 1 (Methods).
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recognition on the selected input (Zhang et al. 2011). The system
can then determine whether or not the target object is actually
present at the selected location (Fig. 1—“S3/pIT” and “C3/aIT”).
This process is iterated over each successivemaximumof the pri-
ority map, resulting in a series of “fixations.” If the recognition
pathway model detects that the target is present at the current
fixation point, the search concludes successfully. If the target is
not found at the current fixation point (either because it is not
present at this point, or because the recognition system failed
to identify it), the model continues to the next best location in
the priority map. Search is arbitrarily stopped at a fixed number
of fixations if the target is not found. In those rare cases where
the recognition system falsely recognizes the target at a given
fixation point even though it is not actually there, the search
concludes in failure.

Bottom-Up Architecture

The computational model builds upon the basic bottom-up
architecture for visual recognition described in (Serre 2006;
Kouh 2007), which is in turn an elaboration of previous feed-
forward architectures (e.g. Fukushima (1980); Wallis and Rolls
(1997); Riesenhuber and Poggio (1999)). This model relies on an
_alternation between “simple” cells that compute the match of
their inputs with a pre-defined pattern and “complex” cells that
return themaximumof their inputs selective for the same pattern
but at slightly different positions and scales. Here, we consider
2 layers of simple and complex cells (S1, C1, S2b, C2b, using the
same nomenclature as in previous studies) as described later.

We succinctly describe the bottom-up architecture here (for
further details, see Serre (2006); Kouh (2007); Serre, Kreiman
et al. (2007)). We consider 256 × 256 pixel grayscale images I(x, y)
(1 ≤ x ≤ 256, 1 ≤ y≤ 256 pixels, 0 ≤ I(x, y)≤ 255). The model does
not include color. The first set of units (S1) convolve the image
with Gabor filters at 12 scales S (S = 1, 2. . . 12) and 4 orientations
θ (θ = 45, 90, 135, 180°). Following Kouh (2007), the activation func-
tion for S cells is an L2-normalized inner product betweenweights
and inputs. One differencewith previous implementations is that
we only use 12 different scales (rather than 16) and do not merge
scales at any point: themodel is essentially replicated inparallel at
all scales. There are also minor differences in the positioning and
spacing of cells at successive layers; in particular, the S1 cells do
not densely cover the input. These choices result from early ex-
perimentation in which these particular arrangements provided
a good tradeoff between performance and speed.

Filters at scale S are squarematrices of size D ×D, withD = 7 + 2
× (S−1) pixels. S1 cells are evenly spaced every D/4 pixels both ver-
tically and horizontally—thus they do not densely cover the image.
Weenforce complete RFs,whichmeans that acell’sRFcannotover-
lap the border of its input layer. Because we enforce complete RF,
the RF of the top-left-most cell is centered above pixel position x =
D/2, y =D/2. Note that because of difference in RF diameters (and
thus in margin and spacing), S1 cell columns of different scales
do not generally fall at the same positions. At any given position,
there is either no cell at all or a full column of 4 S1 cells (1 per orien-
tation), all of the same scale. This also applies to C1 and S2b cells,
replacing orientations with prototypes for S2b cells (see below).

The Gabor filter G’S,θ of scale S and orientation θ is defined
for every row x and column y as G0

S; θðx; yÞ ¼ expð�ððx̂2 þ γ2ŷ2Þ=
ð2σ2ÞÞÞcos ð2πx̂=λÞ; (Serre 2006) where x̂ ¼ x cos θ þ y sin θ;

ŷ ¼ �x sin θ þ y cos θ; λ = 0.8 σ, σ = 0.0036D2 + 0.35D + 0.18,
γ = 0.3. Note that −D/2 ≤ x ≤D/2 and −D/2 ≤ y ≤D/2. The filter
weights are then set to 0 outside of a circle of diameter
D: G0

S;θðx; y :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> D=2Þ ¼ 0: Finally, the Gabor filters are

normalized to unit norm: GS; θðx; yÞ ¼ G0
S; θ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x; y G0

S; θðx; yÞ2
q

: For
a given S1 cell of scale S, orientation θ, centered at position (xc, yc),
the output is the absolute value of the normalized inner product
between the (vectorized) corresponding Gabor filter and the por-
tion of the input image falling within the cell’s RF (Kouh 2007):

S1S; θ; xc ; yc ¼

P
i;j
GS; θði; jÞIðxc þ i; yc þ jÞ

�����
�����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j
Iðxc þ i; yc þ jÞ2

r : ð1Þ

C1 layers take S1 output as their inputs. The output of a C1 cell of
scale S and orientation θ is the maximum of S1 cells of identical
orientation and scale, within the RF of this C1 cell. At any scale,
C1 cells are positioned over “every other” S1 column of the same
scale, both verticallyandhorizontally. EachC1 cell returns themax-
imum value of all S1 cells of similar scale and orientation within a
square of 9 × 9 S1 cells centered at the same position as this C1 cell:

C1S; θðxc; ycÞ ¼ MAXi;jðS1S; θðxc þ i; yc þ jÞÞ; ð2Þ

with −4≤ i≤ 4, −4 ≤ j≤ 4. In the previous equation, xc and yc refer
to position within the S1 layer of scale S, not to image pixel
positions.

S2b cells take C1 output as their inputs. The output of an S2b
cell depends on the similarity of its inputs with its prototype
PSði; j; θÞ: There are 600 different prototypes, each of which takes
the form of a 9 × 9 × 4 matrix as described later (9 × 9 diameter
and 4 orientations). The same 600 prototypes are used for all
scales. The output of an S2b cell of scale S, prototype P and
position x, y is calculated as follows:

S2bS; Pðx; yÞ ¼

P
i; j; θ

PSði; j; θÞC1S; θðxþ i; yþ jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i; j; θ

PSði; j; θÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i; j; θ
C1S; θðxþ i; yþ jÞ2

r
þ 0:5

; ð3Þ

with −4≤ i≤ 4, −4 ≤ j≤ 4, and θ ranges over all 4 orientations. Note
that the numerator describes a convolution of the entire stackof 4
C1 maps (1 per orientation) with the S2b prototype, whereas the
denominator normalizes this output by the norms of the proto-
type weights and of the inputs. Coordinates x and y refer to posi-
tions within the C1 grid of scale S, rather than image pixel
positions. Following Serre (2006), each prototype PSði; j; θÞ was
generated by running the model up to level C1 on a random
image, and extracting a patch of size 9 × 9 × 4 (diameter 9, 4 orien-
tations) from the 4 C1 maps (1 per orientation) at a random scale
and a random location. Then, 100 randomly selected values from
this patchwere then kept unmodified,whereas all other values in
the patch were set to zero. The resulting patch constituted the ac-
tual prototype P. This process was iterated until 600 prototypes
were generated. The random images used to set the prototypes
were distinct from all the images used in the computational ex-
periments mentioned later (i.e., none of the 40 target objects or
250 natural images used under “Computational experiments”
were used to determine PSði; j; θÞ). Note that the same set of 600
prototypes was used at all scales. The C2b layer returns the global
maximum of all S2b cells of any given prototype P, across all posi-
tions and scales. Thus, there are 600C2b cells, 1 for each S2b proto-
type P. The max operation in C2b as well as that in equation 2
provide tolerance to scale and position changes (Serre, Kreiman
et al. 2007).
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Attentional Selection

The attentional model considers a situation where we search for
objectO in a complex image I thatmay contain an array of objects
or a natural background (e.g., Fig. 2). To search for object O, the
model considers the bottom-up responses to that object when
presented in isolation: C2b(O, P) (1 ≤ P ≤ 600) and uses those re-
sponses to modulate the bottom-up signals to image I. We refer
to thismodulation as a feedback signal F(O, P), defined by the nor-
malized C2b output for the target object presented in isolation on
a blank background:

FðO; PÞ ¼ C2bðO; PÞ=C2bðPÞ; ð4Þ

where C2bðPÞ is the average value of the C2b output for prototype
P over 250 unrelated natural images. The dimension of F is given
by the number of prototypes (600 in our case). Thus, for each S2b
prototype P, the value of the feedback modulation F(O, P) when
searching for target object O is proportional to the maximum
response of this prototype to objectO in isolation, across all posi-
tions and scales. F is then scaled to the (1, 2) range by subtracting
the minimum, dividing by the maximum coefficient, and finally
adding 1 to each coefficient. This ensures that the total range of
weights is the same for all objects. Note that F is not hard-wired; it
is task dependent and varies according to the target object.

