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Data Acquisition and Processing

This chapter gives a technical perspective on the procedures for an experiment to proceed from 
the acquisition of continuously sampled data from microwires all the way to points of time a 
putative single neuron fired a spike, to local field potential (LFP) recordings, and to decoding 
neurophysiological signals in single trials and in real time.

In order to analyze extracellular waveforms, it is important to acquire data with high sampling 
rates. Sampling rates below 16 kHz can miss important aspects of the submillisecond structure 
of action potential waveforms. Current systems typically have sampling rates above 30 kHz. 
Another methodological consideration involves the use of 60 Hz notch filters. While purists will 
advocate examining raw data without any filters, the clinical environment often presents signifi-
cant challenges and electrical artifact contaminations for neurophysiological recordings. Remov-
ing 60 Hz and harmonics with a notch filter can significantly enhance the signal-to-noise ratio 
(SNR) to discriminate action potentials. The focus in this chapter starts at the point of time the 
data has been stored by the acquisition system whereas chapter 5 in this volume describes the 
acquisition system and electrodes themselves.

Microwires record the extracellular voltage at a particular point in space. This signal, a 
voltage as a function of time, is the linear superposition of a great number of current sources 
generated by electrically active components of the brain (Buzsáki et al., 2012), including syn-
aptic events and action potentials propagating down an axon or backpropagating inside den-
drites. In general, it is extremely difficult to decompose the extracellular signal into the single 
events that give rise to it. An important aspect of the extracellular signals that can sometimes 
lead to a reasonable interpretation is the occurrence of action potentials in the near vicinity of 
the microwire tip. In the rat hippocampus CA1 region, it has been estimated that electrodes 
can distinguish extracellular spikes from neuronal processes located as far away as 140 μm 
from the tip of the electrode (Buzsáki, 2004). The peak amplitude depends on the physical 
size of the neurons under study, making it most likely that a majority of extracellular record-
ings involve pyramidal cells (Henze et al., 2000) (see also brief discussion of extracellular 
waveforms in chapter 8). To our knowledge, in human recordings, there are no quantitative 
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estimates of the relationships between extracellular waveform amplitudes and shapes and neu-
ronal types or distances to neighboring neurons. However, since the peak amplitude of extra-
cellular spikes decreases rapidly as a function of distance and cell sizes are roughly comparable 
in rodents and humans, it is reasonable to assume that the basic properties of extracellular 
recordings summarized in Buzsáki et al. (2012) are also applicable in human neurophysiology. 
Thus, if action potential sources occur sufficiently close to the microwire and the sources are 
sparse in space and time, the extracellular signal can distinguish the shapes of the single 
waveforms sufficiently well to allow a clustering process that groups waveforms of sufficient 
similarity into clusters that originate from putative single neurons. Animal studies with move-
able electrodes (such as implanted microdrives) allow experimenters to move the electrode in 
small steps to optimize the position till the waveforms show the desired properties (waveform, 
amplitude, number of clusters). This procedure is often followed in intraoperative recordings 
in humans, particularly during the implantation of deep brain stimulation devices in humans 
(see chapters 15–16). In contrast, during semi-chronic recordings in epileptic patients, microw-
ires are implanted under anatomical guidance without simultaneous recordings and without 
moving the microwires to optimize the recordings.

For the reasons outlined above, the variety of extracellular waveforms encountered is large. 
In practice the question frequently arises as to whether a particular waveform could possibly be 
neuronal or rather some sort of artifact. To gain intuition into what kinds of waveforms can be 
obtained from extracellular recordings, it is instructive to consult computational studies simulat-
ing voltage in the extracellular milieu of reconstructed neurons from which both intra- and 
extracellular potentials were recorded simultaneously (Harris et al., 2000; Gold et al., 2006). 
These studies show that the extracellular waveform originating from a single neuron varies 
greatly as a function of the relative position of the electrode with respect to the neuron. Apart 
from the amplitude, other features that change systematically include the width, the number of 
peaks, as well as the sign (positive or negative) of the waveform (see figure 2 in Gold et al., 
2006). The extracellular waveform results because of three different currents that flow in and 
out of cells: Na+ inflow, K+ outflow, and capacitive current. The different components are visible 
to different extents at different locations in the cell, which explains the great variability of 
waveforms. For example, positive-going waveforms can result from the capacitive current in 
distal dendrites. Usually, the simultaneously occurring Na+ current masks the capacitive current, 
but in distal dendrites the Na+ current is delayed. This results in bipolar or reverse-polarity 
waveforms. Situations where waveforms of different cells appear with different polarity on the 
same wire are thus possible. In our experience, this happens routinely in human recordings from 
the human medial temporal lobe. Another aspect that influences the shape of extracellular wave-
forms is the incidence of bursting. Subsequent spikes within a bust typically show distinct 
waveform properties. The discussion so far has focused on the extracellular waveform obtained 
from considering a single neuron. In actual recordings, the microwires capture the activity  
of multiple neurons and neighboring neurons can also affect the shape of the extracellular  
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waveform. In particular, simultaneous (or nearly simultaneous) action potentials from nearby 
neurons can lead to action potential waveforms that do not resemble each individual waveform 
(but could perhaps be modeled as a linear superposition of such individual waveforms).

In addition to spike sorting to separate different units contributing to the extracellular record-
ing, the shape of the extracellular waveform can be used to infer tentative information about the 
morphology and type of the neuron recorded from. For example, the width of the waveform can 
be used to distinguish between inhibitory and excitatory neurons, which has been done also in 
humans (Viskontas et al., 2007) (see also chapter 8). Also, there are significant correlations 
between the peak amplitude, spike width, and electrode distance that can be used to infer mor-
phological features as well as the approximate electrode location (Gold et al., 2006). However, 
for such inferences to be accurate, the waveform has to be preserved as authentically as possible. 
This requires using software and hardware filters which do not distort the waveform. For 
example, filters that are used to discard the low-frequency components of the extracellular signal 
can greatly distort waveforms (Quiroga, 2009; Wiltschko et al., 2008). The distortions are caused 
by filters that have a phase lag that is a function of frequency, such as causal Butterworth filters 
(Quiroga, 2009). As a precaution, little or no filtering (if feasible) should be done in hardware, 
and all software filters should have zero-phase lag (which are noncausal). Also, real-time spike 
detection and sorting by necessity are based on causal filtering, which means that the waveforms 
produced by such methods are greatly distorted. It is thus advisable to post hoc redo all spike 
detection and sorting offline from the broadband signal. Another source of potential artificial 
waveforms is band-pass-filtered artifacts. Band-pass filtering almost any high-frequency signal 
(such as a static discharge) will result in a waveform which looks approximately like a spike. 
Therefore, great care has to be taken to distinguish between artifacts and neuronal spikes. One 
such approach is to use independent metrics such as statistics based on the distribution of inter-
spike intervals (ISIs).

Spike Detection and Sorting

The first steps after continuously sampled raw signals have been acquired (see figure 6.1A, plate 
1) are to (1) detect the spikes and (2) identify which putative neuron the spikes originated from 
(“spike sorting”). Inferring the number of putative neurons contributing to a collection of wave-
forms is an ill-posed inverse problem with no unique or “best” solution due to the sparseness of 
the available data. Recording the same spike simultaneously from multiple spatial locations 
greatly increases the ability to distinguish different neurons with similar waveforms. This can 
be achieved with tetrodes or silicon probes, but these techniques are not yet widely available for 
human recordings, and we thus focus on single wire recordings.

Various algorithms and procedures have been developed for manual, semi-automatic, or fully 
automatic spike sorting, and a number of software packages are available either as open source 
or commercially. These approaches have been reviewed and compared in the literature (Lewicki, 
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Figure 6.1 (plate 1)
Spike detection and sorting example. Shown are recordings obtained from a single wire implanted in the right anterior 
cingulate cortex of a human epileptic patient. The detection and sorting shown was done automatically using OSort. (A) 
From top to bottom: raw data (2 Hz high pass), band-pass filtered (300 Hz–3 kHz; red line is 4 times the estimated 
standard deviation; see text), energy-signal used for spike detection (line shows 5 × SD as used for spike detection in 
this example), and detected and sorted spikes (color indicates cluster identity, as computed by OSort). (B) Metrics of 
three of the identified clusters: raw waveforms (top), interspike interval (ISI; middle), and power spectrum of the spike 
train (bottom). All clusters were well separated, with the percentage of ISIs < 3 ms equal to 0%, 0%, and 0.19% respec-
tively. (C) Pairwise projection test for all possible combinations shows that the clusters are well separated. The distance 
d is indicated (see text). Amp, amplitude; Nr, number; Spk/s, spikes per second.
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1998; Pouzat et al., 2002; Quiroga et al., 2004; Rutishauser et al., 2006; Gibson et al., 2012). 
Procedures developed for animal models are generally applicable also for humans, but there are 
several aspects unique to human recordings that deserve discussion.

Spike Detection
The first step in the process of spike sorting is the identification of individual spikes and their 
waveforms (see figure 6.1A, plate 1). There is a critical dependency between sorting and detec-
tion: Better detection makes sorting easier. Detection involves several steps: (1) determining the 
point of time a spike occurred, (2) determining the waveform of this spike, and (3) realigning 
this waveform to a common reference frame that makes it comparable to all other collected 
waveforms. Here, we will highlight a few types of detection approaches that have been applied 
to human recordings.

Amplitude thresholding methods are the simplest: A spike is detected if the band-pass filtered 
raw signals (e.g., >300 Hz) crosses a predefined threshold such as a multiple of the standard 
deviation of the underlying signal. A threshold that is frequently used is

T n median
x= 



 

0 6748.
,

where n is a constant (typically n = 4) and the second term is an estimate of the standard devia-
tion of the noise in the voltage x (Donoho & Johnstone, 1994; Quiroga et al., 2004). An example 
of this threshold is shown in figure 6.1A (plate 1). Note that this method requires the user to 
choose a direction of spiking (positive, negative, or both). This choice is often performed manu-
ally on a channel-by-channel basis. If spikes are prominent in both directions, special care has 
to be taken to ensure the same spike is not detected twice as many waveforms have approximately 
equal amplitude in both directions.

More sophisticated spike detection methods rely on a derivate signal, which is then thresh-
olded in a similar manner to amplitude thresholding. Such derivative signals have the advantage 
that their SNR can be higher due to selective amplification, a standard approach in signal pro-
cessing (Kay, 1993). An example is an energy-type model that estimates the likelihood of  
a spike’s being present as a function of time (Bankman et al., 1993; Kim and Kim, 2003). A 
method frequently used in human recordings (Rutishauser et al., 2006, 2008; Rutishauser et al., 
2010) as well animal recordings (Csicsvari et al., 1998) is the following: Convolve the band-
pass-filtered raw signal with a rectangular kernel that has the approximate width of a spike, that 
is, 1 ms (but note that for some recordings, this value will have to be adjusted accordingly 
depending on the neuron type, such as when recording dopaminergic neurons as in Zaghloul et 
al., 2009). The rectangular kernel is a matched filter that will amplify signals of appropriate 
width and suppress spike-like waveforms of widths that are smaller or larger. This can be com-
puted very efficiently using a convolution kernel (see Appendix A.1. in Rutishauser et al., 2006, 
for implementation details). The resulting signal is strictly positive and can be thresholded at a 
multiple of its own standard deviation (typically in the range of 3.5–6 × SD). An example of 
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this method is shown in figure 6.1A (plate 1) with a threshold of T = 5. There are other, more 
sophisticated, methods that compute a multiscale version of the energy signal (Choi et al., 2006) 
which are promising but have, to our knowledge, not been evaluated rigorously for use with 
human recordings.

A third class of detection methods that has been used is wavelet based. This is typically 
computationally more expensive but can lead to improved detection performance particularly in 
low SNR recordings (Nenadic & Burdick, 2005). There are well-studied wavelets such as the 
bior family, which resemble the waveforms of spikes and thus yield better detection compared 
to the simple rectangular kernel used by energy-signal methods.