Equation 4 makes the top-down signals dependent on the
ratio between response to target and response to a “mean” stimu-
lus (average response over many unrelated natural images). This
is essentially similar to Navalpakkam and Itti’s (2007) proposal to
base top-down modulation on the signal-to-noise ratio (ratio of
activations) of targets versus distractors; the difference is that
here “distractors” are unpredictable and approximated by a
large set of unrelated natural images.

The value of the feedback signal may be interpreted in a Heb-
bian framework: F represents feedback from “object-selective
cells” in a higher area (possibly identified with PFC, see Discus-
sion) that receive inputs from, and send feedback to, all S2B
cells. Under Hebbian learning, the connection from any S2B cell
to each object-selective cell will tend to be proportional to the ac-
tivation of this S2B cell when the object is present, and therefore
so will the strength of the feedback connection, which deter-
mines F when the object-specific cell is activated during search.
At least in lower visual areas, empirical evidence suggests
that feedback connections tend to connect cells with similar
feature preferences (Angelucci and Bullier 2003; Shmuel et al.
2005). The learning phase for the F(O, P) weights is described in
Figure 1.

The attentional model combines these target-specific signals
with the responses of the bottom-up architecture up to S2b into a
so-called LIP map (see Discussion), LIPS;P;Oðx; yÞ; defined by:

LIPS; P;Oðx; yÞ ¼ S2bS; Pðx; yÞ � FðO; PÞ
Pk¼600

k¼1
S2bS; kðx; yÞ þ 5

: ð5Þ

At every position (x, y) in the LIP map (which correspond to
positions in the S2b map), each LIP cell (of scale S and preferred
prototype P)multiplies its S2b input by the attentional coefficient
F for prototype P given the target object O. We note again the
tentative nature of ascribing this computation to area LIP. The
denominator indicates that LIP cells also receive divisive feed-
forward inhibition, equal to the sum of all incoming S2b inputs
at this position. An additive constant in the denominator

(corresponding to the “sigma” constant in the canonical normal-
ization equation [Carandini and Heeger 2011]) defines the
“strength” of normalization: A large value means that the
denominator is dominated by the fixed constant and thus less
dependent on local activity, whereas a low value means that
the denominator is dominated by the variable, activity-depend-
ent term. We empirically set this parameter to 5 for all simula-
tions. As described later, divisive normalization is crucial to the
performance of the model (see Fig. 3G–H and Discussion).

The final prioritymapused to determine the location of atten-
tional focus,AOðx; yÞ; is simply defined as the summed activity of
all LIP cells at any given position:

AOðx; yÞ ¼
X
S;P

LIPS; P;Oðx; yÞ: ð6Þ

At any time, the globalmaximumof this prioritymap defines the
current fixation/attentional focus. Notice that this map is only
defined at discrete positions of the original image—those over
which S2b cells are located.

Owing to their discrete support and divisive normalization
(which compresses responses at the higher end of the range), the
prioritymapsproduced by the systemaredifficult to interpret visu-
ally. For visualization purposes only, these maps are contrast-
enhanced by linearly scaling them within the (0.5, 1.5) range,
then exponentiating the value of each point 3 times (x = exp(exp
(exp(x)))); they are then smoothed by filtering the entire map with
a Gaussian filter of standard deviation 3 pixels. Importantly, this
processing is only used to generate Figures 1 and 2, for the purpose
of assisting visualization. All the computations and results in this
paper are based on the original, unprocessedAOðx; yÞ as defined in
equation 6.

Object Search

Searching for a target object O in a given image operates by itera-
tively finding the position of the maximum of the priority
mapAOðx; yÞ defined in equation 6, enhancing the visual input
around this location, and validating the presence or absence of
the target at the selected location (see Target Presence Valid-
ation). If the target object is present within the selected location,
the target is deemed to have been found and the search con-
cludes successfully.

If the target is not detected at the selected location (either
because it is not present at that point, or because the target
validation step failed to identify it), the model sequentially
moves to the next strongest location. This is implemented by
a strong version of “inhibition-of-return” (IoR, [Klein 2000])
applied to the priority map, decreasing its value around the
location of the maximum as described later. The model selects
the next maximum, corresponding to a new model fixation.
This procedure is iterated until the target is found or the max-
imum number of fixations (set to 5 unless otherwise noted) has
been reached.

The IoR procedure multiplies the current priority map at
fixation f pointwise by an inverted 2D Gaussian NðxF; yF; σIoRÞ
centered on the position of the current (unsuccessful) fixation
(xF, yF) and with standard deviation σIoR:

AOðx; yÞ½ f þ 1� ¼ AOðx; yÞ½ f �ð1� k�NðxF; yF; σIoRÞÞ: ð7Þ

In all simulations, k = 0.2 and σIoR = 16.667. We report the propor-
tion of images where the target is found as a function of the
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number of fixations f required in the computational experiments
in Figures 2–4. In the model, IoR is constant over a trial, a simpli-
fication common to other visual search models (Itti and Koch
2001), whereas in reality it has a limited time span (Horowitz
and Wolfe 1998). This suggests that IoR only affects the last few
selected areas (Klein 2000; Itti and Koch 2001). We only consider
amaximumnumber of successive fixations in our model evalua-
tions (5 in Figs 2 and 6 in Fig. 4C). Furthermore, in the compari-
sons against human behavior in Figures 5–8, only the first
fixation is considered (and therefore IoR does not play a role).

To separately report the efficiency of the attentional system
and the target validation step, we consider an alternative version
in which an “oracle” determines whether the selected location

contains the target object or not. The oracle simply checks
whether the attentional maximum falls within the bounding
box of the target object or not. The bounding box BO was defined
as the smallest square encompassing all pixels of the object. If
arg max½AOðx; yÞ� ∈ BO; then the target has been found.

Target Presence Validation

Given a selected region as determined by the maximum of the
priority map, the model needs to determine whether it has
found the target object or not (Fig. 1). Because our focus lies
on the attentional selection system, we chose to use a highly
simplified version of the full HMAX system for this purpose.

1 2 3 4 5 6
0

200

400

1 2 3 4 5 6
0

0.5

1

1 2 3 4 5 6
0

0.5

1

Lu
m

in
. h

is
t.

co
rr

el
at

io
n

1 2 3 4 5 6
0

50

100

A
bs

. m
ea

n
lu

m
in

. d
iff

.