Choosing an appropriate spike-detection method is based on carefully weighting several trade-
offs, such as detection performance, computational cost and complexity, implementation com-
plexity, real time versus offline performance, and for some applications power requirements. 
Investing more in detection makes sorting easier whereas investing more in sorting allows 
simpler detection methods. Our experience indicates that it pays to understand the behavior of 
the particular method used in detail by building intuition using simulated data or data recorded 
simultaneously intra- and extracellularly (Obeid, 2007). Only such data sets allow the rigorous 
determination of false-positive and true-positive rates as well as sweeps of thresholds to build 
detection receiver operating characteristic (ROC) curves (see figure 8 in Nenadic & Burdick, 
2005, for an example). Performing an ROC-based performance evaluation using data sets simu-
lated to resemble SNR ranges and waveform shapes in a particular data set can greatly improve 
the understanding of the parameters and trade-offs of a particular method.

A crucial step that follows detection is spike alignment. This can be an error-prone step, which 
can lead to substantial sorting quality problems or spurious clusters. Most sorting methods are 
based on distance metrics that assume that a common point of the waveform is at a fixed loca-
tion in the matrix that holds all the detected waveforms. Common alignment points are the peak, 
trough, half-max amplitude, or the point of maximal slope. However, consistently identifying 
this point in waveforms is difficult. Note that the alignment point will typically be different from 
the point of threshold crossing, which shows considerable variability. Many waveforms are 
biphasic and have approximately equal amplitudes in both directions (on average). In such situ-
ations, using the location with the maximal absolute amplitude will lead to the creation of two 
clusters. This is because, due to variability, for some spikes the peak will be maximal whereas 
for others the trough will show a larger amplitude. A common solution to this problem is twofold: 
Either the peak or trough is always used, or a preference is enforced in which always the first 
significant (with respect to background noise) peak or trough is used as the alignment point 
(Rutishauser et al., 2006). The first case works well if spikes are dominant in one direction, 
which is often case. However, this requires a manual choice of alignment for each channel 
(usually by visual inspection). This is because in the bipolar recordings often used for chroni-
cally implanted microwires in humans, the direction of the spikes is arbitrary, depending on 
where the ground wire is located. An additional difficulty to consider is that the location of the 
peak is very sensitive to the sampling rate. Since the time spent at the peak is minimal, it is 
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unlikely that the recording sampled the exact peak location. The probability of sampling the true 
peak increases with the sampling rate. For example, the peak location of a typical spike has less 
than 0.2 ms uncertainty, which for a sampling rate of 30 kHz is represented by eight data points. 
The accuracy of peak finding can be increased by upsampling the signal to a higher sampling 
rate (such as 100 kHz) before peak finding.

Spike Sorting
The goal of spike sorting is to assign each detected waveform to a putative single neuron that 
generated this spike (see figure 6.1A, plate 1, bottom). The number of possible unique neurons 
that could be present in a recording is unknown and also has to be estimated—that is, spike 
sorting is an unsupervised clustering problem where the number of the clusters is unknown. 
There are many unsupervised clustering approaches, and a number of such methods have been 
applied to spike sorting. These methods are reviewed extensively elsewhere (Lewicki, 1998; 
Pouzat et al., 2002; Quiroga et al., 2004; Rutishauser et al., 2006; Gibson et al., 2012). Rather 
than describe specific algorithms, we will review different spike-sorting approaches and discuss 
general issues that we found of relevance in our human recordings work.

Human recordings from semi-chronically implanted microwires are unique in that the microw-
ires are not movable. Also, under most circumstances, no recordings take place during implanta-
tion, so microwire location cannot be optimized with respect to yield and signal quality. In 
contrast, electrode position can usually be optimized specifically for unit yield in animal models. 
In addition, experiment time with awake behaving humans is very limited. Thus, only a limited 
number of spikes is available for any given neuron, making spike sorting more difficult. Addi-
tionally, neurons in the brain areas typically covered by implanted electrodes tend to have very 
small baseline firing rates and sparse response properties. This further increases the demands on 
spike sorting as, in extreme cases, neurons might only respond to a few trials out of a long 
experiment (e.g., chapter 8). Not only will such neurons yield only a few spikes, but it is not 
possible to predict a priori what aspects of the task will elicit activity in those neurons. Detailed 
study of such neurons will thus require an adaptive experiment that shows stimuli which are 
chosen such that they are relevant for the neurons that are currently being recorded. This presents 
the challenge of requiring rapid spike sorting. Some experiments may also call for online sorting 
in order to achieve real-time decoding capacity (see this chapter and also chapter 17). Neces-
sarily, such quick spike sorting, whether on- or offline, has to be semi- or fully automated. One 
criterion to consider is thus speed of sorting and possibilities to automate the process. Different 
approaches exist, starting with fully manual “cluster cutting” or window discriminators, semi-
automatic cluster cutting where manual user interaction serves to refine automatic clustering, 
and automatic sorting either online or offline. Manual postprocessing is required even with so-
called “fully automatic” spike-sorting approaches. This includes deciding between types of 
clusters, such as those that likely represent single units, those that are multiunits, and others that 
are noise. Clusters that represent noise should not be discarded but rather identified as such 
because these clusters will attract the noise spikes and prevent them from becoming intermingled 
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with other clusters. Often, manual processing also includes deciding that some identified clusters 
have to be merged because they are too similar.

Examples of software packages and their mode of operation that have been used for human 
recordings are as follows:

1.  MClust—manual; A.D. Redish et al.
2.  KlustaKwik—semi-automatic with manual refinement (Harris et al., 2000)
3.  OSort—automatic online sorting, manual cluster (Rutishauser et al., 2006)
4.  Wave_clus—automatic offline sorting, manual cluster selection (Quiroga et al., 2004).

In addition, several commercial equipment manufacturers now offer integrated online spike 
detection and sorting. While these algorithms are necessarily less sophisticated, they can be good 
enough for quick online sorting during the experiment or to drive stimulus selection; however, 
offline reanalysis is usually required for more fine-grained analyses.