1 2 3 4 5 6
0

200

400

A
bs

. s
iz

e
di

ffe
re

nc
e

1 2 3 4 5 6
0

2

4

C
2b

 d
is

t.

E
uc

lid
ia

n
di

st
an

ce

A

P
ix

el
w

is
e

co
rr

el
at

io
n

B

C

D

E

F

Fixation number

0.4 0.45 0.5 0.55 0.6 0.65
1

2

3

4

5

6

Average C2b activity of object

A
ve

ra
ge

 n
um

be
r 

of
 fi

xa
tio

ns
 (

m
ax

. 6
)

G

0.7

0.4 0.45 0.5 0.55 0.6 0.65
1

2

3

4

5

6

Average C2b activity of object

A
ve

ra
ge

 n
um

be
r 

of
 fi

xa
tio

ns
 (

m
ax

. 6
)

H

0.7

Figure 3. Properties of the model. (A–F). Average similarity between target and successively fixated objects, using various measures of similarity or difference between

images, excluding fixations to the actual target. The first bar in all graphs indicates the average similarity (or difference) between the target and the first fixated

objects across all trials in which the first fixation was erroneous. The similarity or difference measures are as follows: (A) pixel-wise Euclidean distance between the

object images, (B) pixel-wise Pearson correlation between the images, (C) correlation between image luminance histograms, (D) absolute difference between mean

luminance values (excluding background pixels), (E) absolute difference in size (i.e., number of non-background pixels within the bounding box), and (F) Euclidean

distance between C2b vectors in response to the images. A significant correlation between fixation number and similarity or difference exists for all measures, except

for size difference (E). The barely visible error bars indicate S.E.M. over the number of trials for each particular fixation; because we exclude fixations to the actual

target, this number ranges from n = 1158 (first column) to n = 2997 (last column). These computational data are derived from the same images used for the

psychophysics experiment (Fig. 4), using target-present trials only. (G,H) Effect of normalization on model output. For each one of 40 objects, the x-axis indicates the

average activity of all C2b cells elicited by the object. The y-axis indicates the average number of model fixations necessary to find the object in 40 object array images

(if the object is not found after 5 fixations, the number of fixations is set to 6 for this image). Error bars are standard error of the mean over 600 C2b cells (horizontal)

or 40 images (vertical). Without normalization (G), objects eliciting stronger C2b activity are easier to find, indicating that they attract attention at the detriment of

other objects, biasing search (dashed line: r =−0.82, P < 10−11). With normalization (H), this effect disappears (r =−0.04, P = 0.81).
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Figure 4. Comparing computer model and humans on a common task. (A) Visual search task. After fixation (verified by eye-tracking, Methods), a target object was

presented for 1500 ms. The screen was then blanked (except for a central fixation cross) for 750 ms and then a search array consisting of 6 objects was shown. If the

subject failed to find the target after 2000 ms, the trial ends and a new trial began. (B) Comparison between model performance and individual subjects. Model

performance (“o”) versus subject performance (“+”) on the same stimulus sets (same targets and same array of choice objects, but randomizing object positions

within the array) for successive fixations for each individual subject. There are small variations for the model from one plot to another because model

performance for each graph is estimated on the same stimulus set shown to the subject, which differs across subjects. (C) Average performance for subjects (“+,”

average of 16 subjects), model (“o”), and control models (random weights model shown with hexagons and saliency model shown with squares) for the task

described in (A) Only target-present trials averaged across subjects are shown here (see Fig. 5 for target-absent and error trials). Error bars indicate SEM across all

40 target objects. The 2 dashed lines represent the model performance when attentional weights were randomly shuffled across objects for each input image and

from a purely bottom-up saliency model that had no information about the target object (Walther and Koch 2006). The horizontal dashed lines represent

increasing multiples of 1/6.
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The attentional system enhances processing at the selected lo-
cation at the S2b stage in the model. The output of the S2b units
is then fed to an S3 layer. S3 units emulate the Posterior Infer-
otemporal cortex (PIT). Each S3 unit receives input from all 600
S2b units sharing a given location and compares the values of
its inputs with a stored prototype vector. For simplicity and ro-
bustness, this comparison is computed by Spearman rank cor-
relation between the input vector of S2b units and the S3
unit’s stored prototype, rather than Euclidean distance (Serre,
Wolf et al. 2007) or normalized dot product (Kouh 2007). The
value of this correlation constitutes the activation of the S3
unit. For computational efficiency, we only consider the 3 smal-
lest scales of S2b units. Similar to the S2b stage, the entire S3
area consists of the same set of S3 units duplicated over each

position in the map; that is, over each S2b column, there is an
identical complement of S3 units with the same set of proto-
types. These prototypes are also extracted from exposure to iso-
lated pictures of objects, by simply extracting all S2b columns
with non-zero activation when presenting a given object and
assigning each such column as the prototype of a new S3 cell.
This results in a total of 1720 S3 prototypes, representing 43 pro-
totypes per object.

The output of the S3 units is conveyed to a global pooling
stage, inspired by the C3 stage in the original HMAX model, and
emulating Anterior Inferotemporal Cortex (with high object
selectivity and large RFs). There is 1 C3 unit per known object,
receiving input from all S3 units associated with that object. C3
units sum the activities of all their S3 inputs, and the object
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Figure 5. Consistency metrics for individual subjects. We evaluated consistency in “repeated trials” where the same set of stimuli (identical target and same objects in

different positions within array) was presented to 2 different subjects or 2 different sessions for the same subject.Within-subject agreement (A1–3): proportion of trials in

which the subject first fixated the same object in repeated trials (13 subjects). Between-subject agreement (B1–3): proportion of repeated trials in which both subjects first

fixated the same object (8 subject pairs). Model-subject agreement (C1–3): proportion of trials in which both the subject and the model first fixated the same object (16

subjects).Column 1 (A1,B1,C1) includes all trials. Column 2 (A2,B2,C2) includes only target-absent trials. Column 3 (A3,B3,C3) includes only error trials. In all plots, the

dotted line indicates the chance level under the assumption of purely random (but non-repeating) fixations (1/6 in Columns 1 and 2 and 1/5 in Column 3). In the “all

trials” case (Column 1), we further consider a null model that takes into account the fact that subjects and model were able to locate the target above chance, which

affects their level of agreement. If the 2 series being compared (same subject on repeated trials, 2 different subjects, or subject and model) have probability of finding

the target at first fixation P1 and P2, respectively, then the probability of agreement by chance is P1P2 þ ð1� P1Þð1� P2Þ=5 (“+”). Whenever the degree of consistency was

significantly above chance, the comparison was marked with * (P < 0.05, binomial cumulative distribution test).
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associated with the most active C3 unit is the final result of the
recognition pathway.

Control Experiments

We performed several controls and comparisons with other
models. It is conceivable that in some cases, attentional selection
could be purely driven by bottom-up “saliency” effects rather
than target-specific top-down attentional modulation imple-
mented via equations 5 and 6. To evaluate this possibility, we
compared the performance of the model as described earlier
with 2 control conditions. First, we used a modified version of
the model, in which attentional modulation used the weights
(F(O′, P)) of a random object O′ for every input image instead of
the specific weights associated with the actual target object O.
We refer to this control as “Random weights” in Figures 2 and 4.
Second, we generated priority maps based on the bottom-up sa-
liency model of Itti and Koch (2000). We used the Saliency Tool-
box implemented in Walther and Koch (2006) with default
parameters, except for setting “normtype” to “none” (using the
default value for normtype results in very sparse saliency maps
in which only a few of the objects have a non-zero saliency, lead-
ing toworse performance).We refer to this condition as “Saliency
model” in Figures 2 and 4. Both control models were applied to
the exact same images as themodel and following the same pro-
cedure outlined under “Object search” above.

In Figure 3, we compared fixated objects and target objects.
For this figure, we considered several possible similarity metrics:
Euclidean distance (3A), pixel-wise correlation (3B), correlation
between luminance histograms (3C), absolute difference

between mean luminance values (3D), absolute size difference
(3E), and Euclidean distance between C2b vectors produced by
the bottom-up architecture (3F).

Psychophysics Experiments

We compared the computer model against human performance
in a psychophysics visual search task described in Figure 4 and in
the Results. During the psychophysics task, stimuli were pre-
sented on a CRT monitor (Sony Trinitron Multiscan G520). We
used the Eyelink D1000 system (SR Research, Ontario, Canada)
to track eye positions with a temporal resolution of 2 ms and a
spatial resolution of ∼1° of visual angle. We calibrated the device
at the onset of each session by requiring subjects to fixate on vis-
ual stimuli located in different parts of the screen. The equip-
ment was re-calibrated as needed during the experiment. A
trial did not start if subjects’ eyes were not within 1° of the fix-
ation spot for a duration of 500 ms. Failure to detect fixation
prompted for eye-tracking recalibration.

Results
We consider the problem of localizing a target object in a clut-
tered scene (e.g., Fig. 2A–D) and propose a computational model
constrained by the architecture and neurophysiology of visual
cortex (Fig. 1).We start by discussing computational experiments
demonstrating the model’s ability to localize target objects and
subsequently compare the model’s performance with human
psychophysics measurements.

A B C

D E F

Figure 6. Consistency within subjects, across subjects, and between subjects and model. (A–C) Following the format and nomenclature in Figure 5, here we show average

consistency values across subjects. Black: within-subject agreement (13 subjects), dark gray: between-subject agreement (8 subject pairs), and light gray: model-subject

agreement (16 subjects). Results are shown for all trials (A), target-absent trials (B), and target-present trials in which both responses were erroneous (error trials, C). Error

bars indicate SEM across all subjects or pairs. The dashed line indicates chance performance (1/6 inA,B and 1/5 in C). (D–F) Subject-model confusionmatrix for all trials (D),

target-absent trials (E), and error trials (D). The color at row i and column j shows the conditional probability of themodel’s response (first saccade) being position jwhen

the subject’s response (first saccade) was position i. These matrices represent the average across all the objects (Methods); individual-specific matrices are shown in

Figure 7. The color scales are different in the different panels (there was more consistency and hence a more pronounced diagonal between model and subject in

correct target-present trials, which are part of D but not E or F; using the same scale would make it difficult to see the diagonal in E,F). Diagonal values are

significantly higher than non-diagonal values for all 3 matrices (P < 0.01, Wilcoxon rank-sum test), reflecting the significant agreement between model and subject

first fixations across trials.
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Can The Model Find an Object in an Array?

Our first objective is to evaluate the performance of the model in
localizing target objects in cluttered images. We first considered
target objects embedded in multi-object arrays presented on a
blank background (e.g., Fig. 2A,C). We used the same set of 40 dif-
ferent target objects taken from Hung et al. (2005) for all experi-
ments. Object array images consisted of a fixed number of
objects (n = 9) on a blank background and were generated as fol-
lows. Nine objects, comprising the target object plus 8 randomly
selected objects different from the target (distractors), were re-
sized so that each would fit within a bounding box of size
43 × 43 pixels. This size results from seeking tomaintain amargin
of 20 pixels on all sides around each object, within a 256 × 256
image. These objects were then regularly placed over a uniform
gray background (e.g., Fig. 2A,C). For each of the 40 objects, we
generated 40 images (1600 total images) containing this object
as the target, plus 8 other randomly selected objects. The
model was trained to learn the appropriate weights for each
isolated object, thus generating the modulatory weights F(O, P)
as illustrated for the top hat target in Figure 1.

Examples of the prioritymap produced by themodel for differ-
ent input images and target objects are shown in Figure 2E,G. As
expected, the priority map depended on the target object. The
priority map showed above background activation in multiple
locations that contain objects, with enhanced activation in the
particular location where the target object was located (Fig. 2E,G).
To assess the performance of the model, we computed the

cumulative proportion of successful localizations after 1 to 5 suc-
cessive attentional “fixations” over all test images. The model
found the target object on the first fixation in 54% of the array
images (Fig. 2J, solid line), whereas randomly selecting 1 of 9 posi-
tions would yield a success rate of 11.1%. For 93% of the images,
themodel found the targetwithin 5 attentionalfixations. It is con-
ceivable that in some cases, attentional selection could be driven
by bottom-up “saliency” effects rather than target-specific top-
down attentional modulation implemented via equations 5 and
6. We performed various control experiments to evaluate this
possibility. First, we compared the results with a “randomized”
version of the system in which the feedback weights (F(O, P)
were taken from a randomly selected objectO′ for each image in-
stead of the actual target objectO (“Randomweights,” dotted line
in Fig. 2J). The performance of this nullmodelwaswell below per-
formance of the full model and was essentially similar to what
would be expected from randomly fixating successive objects.
As an alternative control for purely bottom-up cues, we consid-
ered the saliency model of Itti and Koch (2000), as implemented
by Walther and Koch (2006), with default parameters (except for
setting “normtype” to “none”; using the default value for norm-
type results in very sparse saliency maps in which only a few of
the objects have a non-zero saliency, leading to an even worse
performance). This purely bottom-up, task-independent archi-
tecture selects parts of an image that attract attention due to
local contrast in intensity, orientation, and color. As expected,
the performance of this bottom-up model was comparable with
that of the random weights model (Fig. 2J, dashed line).

A

B

C

Figure 7. Subject-model comparison for individual subjects. Individual confusionmatrices for all 16 subjects, using all trials (A), target-absent trials (B), or error trials (C).

The format for each confusion matrix is the same as that in Figure 6D–F. Matrices with diagonal values significantly higher than non-diagonal values indicate above-

chance agreement between model and subject across trials (*P < 0.05, **P < 0.01, ***P < 0.001, n.s.: not significant, Wilcoxon rank-sum test).
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We investigated whether erroneous model fixations were dri-
ven by similarity between the fixated object and the target. We
plotted the average similarity between successively fixated ob-
jects and target, along various measures of similarity, excluding
fixations to the actual target (Fig. 3A–F). Non-target objects at-
tended to during the first fixationsweremore similar to the target
under many similarity measures, including Euclidean distance
(3A), pixel-wise correlation (3B), correlation between luminance
histograms (3C), absolute difference between mean luminance
(3D) or size (3E) values, and Euclidean distance between C2b vec-
tors produced by the bottom-up architecture (3F). We also evalu-
ated whether certain object features correlated with ease of
detection independently of the target. Object size (defined as
thenumberof non-backgroundpixelswithin the object bounding
box) significantly correlated with probability of first fixation suc-
cess (r = 0.34, P = 0.03). Object contrast (measured as the variance
of non-background pixels) did not correlate with first fixation
success (object array images: r =−0.16, P > 0.3).

Can The Model Find an Object in A Natural Scene?