In addition to speed and accuracy, an important consideration in spike sorting is consistency. 
While some decisions made during this process are necessarily subjective, one would at least 
like to have these decisions always be made in a consistent, well-understood manner. Automatic 
spike sorting ensures this if it is combined with a systematic manner of implementing the manual 
postprocessing steps. This is of great importance to get consistent and comparable results across 
experimenters in a lab and, hopefully, across labs.

As with spike detection, it is important to understand and have an intuition for the spike-
sorting approach utilized. Such an intuition can be built by using a data set of simulated neural 
recordings that is representative of the recording situation. Benchmark data sets of different 
difficulty levels are available for this purpose—for example, as part of OSort or Wave_clus (see 
above for references). These should be used to systematically evaluate the performance of spike 
sorting in terms of clusters identified, false positive/true positive/missed spikes.

Quality Metrics
Due to the uncertainty and subjectivity inherent in spike sorting, appropriate quantitative metrics 
should be applied and reported to allow comparisons between studies, groups, and investigators. 
For example, what exact definitions were used to classify a unit as “single unit” as opposed to 
“multiunit”? The exact parameters vary to some degree and are subjective, which requires that 
the definitions be consistent, quantitative, and clearly reported. Such metrics can be classified 
into two groups: (1) single unit measures and (2) comparisons between different units. The first 
includes metrics such as the mean waveform, its variance, and its SNR; properties of the ISI 
such as the proportion of ISIs below some minimal threshold or its distribution; or the autocor-
relation of spike times. The second includes metrics to quantify the difference between two or 
more putative single units—for example, by using pairwise distance metrics (see below). Such 
metrics are instrumental in establishing consistent criteria to evaluate whether two units are 
distinct and whether such distinction remains stable over time.
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The SNR of a spike quantifies to what extend the waveform is different from the “back-
ground.” A common definition of the SNR is the root mean square of the individual or average 
waveform over some period of time (such as 2.5 ms), divided by the standard deviation of the 
noise (estimated from segments where no spikes were detected; Bankman et al., 1993). The SNR 
is positively correlated with the waveform amplitude and negatively correlated with the ampli-
tude of the background noise. It is useful to compute the SNR for each individual waveform and 
then quantify the variance of the SNR for all spikes associated to a given cluster. Similarly, the 
SNR of the waveforms can be plotted as a function of time to evaluate the stability of the unit 
and its isolation over time. Generally, the higher the SNR of a set of waveforms, the higher the 
likelihood that a well-isolated single unit can be discriminated.

Typically, a collection of spikes that potentially originated from a single neuron is identified 
based entirely on the properties of the waveform (such as its shape, SNR, energy) alone. If this is 
the case, the points of time at which these spikes occurred is a statistically independent metric 
that can be used to evaluate the sorting result. Metrics that are useful for this purpose are either 
based on the ISI distribution or on the autocorrelation of the spike times. Due to the refractory 
period of neurons, very short ISIs (<3 ms) are highly unlikely and should therefore be rare in a 
well-isolated unit. A useful metric is thus the proportion of ISIs shorter than a few milliseconds 
apart (see figure 6.1B, plate 1, for an example). For example, in one study, we found that the 
average ISIs < 3 ms for all isolated units was 0.3% (Rutishauser et al., 2008) . The refractory 
period also leads to a “dip” in the autocorrelation function of the spike train, which can be used 
to derive a similar test (Gabbiani & Koch, 1999). The autocorrelation and power spectrum of spike 
trains (figure 6.1B, plate 1, shows examples) is very sensitive to deduce whether a unit contains 
artificial spikes caused by highly regular sources such as line noise (leading to peaks at 16.6 ms 
for 60 Hz) or refresh-triggered noise of CRT or LCD screens (up to 240 Hz). In our experience, 
a combination of at least these three metrics is necessary to confidently declare a cluster to be a 
single unit. For example, a noise-corrupted unit can well have 0% ISIs below 3 ms and high SNR.

A second class of metrics serves to quantify how well a unit is separated from other isolated 
or unidentified units. Whether two or more units are truly distinct or not can be difficult to 
determine based on the waveforms alone, particularly because of the challenges in visualizing 
high-dimensional spaces. Statistical methods can be used both to help the sorting process itself 
and to quantify and document the results (Schmitzer-Torbert et al., 2005; Joshua et al., 2007; 
Hill et al., 2011). One metric that has been applied to human single unit data is the projection 
test (Pouzat et al., 2002). It is based on the observation that, given a particular level of back-
ground noise, two units need to be separated by a minimal distance to be statistically different. 
If the waveforms of two units are more similar than this minimal distance, they cannot be dif-
ferentiated given the present noise level. This does not mean that the two units are not different 
but that they cannot be distinguished reliably given the recording conditions and thus have to 
be considered the same. The projection test is a pairwise metric that, for each pair of units, 
defines their distance as a multiple of this minimally distinguishable distance. The properties of 
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the background noise are calculated from spike-free segments of the recording—that is, after all 
detected spikes have been removed. The background (neuronal and noise) in extracellular record-
ings typically has a significant negative or positive autocorrelation for periods of up to several 
milliseconds. For example, in one human data set the autocorrelation function was found to be 
significant up to 1.2 ms (figure 3 in Rutishauser et al., 2006). This means that the noise is col-
ored—that is, the noise amplitude at successive data points is not independent. This violates the 
“white-noise” assumption of many statistical tests. The technique of “whitening” a signal, a 
standard tool in signal processing (Kay, 1993), removes correlated noise to make signals white. 
This reveals the actual waveforms without artificial smoothening due to correlated noise.