Next, we applied our model to the more challenging task of de-
tecting small target objects embedded within natural scenes
(Fig. 2B,D). Natural images present additional challenges for vis-
ual search since the target object and distractors are not segre-
gated from the background. All input images were grayscale
squares of size 256 × 256 pixels. A single-target object (1 of the
40 objects above resized to 64 × 64 pixels) was superimposed
onto 1 of 250 images of natural scenes from (Serre, Oliva et al.

2007). The insertion position was random (except to ensure that
the entire object fell within the natural image). In the real world,
there are other constraints on object positions (e.g., there are no
accordions suspended in highways as in Fig. 2D). While these
constraints influence object identification and visual search
(Oliva and Torralba 2006), they are not modeled here. We gener-
ated 1600 images (40 target objects and 40 natural scenes) where
the area of the target object was 1/16 of the area of the whole
image (e.g., Fig. 2B,D). As shown earlier for object arrays, the pri-
ority map showed enhanced activation at the target location
(Fig. 2F,H). The model localized the target object on the first fix-
ation in 37% of the images (Fig. 2L solid line, 11% for the rando-
mized model and 9% for the saliency model). Performance
reached 54% after 5 fixations. Object size correlated with first fix-
ation success (r = 0.54, P < 0.0003) but object contrast did not (r =
0.07, P > 0.65). As expected, the model’s performance in natural
scenes was significantly below performance in object array
images (with 9 objects). This in part reflects the additional com-
plexities introduced by natural backgrounds; humans can take
advantage of several other cues that are not incorporated in the
current model such as contextual and semantic information
(Discussion). Despite these limitations, the model performs
well above chance under these challenging search conditions.

Dissecting The Model’s Performance

To gain further insights into how the model searched for target
objects, we considered 2 simplified versions that lacked some of
the computational modules. First, the results in Figure 2J,L
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Figure 8. Target identity influences responses in target-absent trials. Average self-consistency (A) and between-subject consistency (B) in responses to 2 trials where the

target was absent, where the same 6-object array was shown (randomized object positions) and the target was either the same (same target) or different (different target).

If the first fixationwere driven purely by bottom-up signals derived fromeach object, wewould expect similar degrees of consistency in the “same target” versus “different

target” conditions. Instead, we observed a significantly higher consistency (both for within-subject comparisons (P < 10−5) as well as between-subject comparisons

(P < 10−4) when the target was the same, suggesting that subjects were using aspects of the target object to dictate their first fixation (Wilcoxon rank-sum tests with 13

and 8 pairs of values, respectively). Error bars indicate S.E.M. across 13 subjects for self-consistency, and 8 pairs of subjects for between-subject consistency. Thehorizontal

dashed line indicates chance levels (1/6). Note that consistency in target-absent trials with different targets at each presentation is slightly, but significantly, above the

chance level of 1/6, both within-subject (P < 0.001) and between-subjects (P = 0.03; signed rank test of median = 1/6 across 13 and 8 values, respectively). This indicates a

weak, but significant effect of bottom-up, target-independent features in guiding saccades in these images.
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depend on the efficacy of both the attentional selection system
and also the recognition system. Failure to locate the target may
be caused by incorrect fixations, or by incorrect recognition at a
given fixation. To dissociate these 2 components, we selectively
evaluated the attentional selection system, without interference
from the recognition system, by using an “oracle” for verification
at every fixation point: The search was deemed successful if the
current fixation point was located within the known bounding
box of the target object (Methods). The attention + oracle model
produced relatively similar results for the object array images:
The target was successfully localized in 56% of first fixations
(vs. 54% for the attention + verification model) and within 5 fixa-
tions for 95% of trials (vs. 93%). In contrast, the attention + oracle
model led to a larger improvement on the natural-background
images, with success rates of 48% at first fixation (vs. 37% for
the attention + verification model) and 81% within 5 fixations
(vs. 55%). These results illustrate the challenge that natural back-
grounds pose to the recognition system, especially in contrast to
isolated objects on a blank background (a known difficulty with
computational models of object recognition [Serre, Kreiman
et al. 2007]). The results also suggest that the attentional selec-
tion model performs relatively well on natural scenes, even
though its performance is still noticeably lower than on object
array images.

Next, we analyzed the role of the normalization operation in-
troduced in the model (Fig. 1). The normalization operation (div-
isive feed-forward inhibition by local inputs, eq. 5) played an
important role in the model’s performance. In the absence of
normalization, the system’s performance was strongly degraded
(Fig. 2, “No normalization”). In the absence of normalization, lo-
cations with higher local feature activity tended to dominate the
priority map over the task-dependent feedback modulation
(Fig. 3G). Normalization by local inputs made it easier for ob-
ject-selective feedback to drive lower-activity locations to prom-
inence, by prioritizing the match between the input signals and
top-down modulation over absolute magnitude of local inputs
—effectively turningmultiplicativemodulation into a correlation
operation (Fig. 3H; see Discussion).

How Fast Can Humans Find An Object in an Array?

Our next objective was to compare the model’s output against
human behavior on a common visual search task. We designed
a psychophysics experiment to (i) evaluate whether human vis-
ual search is reproducible, within, and across subjects, under
the conditions examined via the computational model, (ii) verify
that this reproducible component is actually influenced by target
identity and features, rather than being purely driven by bottom-
up, target-independent saliency effects or other target-inde-
pendent biases, and (iii) estimate how much of this reproducible
component is captured by the model.

The psychophysics task is illustrated in Figure 4A. Subjects
were required to maintain fixation within 1° of a central fixation
cross during 500 ms to start each trial. After successful fixation, a
target object was shown centrally for 1500 ms. Next, another fix-
ation cross was presented for 750 ms. Finally, 6 objects were
shown (each subtending ∼5° of visual angle), regularly arranged
in a circle around the center of the screen (radius ∼8°). Objects
can be readily recognized at this size and eccentricity (Supple-
mentary Fig. 5B). The 6 stimuli were on the screen until the end
of the trial. The target was randomly chosen in each trial.

The task was to direct gaze toward the target object “as quick-
ly as possible.” Subjects were deemed to have fixated a given ob-
ject whenever their gaze fell within the bounding box of the

object (therewas no bounding box on the screen, this wasmerely
to define successful fixations). If the subject’s gaze found the tar-
get object, the trial ended and the object was surrounded with a
white frame for 1000 ms in order to indicate success. If the target
was not found within 1800 ms, the trial was aborted and a new
trial began. The target was present in 70% of the trials. The 30%
of target-absent trials provided us with an additional point of
comparison between human and model behavior (see text
below and Figs 5–7). Because these trials were randomly inter-
spersed with the target-present trials, subjects could not tell
whether the target was present or not without visual search.
We used the same set of 40 objects as in the previous computa-
tional experiments discussed earlier, resized to 156 × 156 pixels.
The same object arrays were used for the psychophysics and
computational model in Figures 4–8.

We recruited 16 subjects (10 female, 18 to 35 years old). In each
session, the subject was presented with a block of 440 trials (300
target-present, 140 target-absent). Each block of trials was shown
to 2 different subjects (but randomizing the temporal order of
trials, and the position of objects along the circle in each trial).
Using the same target and array of objects allowed us to evaluate
the reproducibility of behavioral responses between 2 subjects on
single trials—that is, the proportion of trials in which both sub-
ject’s first fixations were located on the same object (Figs 5–7).
At the same time, by randomizing trial order and the positions
of objects on the display, we sought to combat the possible influ-
ence of various biases that are not directly related to target iden-
tity and features, such as persistence effects, or spatial biases
toward certain directions (Tatler et al. 2006; Foulsham et al.
2008). In addition, 10 of 16 subjects participated in a second ses-
sion in which, unbeknownst to them, they were presented with
the same block of trials as in their first session (again, randomiz-
ing temporal order of trials and object position within each
trials). This allowed us to compute subject self-consistency
(within-subject agreement).