The projection test consists of the following steps: (1) estimation of the noise autocorrelation, 
(2) prewhitening of detected spikes and normalization of the standard deviation of the noise, (3) 
pairwise calculation of distance between two clusters. The distance between two clusters is the 
distance between the two mean waveforms at the center of the two clusters. It is strictly positive 
and is expressed in units of multiples of the standard deviation of the point around the cluster 
center. For example, a distance of 5 means that the two cluster centers are separated by 5 standard 
deviations whereas the points around each center have standard deviation 1 (by definition after 
the normalization). We recommend this metric as very convenient both for setting rigorous 
criteria for what minimal distances are acceptable and for documenting the population of neurons 
constituting a given study (figure 6.1C, plate 1, shows examples). For example, in one study 
(Rutishauser et al., 2008) we found that the mean pairwise distance between all possible pairs 
of units recorded on the same wire was 13.7 in units of standard deviations. A histogram of these 
pairwise distances is a convenient way to summarize the separation criteria of a study (see figure 
S12 in Rutishauser et al., 2008, for an example).

To what degree are the results of a particular study dependent on spike sorting? It will depend 
greatly on the experimental measure under investigation whether a result will depend greatly on 
separation criteria or not. To evaluate such concerns rigorously, it is useful to calculate the metric 
of interest (such as a response or selectivity index) for all neurons recorded followed by rank 
ordering the results according to spike-sorting/isolation metrics such as the SNR, the percentage 
of short ISIs (ISIs within the refractory period could reflect poor sorting), or the projection test 
distance. If there is a significant correlation between the metric under investigation and the 
quality metric, further steps have to be taken to avoid confounds. For example, the threshold for 
inclusion of neurons could be set appropriately based on examination of these correlations with 
isolation and recording quality (Schmitzer-Torbert et al., 2005).

The Relation between Spikes and the LFP

Signal Acquisition
The spikes originating from a single neuron are a local measure of neuronal spiking output. 
However, neurons are embedded in a multitude of networks. They receive inputs from and project 
to a large number of other neurons and can thus hardly be considered independent. Depending 
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on brain state and the area and the unit recorded from, some neurons fire in synchrony with 
many others whereas in other instances their firing appears to be mostly independent of others. 
This changing extent of synchrony of firing relative to other neurons is of great interest for 
investigating phenomena such as functional connectivity, plasticity, and many aspects of cogni-
tion such as top-down attention. One approach to quantify such dependencies is to evaluate to 
what extent the spiking of a particular neuron correlates with aspects of the LFP recorded from 
the same or a different microelectrode.

Several different types of signals are often referred to as “LFPs.” While investigators have 
used the term LFP to discuss scalp electroencephalographic recordings or intracranial recordings 
(sometimes referred to as “electrocorticography,” or “ECoG”), those signals are less “local” than 
the ones we consider here. Here we focus on the low-pass band of the extracellular recordings 
from microwire electrodes. A critical variable that influences how local the field potentials are 
is the impedance of the electrode. We suggest restricting the term LFP to signals recorded from 
high-impedance (>100 kΩ) microwire electrodes. Typically, the low-pass corner frequency may 
be set at 100 Hz. Depending on the type of analyses, the exact corner frequency may be relevant 
since higher frequencies show a significant contribution from spiking activity in the same elec-
trode (Logothetis, 2002; Zanos et al., 2011; Buzsáki et al., 2012). While there continues to be 
significant debate about how local LFPs really are (and the answer likely depends on the elec-
trode diameter, impedance, recording area, relevant frequencies, and other variables), several 
studies have suggested that LFPs capture activity within a radius of a few hundred micrometers 
in the vicinity of the electrode (Buzsáki et al., 2012).

If spikes and LFPs are recorded from the same electrodes, it is necessary to consider whether 
the waveforms of the spikes could possibly “leak” into the LFP frequencies of interest and thus 
introduce artificial phase locking. Simulations indicate that this can be the case for frequencies 
above 50 Hz (Logothetis, 2002; Zanos et al., 2011; Buzsáki et al., 2012). For purposes of analysis 
of the LFP with respect to phase locking, such leakage of power into low frequencies is unde-
sired. To prevent this, it is necessary to replace the samples around a detected spike such that 
the spike is removed from the LFP. This can be achieved by replacing spikes with a cubic spline 
interpolation between 1 ms before and 2 ms after the peak of the spike (in the high-resolution 
signal at full sampling rates). More sophisticated methods for spike removal have also been 
suggested (Zanos et al., 2011).

Of particular interest here is whether the probability of spiking correlates systematically with 
the power and/or phase of a specific oscillatory component (such as theta frequency oscillations) 
of the LFP. Other types of relationships have also been investigated, such as broadband power 
increases and their relationship to single unit firing (Miller et al., 2007; Manning et al., 2009). 
There are several methods for quantifying the spike–field relationship, of which we highlight 
two: direct estimation based on instantaneous power/phase and indirect estimation using spike–
field coherence (SFC).

All methods require that the low-frequency (LFP) and high-frequency (spikes) parts of the 
signal are available simultaneously. This means that, if a spike occurs at t = 100.0 ms, we need 
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to know the power and phase of the oscillations that are part of the LFP at this exact moment 
in time. While this might seem trivial, in reality this is sometimes not the case because of  
frequency-dependent time lags introduced by components of the acquisition system, the elec-
trode, or the data processing pipeline. Such artifacts have to be corrected for, as otherwise they 
produce artificial spike–field relationships because systematic shifts that have a different (but 
fixed) lag as a function of frequency will make them appear systematically before/after the spike 
whereas in reality these two happened simultaneously. In practice, there are three principle 
sources of such artifacts: (1) filters used by the data acquisition system, (2) the head stage, and 
(3) filters in the postacquisition data processing.

Filters used by the data acquisition system are typically causal (as they are applied in real 
time), which means they have a phase lag dependent on frequency (as discussed above). Fre-
quently, experimenters have the acquisition system apply two types of filters: LFP band (such 
as 0.5–100 Hz) and spikes (such as 300–3000 Hz). The system then processes and stores each 
component independently, such as in a continuous data file and in a file with detected spikes. 
In such a situation careful analysis is necessary to ensure that the filters used for the two bands 
have the same phase-lag response (which typically they do not). Some systems display the time 
lag introduced (which can reach several milliseconds) and allow switching on a correction mode. 
We advise avoiding this situation altogether by saving the data in as broadband a format as pos-
sible and then extracting spikes and the LFP from the very same file using noncausal zero-phase 
lag filters.