The single-trial comparisons are based on the first fixation
only. This is because after the first fixation, spatial symmetry is
broken and various mechanisms (such as different acuity be-
tween central and peripheral vision, remapping, etc.) may influ-
ence visual search. Because we are mostly interested in the
building of the priority map and our model does not capture
these additional effects, using only the first fixation allows us
to more directly compare human and model performance.

Subjects were able to perform the task well above-chance le-
vels (individual subject data in Fig. 4B, average results in Fig. 4C,
“+” symbols). The task was not trivial as evidenced by the fact
that the subjects’ first saccadewas only 65% correct in target-pre-
sent trials (randomly selecting an object and other degenerate
strategies would yield a performance of 16.6%; perfect detection
in the first fixation would yield a performance of 100%). Subjects
were essentially at ceiling by the third fixation.

As in other psychophysics tasks, there is a trade-off between
speed and accuracy. Given unlimited time, it is possible tomake a
first fixation to the correct target with almost perfect accuracy
(Supplementary Fig. 5A). In contrast, the current results pertain
to a regimewhere subjects were urged tomakemultiple fixations
tofind the target as soon as possible. Themean latencyof the first
fixation over all trials was 284 ± 157 ms (mean ± SD, Supplemen-
tary Fig. 4A). Themedian latency was 237 ms, reflecting a skewed
distribution (Supplementary Fig. 4B). Target-absent trials had
only slightly longer mean latency at 320 ± 210 ms. This differ-
ence was largely caused by a slightly larger “tail” of long laten-
cies, since the early modes of the latency distributions were
essentially identical for target-absent ant target-present trials
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(Supplementary Fig. 4C). In contrast, among target-present trials,
erroneous trials were noticeably faster than correct trials, even in
their modes (Supplementary Fig. 4B).

As reported in other studies (Tatler et al. 2006; Foulsham et al.
2008), subjects showed directional biases in their fixation behav-
ior (Supplementary Fig. 3). Our experimental design (symmetric-
ally arranged objects, randomized positions, concentrating on
the first fixation only) allowed us to minimize the effects of
these biases, as explained earlier.

To compute an upper bound for how well the model could
predict subject behavior, we first evaluated the reproducibility
of subject responses, both within and across subjects. Subjects
showed a high degree of self-consistency, defined as the propor-
tion of repeated trials (same target and distractors) where the
subjects first fixated on the same object, both individually
(Fig. 5A) and on average (Fig. 6, black bars). In target-present
trials, being able to locate the target with probability P above
chance suffices to lead to above-chance self-consistency. We
evaluated the degree of self-consistency expected purely from
the overall performance as P2 þ ð1� PÞ2=5: Subjects showed a
stronger degree of self-consistency than predicted from perform-
ance in individual target-present trials (Fig. 5A1). Furthermore,
subject responses showed significant self-consistency in target-
absent trials (Figs 5A2 and 6B), and in trials for which the first
fixated object was not the target in both presentations (“error
trials,” Figs 5A3 and 6C), conclusively showing that consistency
was not due to ability to locate the target.

As expected, consistency between subjects was slightly below
self-consistency (compare black vs. dark gray bars in Fig. 6; see
also Fig. 5A vs. Fig. 5B). Still, between-subject consistency was
alsowell above chance. In otherwords, different subjects showed
consistent first fixation behavior when searching for the same
target among the same set of distractor objects.

On target-absent trials, the degree of consistency of first sac-
cades in trials with identical choice objects was significantly
higher when the target was the same in both trials compared
with when the target was different, both within and between
subjects (Fig. 8). This confirmed that the subjects’ fixations
were guided by target identity even when the target was not pre-
sent in the image array (as opposed to being driven purely by bot-
tom-up, or other target-independent features of the objects).
Furthermore, we evaluated the similarity between objects and
targets for the psychophysics experiments using the similarity
metrics defined in Figure 3. All similarity metrics (pixel correl-
ation, Euclidean distance, histogram correlation, luminance
difference, size difference and C2b correlations) resulted in sig-
nificant differences between fixated-first and non-fixated-first
objects (Supplementary Fig. 2). Consistency in target-absent
trials with identical choice objects but different targets at each
presentation was slightly, but significantly above the chance
level of 1/6 (Fig. 8), both within-subject (P < 0.001) and between-
subjects (P = 0.03; signed rank test across 13 and 8 values, respect-
ively). This indicates a weak, but significant effect of bottom-up
or intrinsic, target-independent features in guiding saccades
during this task.

Subject fixations were influenced both by target features and
target-independent biases. We sought to estimate and compare
the relative importance of target-dependent and target-inde-
pendent factors in determining fixations. There were 2 groups
of subjects and each trial was seen by 2 subjects, one from each
group, with the same target and object array but, critically, with
randomized object positions. We concatenated all objects of all
target-absent trials in a single binary vector x, x(i) = 1 if object i
was fixated first in that trial and zero otherwise (3222 trials × 6

objects = 19 332 entries). We regressed this vector on 2 predictive
vectors: (i) a position-based vector which contained the direc-
tional bias for each object’s position (that is, the proportion of
all saccades made toward the position occupied by the object in
that trial, Supplementary Fig. 3) and (ii) a feature-based vector
that contained a 1 if the object was fixated first by the subject
in the other group when seeing the same trial and 0 otherwise
(remember that object positions were randomly chosen for
each subject; thus, this second vector contains no influence
from spatial biases). Both predictor vectors were z-scored.
When using the same regression model for prediction, we ob-
served that including spatial biases did not significantly improve
prediction of a subject’s choicewhen the other subject’s choice is
known. We used the output of the regression for each object, B1
× other subject’s choice indicator + B2 × spatial position, and then
selected the maximum for each trial. The resulting selection
showed a consistency of 0.29, which is exactly identical to the
inter-subject agreement found in target-absent trials (see
below). This exact equality reflects the fact that the output of
the regression was entirely determined by the other subject’s
choice; even though the regression coefficients were close, the
spatial bias component’s entire range was smaller than the con-
tribution from the other subject’s choice, which dominated the
predictions when taking the maximum. Arbitrarily increasing
the weight for spatial biases (coefficient B2) only decreased
consistency. We conclude that, while spatial biases do play an
important role in visual search, search behavior in the current
task conditions was dominated by the feature-based, target-
dependent component of visual search rather than these tar-
get-independent spatial biases.

Does The Model Behave Like A Human During Visual
Search?

We next directly compared human behavior with model predic-
tions. As expected from Figure 2I, themodel was also able to suc-
cessfully localize the target objects (Fig. 4B,C, circles). The close
match between model and subject performance evident in Fig-
ure 4B,C is probably dependent on experimental parameters in-
cluding object eccentricity, similarity and other variables.
Nevertheless, it is clear that the task is not trivial, yet both hu-
mans and the model can successfully localize the target within
a small (and similar) number of fixations.