The second possible source of signal distortions is the head stage. Careful modeling and 
analysis studies have demonstrated that head stages with too low input impedances distort the 
LFP to such an extent that artificial spike–field correlations are induced and/or the spike wave-
forms are significantly distorted (Nelson et al., 2008; Nelson & Pouget, 2010). This can be 
avoided by using head stages with input impedances > 1 GΩ. This is necessary because of the 
relatively high impedance of the electrodes, typically in the range of 400 kΩ–1 MΩ. Some of 
the commercial head stages frequently used for human recordings are well characterized and 
have sufficiently high input impedances. One example is the HS-36 electrode we used in a 
recent study (Rutishauser et al., 2010) which has >1 TΩ input impedance. However, there are 
many other systems being used that have either unknown or too low input impedance for this 
type of recording. In such situations, manual corrections by deconvolution can be applied as 
has been done by some authors (Siegel et al., 2009), and some suppliers offer tools to achieve 
this (i.e., FPAlign by Plexon Inc.). An additional area of concern is filtering done directly in 
the head stage. The hardware filters in the head stage have to be known or experimentally 
measured to ensure that they do not introduce phase shifts in the range of interest. Such shifts 
can easily reach 90° for low frequencies (Nelson et al., 2008), meaning the measured signal 
will lead the actual signal by one fourth of the cycle length. This can lead to misinterpretations 
or null results that are due to these phase-distortion artifacts. The effective impedance of the 
head stage is reduced by the cabling between the head stage input and the electrode through 
capacitive coupling (Robinson, 1968), providing a further incentive to make these cables as 
short as possible.
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Quantitative Measures
The aim of measures to quantify the relationship between spikes and the LFP is to quantify 
statistically whether the spike times of a particular neuron are related to the phase and/or power 
of an oscillatory component of the LFP. In this section, we focus on phase relationships, but 
similar methods can be applied for power. We summarize two methods: assessing phase locking 
using circular statistics and SFC.

Circular Statistics and Estimation of Instantaneous Phase  Circular statistics provide a method to 
assess the distribution of circular variables such as phase angles (Fisher, 1993). Examples are 
circular equivalents of the normal distribution (the von Mises distribution) and circular tests for 
uniform distribution of variables (the Rayleigh test, among many others). In the following we 
quantify phases θ in units of radians in the range of – ,π …, π  where θ = 0 is the peak and θ = ±π  
is the trough (see figure 6.2). This notation is used in many analysis programs such as MATLAB. 

Figure 6.2
Illustration of the notation for phases. Shown are 1.5 cycles of an oscillation (arbitrary units). The corresponding angle 
is shown in the bottom two rows both in radians (rad; middle) and degrees (deg; bottom). In this notation, the peak of 
the oscillation corresponds to 0° and the trough to ±180°. Note the discontinuity at 180°, when the phase resets.
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The free MATLAB toolbox CircStat contains implementations of many statistical tests and tools 
necessary for the analysis of circular data (Berens, 2009).

Applying circular statistical tools first requires that the phase of the underlying oscillation(s) 
be determined for every point of time where a spike occurred. There are many ways to achieve 
this, of which we outline two common methods that have been employed successfully to analyze 
human single neurons and their relationship to the LFP (Caplan et al., 2001; Jacobs et al., 2007; 
Rutishauser et al., 2010): (1) the Hilbert transform and (2) the wavelet transform (see also Le 
Van Quyen et al., 2001, for a comparison of these two methods). The Hilbert transform is par-
ticularly useful when there is a certain frequency of interest (such as 35 Hz) whereas wavelet 
methods are more natural when a range of frequencies is considered.

After the phases for all spikes fired by a neuron have been determined (see below), the next 
step is to determine whether the population of phase values θi is distributed significantly around 
their mean angle θ  or whether their distribution is, alternatively, uniform and thus random. The 
mean resultant vector R is the vector sum of all the phase angles:

C i
i l

n

= ( )
=
∑cos θ , S i

i l

n

= ( )
=
∑sin θ , R C S2 2 2= + , R

R

n
= .	 (6.1)

In the above, C and S are the normalized sums of the sine and cosine of each phase angle, 
respectively, and n represents the total number of phase angles. The larger the length of the mean 
resultant R (range 0…1), the stronger the phase locking of the neuron is. The sample circular 
variance is V R= −1 . To test whether a neuron is significantly phase locked, the sample of all 
phase angles was compared against uniformity using a Rayleigh test. The Rayleigh test is based 
on a statistic Z:
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If P is sufficiently small, the null hypothesis of uniformity can be rejected. The alternative 
hypothesis is that the data are unimodal (one mean direction). Notice that the Rayleigh test is 
strictly a function of R as well as of n (number of spikes included). The same value of R thus 
leads to different significance values depending on the number of spikes that are included. In 
practice this leads to the problem that, given enough spikes, neurons that are not convincingly 
phase locked lead to statistical significance at P < 0.05. It is worthwhile to estimate a reasonable 
p-value cutoff for the numbers of spikes considered using simulations. Frequently, studies use 
cutoffs of P < 0.01 or P < 0.001 to avoid false positives. Due to these problems, we have found 
it advantageous to use summary metrics other than R and the Rayleigh-test significance value. 
These are based on the von Mises distribution, the circular equivalent of the normal distribution 
(Fisher, 1993):
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The probability of observing a phase angle θ is a function of the mean angle µ and the concen-
tration parameter κ . Both parameters can be determined easily from population data by maximum 
likelihood methods (see Fisher, 1993, p. 88). The concentration parameter is the analog to the 
standard deviation of a normal distribution, although of opposite direction: The larger κ , the 
more concentrated the distribution (the smaller its variance). For κ = 0, the von Mises distribu-
tion is equivalent to the uniform distribution on the circle. I0 κ( ) is the modified Bessel function 
of order zero. Plotting a histogram of the values of κ  summarizes the phase-locking strength of 
a population of neurons, a form of visualization preferred by us over histograms of p values.

Hilbert transform  To estimate the phase of an oscillation of a particular frequency, the signal is 
first narrowly band-pass filtered at the frequency of interest (such as 32–38 Hz if 35 Hz is of 
interest). The Hilbert transform can then be used to transform this signal S t( ) into a complex 
valued analytical signal X t S t iS tH( ) = ( ) + ( ). The real part of the analytic signal equals the raw 
signal S t( ), and the complex part is the Hilbert transformed signal S tH ( ). The instantaneous 
phase φ t( ) and power R t( ) of S t( ) can then be estimated based on X t( ) as follows:

R t X t X t( ) = ℜ ( ){ } + ℑ ( ){ }2 2 	 (6.4)

φ t X t X t X t( ) = ( )( ) = ℑ ( ){ } ℜ ( ){ }( )arg ,atan2
,

where ℜ and ℑ refer to the real and imaginary part of X(t), respectively.

Wavelet transform  The raw signal S t( ) can be decomposed into a function of frequency and 
time using the continuous wavelet transform (CWT) (Torrence & Compo, 1998). While many 
different wavelet basis ψ η0 ( ) could be utilized, we and others have used the complex Morlet 
wavelet, which has the two parameters: a center frequency f0 and the number cycles. Typical 
values are f0 1=  and ϖ = 4 or 6 cycles. The resulting CWT is a function of both scale (frequency) 
and time: W t s,( ). It is computed by convolving the raw signal (of length N) with the wavelet 
function ψ η0 ( ) for a number of different frequencies (scales) s. The effective resolution of the 
Morlet wavelet depends on the center frequency f0 and the scale s .If δT  is the spacing between 
two sampled points (sampling rate), the effective frequency of a Morlet wavelet at scale s is

f
f

s T
= 0

δ .

Thus, the higher the scale, the lower the frequency. The resolution is measured separately in 
terms of the standard deviation in time σ t and frequency σ f . Time resolution at scale s is a Tδ  
and frequency resolution is σ f a/ . Thus, the better the resolution in time, the worse it is in 
frequency, and vice versa (uncertainty principle, a fundamental limit, dictates σ σ πt f ≤ 1 2/ ( )). 
The time width of a wavelet is defined as (Najmi & Sadowsky, 1997)
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Thus,

σ
π σf

ts
= 1

2
.

To illustrate this trade-off, figure 6.3 shows Morlet wavelets in both time and frequency space 
for different parameters together with their time and frequency resolution. Notice the trade-off 
between accuracy in time and frequency illustrated by the size of the error bars. Since the width 
in frequency space increases as a function of frequency, the frequencies at which the wavelets 
are calculated are typically logarithmically scaled. This leads to an even sampling in frequency 
space. Typically, we sample at frequencies of f x= 2  with x linearly covering the frequencies of 
interest such as 1–50 Hz. The signal W t s,( ) for the frequency and time of interest can be used 
just as the Hilbert transformed signal X t( ) to estimate the instantaneous phase and power as 
shown above.

Spike–Field Coherence  Determining the phase locking of neurons based on the instantaneous 
phase at the time of the spike provides a limited view of phase locking. While it allows an 
assessment of whether a neuron is locked or not, it is difficult to assess changes in the phase-
locking strength across time or experimental conditions using this method. Also, it is based on 
a single value (the instantaneous phase) rather than the rich data that the LFP provides. Also, 
this approach cannot determine more complex relationships, such as complex oscillatory patterns 
happening some time before or after the spike that are in themselves not phase locked, including 
sharp waves (Buzsáki, 2006). Examples of these more complex scenarios include nesting of 
oscillatory power at higher frequencies coupled to phases of lower frequency oscillations, a 
phenomenon that is prominent in recordings in humans (Canolty et al., 2006). An alternative 
method that can detect such patterns is SFC, which has been used in a wide variety of studies 
to explore complex interactions between spikes and fields in the same and different areas in 
animals (Fries et al., 1997; Fries et al., 2001; Womelsdorf et al., 2006) and humans (Rutishauser 
et al., 2010). The SFC makes more efficient use of the data available because it considers many 
more data points for each spike. SFC-based estimates are thus more robust and can be made 
from fewer spikes compared to circular statistics–based measures.

The spike–field coherence SFC(f) is a function of frequency f and takes values between 0 and 
100%. The larger the SFC, the more accurately the spikes follow a particular phase of this fre-
quency. The SFC is the ratio between the frequency spectrum of the spike-triggered average (the 
STA), divided by the average frequency spectrum of the LFP traces themselves (that were used 
to construct the STA). By design, the SFC is thus normalized for LFP power changes that co-
occur with spikes. The average spectrum of the LFP traces themselves is referred to as the 
spike-triggered power (STP). Formally, the SFC is defined as follows:

SFC f
f STA f

STP f
( ) = ( )

( )
100%.	 (6.6)
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Figure 6.3
Illustration of the complex Morlet wavelet and trade-offs between frequency (Freq) and time resolution inherent in any 
form of local field potential analysis. All examples are for the complex Morlet wavelet with cycle number 2 and center 
frequency 1. (A) Wavelet in time (left; dashed lines show the complex part, straight lines the real part) and frequency 
(right) for one example scale (au, arbitrary units). (B–D) Illustration of the trade-off between specificity in time and 
frequency. (B) Frequency resolution as a function of frequency. Points on the y-axis are in units of SD. (C) Time resolu-
tion as a function of frequency. Points on the y-axis are in units of SD. (D) The 95% confidence intervals for time and 
frequency resolution plotted against each other.
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The STA is the average of many small segments of the LFP, each of which is extracted by taking 
a small piece of LFP centered on every spike. The size of the window depends on the frequen-
cies of interest. For the example of <10 Hz theta oscillations, we previously used ±480 ms. 
Averaging all such traces of LFPs results in the STA. We used multitaper analysis and its imple-
mentation in the Chronux Toolbox (Mitra & Bokil, 2008) to estimate the frequency spectra. 
Multitaper analysis is a powerful method to estimate robust single trial frequency spectra (Jarvis 
& Mitra, 2001). The choice of parameters (number of tapers and time–bandwidth product TW) 
for the multitaper analysis determines the time and frequency resolution of the SFC. For 
example, at 250-Hz sampling rate, the ±480-ms window consists of 240 data points, which result 
in a frequency resolution (half-width) of 4.2 Hz for seven tapers and TW = 4.