The overall similarity between psychophysical and model
performance (Fig. 4B,C) does not imply direct processing homolo-
gies between subjects andmodel, since both could perform target
identification through entirely different mechanisms. To further
evaluate the model, we sought to determine whether the model
could also predict amore fine-grained aspect of subject behavior,
namely single-trial fixations, beyond what could be expected
purely from performance in target localization. To this end, we
investigated whether the model could predict the subjects’ first
fixations, including those in target-absent and error trials. We
found that the observations about self-consistency and be-
tween-subject consistency were also reflected in the agreement
between model and subject responses (Fig. 5C and light gray
bars in Fig. 6). The model’s fixations agreed with the subjects’
fixations on a trial-by-trial basis when considering all trials
(Fig. 6A), target-absent trials (Fig. 6B), and error trials (Fig. 6C). Be-
cause the model uses a normalized multiplication before select-
ing the maximum (eq. 4–6), increasing the modulation equally
across the entire map has minimal effects on the priority map.
We confirmed this by running the simulations again,multiplying
all top-down modulations by a factor 10 (Supplementary Fig. 1).
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As expected, the results in Supplementary Figure 1 are very simi-
lar to those in Figure 6. For example, target-absentmodel-subject
agreement was 0.241 ± 0.031 in Supplementary Figure 1, com-
pared with 0.239 ± 0.018 in Figure 6. When comparing the
responses of each individual subject with the model, above-
chance model-subject consistency was observed in all 16 sub-
jects when considering all trials (Fig. 5C1), in 15/16 subjects for
target-absent trials (Fig. 5C2), and 7/16 subjects in error trials
(Fig. 5C3). Overall, model-subject agreement was weaker than
but qualitatively similar to between-subject agreement.

To further illustrate the agreement between model and sub-
ject responses, we plotted confusion matrices for first fixation
position, across all images and all target objects (Fig. 6D–F; see
Methods). Each position (row i, column j) in these 6 × 6 matrices
indicates how often the subject’s first fixation fell on the i-th ob-
ject in the display, and the model’s first fixation was on object j,
divided by the number of trials in which the subjects first made a
saccade toward object i. This represents the conditional probabil-
ity that themodel selected object j, given that the subject selected
object i. The diagonal of these matrices measures agreement be-
tween subjects andmodel. The diagonal values in thesematrices
were significantly higher than the non-diagonal values (P < 0.001
for all 3 matrices, Wilcoxon rank-sum test between the diagonal
and non-diagonal values), illustrating the single-trial agreement
between model and subjects in all trials (Fig. 6D), target-absent
trials (Fig. 6E), and error trials (Fig. 6F). Individual confusion
matrices for each subject are shown in Figure 7.

Discussion
We have introduced a simple model to explain how visual fea-
tures guide the deployment of attention during search (Fig. 1).
This model proposes that a retinotopic area computes a priority
map, through the interaction of bottom-up feature-selective cells
with a top-down target-specific modulatory signal and local nor-
malization. An implementation of thismodel can locate complex
target objects embedded in multi-object arrays and even in
natural images (Fig. 2). The model’s performance also shows a
significant degree of concordance with human behavioral per-
formance in a relatively difficult object search task (Fig. 4). The
single-trial agreement between model and subjects extends to
trials where the target was absent or where both the model and
the subjects made a mistake (Figs 5 and 6).

The proposed model integrates visual search with object rec-
ognition computations instantiated in the ventral visual stream.
There are 2 different but interconnected aspects of the “ventral
stream” that are part of the model. First, there are early/mid-
level features computed through the S1/S2 layers (Fig. 1). Once
the model selects a location, it needs to recognize what is in
that location to decide whether to continue searching in Fig-
ure 2J,L (but not in the “Oracle” version presented in Fig. 2I,K).
This recognition component is instituted through the S3/C3
layers depicted in Figure 1.

The proposed model uses a specific type of feature, namely
shape selectivity (Serre, Kreiman et al. 2007). Clearly, these are
not the only features that guide visual search. Many feature
types are known to guide visual search, including color, orienta-
tion, and local contrast among others (see Wolfe and Horowitz
(2004) for a review). Shape is an important and ubiquitous com-
ponent of visual search (e.g., consider searching for a face in a
crowd), and several studies have shown that shapes can influ-
ence visual search at the behavioral and physiological level
(Bichot et al. 2005; Zhou and Desimone 2011; Baldauf and
Desimone 2014). Additionally, visual areas which feature

prominently in the conceptual motivation for the computational
steps in themodel show selectivity to shape features; these areas
include V4 and ITC (Logothetis and Sheinberg 1996; Connor et al.
2007) as well as FEF and LIP (Sereno andMaunsell 1998; Fitzgerald
et al. 2011; Lehky and Sereno 2007).

Model performance cannot be explained by an overly easy
task, as shown by the fact that human performance was far
from perfect under the rapid search conditions studied here
(Fig. 4). Also, subjects showed a significant degree of self-consist-
ency and between-subject consistency (Figs 5 and 6) but this con-
sistency was far from 100%, reflecting considerable trial-to-trial
and subject-to-subject variability. The agreement between the
model and behavioral performance is also significantly above
chance but far from100%. The degree of between-subject consist-
ency bounds how well we can expect the model to perform: It
seems unrealistic to expect a model to be a better predictor of
human behavior than the performance of other humans them-
selves. Thus model-subject agreement should be evaluated in
comparison with between-subjects agreement, as shown in
Figures 5 and 6.

This model is inspired and constrained by current physio-
logical knowledge about the macaque visual system. To search
for a given object, we use the pattern of activity at the highest
stages of visual processing, represented by the activity of C2b
cells (left panel in Fig. 1), which are meant to mimic the output
of bottom-up visual information processing along the ventral vis-
ual stream (Serre, Kreiman et al. 2007). Target-specific informa-
tion interacts with bottom-up responses in an attentional area
that we tentatively associate with LIP and FEFs as described by
equation 5. FEF and LIP have strong reciprocal connections and
are involved in controlling both covert and overt visual attention.
There is significant evidence implicating LIP in the generation of
the priority map (Bisley and Goldberg 2010; Bisley 2011). FEF is
known to topographically project to V4 (Barone et al. 2000), and
these connections can produce effects similar to those of atten-
tion, such as selective gating (Moore and Armstrong 2003). The
top-down, target-specific modulatory signal on this area is pre-
sumed to originate from object-selective cells in a higher area.
Prefrontal cortex (especially ventral lateral PFC) is a strong candi-
date for the source of the target-specificmodulatory signal, since
it is known to encode target identity in visual memory experi-
ments (Wilson et al. 1993; Rao et al. 1997). PFC also receives con-
nections from object-selective visual areas such as IT and is also
connected to LIP (Medalla and Barbas 2006).

The proposedmodel focuses on the effect of target shape (the
“Waldo-specific” part of “where is Waldo”). Under natural condi-
tions, visual search is influenced by many effects that are not
considered in the current model. First, the model does not take
into account the loss of acuity and crowding effects in the periph-
ery (e.g., Freeman and Simoncelli (2011)) and the remapping of
visual space just before saccades (Bisley and Goldberg 2010).
Thus, when comparing the model and humans, we deliberately
chose settings that minimized these additional, target-inde-
pendent effects: We arranged all items on a circle around the fix-
ation point (to ensuremaximum symmetry), we only considered
the first saccade in Figures 5 and 6 (because after this the sym-
metry is broken), and we randomized object position between
presentations (so as to remove residual “directional” effects,
e.g., preference for horizontal directions [Foulsham et al. 2008]
or central fixations [Tatler et al. 2006]). Second, the model does
not consider color; both visual search and visual recognition
can take placewith grayscale images (behaviorally and computa-
tionally) but color can enhance both tasks. Third, the object array
experiment is clearly artificial and does not incorporate the
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complexities and cues present in natural scenes. Figure 2 shows
that the model can also detect target objects in natural scenes.
Yet, the model does not incorporate many cues provided by nat-
ural scenes which play an important role in visual search under
natural conditions (e.g., Vo and Henderson (2010); Wolfe, Vo et al.
(2011)). For example, Vo and colleagues investigated the effects of
a short glimpse of a scene on subsequent visual search. Such ef-
fects reflect several possible components, includingmemory and
“scene gist” (large-scale properties of visual scenes that influence
the direction of search independently of, or in interaction with,
target identity [Oliva and Torralba 2006]). Integrating these ef-
fects with the target-dependent guidance modeled here will be
an important step toward a full understanding of visual search.

The model posits that search terminates after a fixed max-
imum number of fixations if the target has not been found.
Thus, themodel leaves open the question of how subjects decide
when to give up and abort the search. Explaining and modeling
search termination will also be an important component of a
complete model of visual search.

Visual search requires computing the match between bot-
tom-up input signals and target modulation. Our experiments
suggest the importance of local normalization for successful
search, by preventing objects or areas with high bottom-up activ-
ity across all features from controlling the priority map (Fig. 3G,
H). Equation 5 resembles a normalized dot product, which mea-
sures the alignment between 2 vectors independently of their
magnitude. This approximation would be exact (neglecting the
spatially constant magnitude of the top-down signal) if the de-
nominator in equation 5 was strictly equal to the Euclidean
norm of local activity. The interaction between normalization
and modulation thus solves the problem of “pay[ing] attention
to stimuli because they are significant, not simply because they
are intense” (Abbott 2005), adding a new function to the many
known computational properties of normalization in cortex
(Carandini and Heeger 2011).

The top-down signals depend on the ratio between response
to target and response to a “mean” stimulus (average response
over many unrelated natural images, eq. 4). This is essentially
similar to Navalpakkam and Itti’s (2007) proposal to base top-
down modulation on the signal-to-noise ratio (ratio of activa-
tions) of targets versus distractors. The main difference is that
in the current instantiation, “distractors” are unpredictable and
approximated by a large set of unrelated natural images. Thus,
the current work shows that Navalpakkam and Itti’s proposal
works not only with simple features such as orientation and
color, but also with more complex shape components of natural
objects, and can be implemented using a normalization oper-
ation which constitutes a canonical computation across neocor-
tex (Carandini andHeeger 2011). It also generalizes these findings
to a situation where the distractors are unpredictable, by using a
“mean expected stimulus” as replacement for the unknowable
distractors.

The model postulates that the top-down, target-related, fea-
ture-based signals (used to compute the priority map) do not tar-
get the ventral visual-processing system (used for target
presence validation), as suggested by recent neurophysiological
evidence (Martinez-Trujillo 2011; Zhou and Desimone 2011). A
possible conceptual advantage of such a model, in comparison
with models positing direct feature-based modulation of early
visual inputs such as V1 or V4 (Lanyon and Denham 2004; Ham-
ker 2005; Chikkerur et al. 2010), is that it allows the ventral visual
pathway to operate on a feature-faithful input, without the in-
terference caused by feature biasing. Biasing input cells in a spa-
tially uniform way according to their preference for the target

features (e.g., “red” or “vertical”) would have the effect of making
“everything” look more like the target (e.g., more “red” or more
“vertical”). In the proposedmodel, the higher areas of the ventral
pathway receive an undisturbed input, except for the purely spa-
tial, feature-neutral bias introduced by attentional modulation,
which actually restores fine object selectivity in higher visual
areas in the face of clutter (Zhang et al. 2011). This type of modu-
lation facilitates successful detection inmulti-object images and
natural-background images.

Attention can be either overt (with eye movements) or covert
(without eye movements). Our model seeks to explain the
computation of the priority map in “attention-controlling” areas
(tentatively linked to LIP/FEF in the scheme in Fig. 1), which are
thought to control both covert and overt attention. Although the
human experiments involved an eye movement task, the model
itself is agnostic about whether attentional selection occurs
covertly or overtly: The model seeks to explain how the brain
computes where to allocate attention, whether covert or overt.

It is conceivable that, before thefirst eyemovement, observers
covertly allocated attention to various items, processing them in
turn and selecting one for actual fixation. Even though subjects
were asked to respond as fast as possible (reflected in the rapid
reaction time, median = 237 ms, first fixation success rate of
66%), the possibility of multiple covert attentional shifts before
the first fixation cannot be excluded. The testing protocol, urging
subjects to perform rapid behavioral responses, can be expected
to reduce (but not necessarily eliminate) the number of covert at-
tentional shifts before the first fixation. The psychophysics re-
sults provide a coarse bound on the number of possible covert
attentional shifts before 237 ms. In a simpler saccade task, in-
volving only 2 possible alternatives with large stimuli, fixed tar-
gets, and well-known stimuli (animals/faces), Kirchner and
Thorpe (2006) report a median reaction time of 228 ms, only
slightly faster than the median for the first fixation in our study
(where there were 6 alternatives, smaller stimuli, different tar-
gets in every trial, and different objects). The purely visual recog-
nition and motor aspects of the task require at least 100–150 ms
(Thorpe et al. 1996; Kirchner and Thorpe 2006; Liu et al. 2009;
Agam et al. 2010). Under situations involving serial visual search
as opposed to pop-out, several investigators have shown that re-
action times increase with object array set size, with slopes ran-
ging from ∼30 to ∼90 ms per object (e.g., Treisman and Gelade
(1980); Horowitz and Wolfe (1998); Vickery et al. (2005)). The
model shows a decrease in performance with increasing the
number of objects; conversely, themodel requiresmore fixations
to achieve the same performance level when there are more ob-
jects in the array (compare Fig. 4C vs. Fig. 2J; see also lower per-
formance for objects embedded in natural backgrounds in
Fig. 2L). Given the visual/motor constraints, the search cost per
object and the rapid reaction times, a long sequence of covert at-
tentional selections should produce considerably longer reaction
times. We estimate that our reaction times allows for at most 2–3
covert attentional shifts under ultra-rapid conditions (∼150 ms
vision/motor cost + 2 × 40 ms per object = 230 ms; ∼150 ms vi-
sion/motor + 3 × 30 ms per object = 230 ms). Additionally, target-
absent trials and target-present trials produced similar latency
distributions (Supplementary Fig. 4). Under conditions in which
subjects are asked to prioritize accuracy and are given ample
time to locate the target, target-absent trials produce a rough
doubling of the slope of search time vs. number of objects
(Wolfe and Horowitz 2004). In sum, while it is conceivable that
subjects might covertly shift their attention before their first fix-
ation, the results presented here present an upper bound on the
number of such shifts.
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In conclusion, our results show that a physiologically moti-
vated model can localize target objects in arrays and natural
images. Themodel not onlymatches human performance in vis-
ual search but also predicts the first fixations in target-absent si-
tuations and errors in single trials. In combination with other
models purporting to explain the mechanisms of attentional
effects in lower visual areas (e.g., Hamker and Zirnsak (2006);
Borgers et al. (2008); Womelsdorf et al. (2008); Reynolds and
Heeger (2009); Miconi and VanRullen (2011)), this model can
provide a component of a global mechanistic understanding of
attentional selection in the brain.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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