The SFC is a strictly positive measure that varies between 0 and 1 (or, sometimes 0 to 100%). 
It is a function of frequency but also the number of spikes used to calculate it. Consider the 
simulations shown in figure 6.4 (plate 2) to gain further insights into the properties of the SFC. 
We simulated a realistic LFP signal with a 1/f power structure and superimposed a simulated 
25-Hz oscillation (see figure 6.4A, plate 2). We further simulated two neurons, one of which 
preferentially fires spikes at the trough of the simulated oscillation (red) whereas the other fires 
randomly (green) irrespective of the oscillation (see figure 6.4B, plate 2). The STA of the phase-
locked neuron recovers the 25-Hz oscillation as expected, with the trough at t = 0 (see figure 
6.4C, plate 2). Based on the STA, the spectrum of the STA and the SFC can be calculated (see 
figure 6.4D, plate 2). The peak of the SFC is around 25 Hz as expected, but shifted slightly to 
the right. This is due to the frequency resolution used for the multitaper estimates. Here the 
half-width was 10 Hz, as can be seen from the width of the bump. Notice that, despite perfect 
phase locking, the absolute value of the SFC reached is about 6%. To explore this apparent 
inconsistency, we calculated the amplitude of the peak SFC value for different numbers of simu-
lated spikes (25–300 spikes) and for different phase-locking strengths (see figure 6.4F, plate 2). 
Three units were simulated: one with perfect phase locking (every spike follows the phase), one 
with 70% of the spikes phase locked, whereas the other was firing at random phases. As expected, 
the peak SFC value accurately indicated which of the units was most phase locked for any 
number of spikes used. But crucially this simulation also reveals that the peak SFC value 
decreases monotonically with the number of spikes used till it asymptotes after hundreds of 
spikes. This bias makes comparisons between groups (such as the 100%- and 70%-locked 
neuron) only valid if the same numbers of spikes is considered for each group. If, for example, 
unit 2 had 25 spikes and unit 1 had 300 spikes, the direct comparison of their SFC values would 
lead to the wrong conclusion that unit 2 was more phase locked whereas in fact the opposite is 
the case. This simulation illustrates the necessity of equalizing groups for sample sizes (e.g., by 
random subsampling of the bigger group) to allow a fair statistical comparison.

The reason for this bias is that, under the null hypothesis of no phase locking, the amplitude 
of the STA tends to zero only for large samples (the green line). This is because of the strictly 
positive nature of the SFC that does not allow noise to “average out” to zero. Also note that this 
explains the apparently low value of 6% above—for this figure, 1400 spikes had been used. Note 
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that this reinforces the point that the SFC is a relative measure—its actual amplitude is not 
meaningful, but what is meaningful is the proportional difference between two groups (such as 
the SFC is 50% bigger in group A compared to group B). Recent new methodological develop-
ments (Grasse & Moxon, 2010) have also led to the proposal of an analytical method to correct 
for this bias.

Decoding Brain Signals in Single Trials

Once we have detected spikes, separated them into clusters, and analyzed their relationship with 
LFPs, we are often interested in correlating the neurophysiological responses with aspects of 
the cognitive tasks under study (e.g., memory formation, stimulus presentation, attentional 
modulation, reaction times, etc.). The brain needs to be able to act upon the neurophysiological 
data in single trials. While averaging over trials is commonplace in an attempt to get rid of noise 
in many studies, neurons do not have that luxury.1 Also, several practical applications such as 
driving prosthetic limbs based on the activity of a population of neurons (see chapter 17) require 
decoding responses in single trials. Here we provide an overview of the math, algorithms, and 
methodology that underlie decoding the activity of an ensemble of neurons in single trials. For 
a more detailed discussion of the mathematics of machine learning, we refer the reader to Bishop 
(1995), Vapnik (1995), and Poggio and Smale (2003). For a more extensive review of feature 
expression for machine learning and decoding approaches, see Meyers and Kreiman (2011) and 
Singer and Kreiman (2012).

We focus our discussion on decoding the activity of ensembles of spike trains or LFPs. To 
provide a concrete example, we imagine a scenario where the subject was presented with n 
stimuli labeled S Sn1, ,…  over multiple trials in pseudorandom order. The exact details of the 
experimental paradigm are not relevant here. S Sn1, ,…  could represent n different pictures, or n 
different motor commands, or behavioral measures such as correct recollection or not. In any 
given trial k, we want to examine the neurophysiological recordings and make an educated 
guess about which experimental condition was presented (k nS Sλ ∈{ }1, ,…  denotes the condition 
for trial k).

Feature Extraction
The first question that arises in this procedure involves extracting relevant features from the 
input signals. This constitutes a critical step. If the features extracted from the data do not contain 
information about the experimental conditions, no machine-learning algorithm will be able to 
magically lead to decoding performance above chance levels.

We consider a set of spike trains k i k i
j

j

s t t t( ) ( )= −
=

∑δ
1

, where k i
jt  denotes the timing of spike 

j from neuron i (i n= …1, , ) in trial k measured from trial onset. In the interest of simplicity, 
we consider a simple feature, namely, the spike count, which has historically been shown to 
convey interesting information: k i k i

w

x w s t dt[ ] = ( )∫ , where w denotes a window of interest. The 
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spike count defined here is by no means the only feature of interest. Other features that have 
provided interesting information include the number of spikes that are correlated across multiple 
neurons, the projections onto the first principal components, the coherence between spikes and 
LFPs, the power of the spike train in specific frequency bands, and so on. While in the definition 
above k ix w[ ] is a scalar, one could also consider feature vectors such as k i k i ux w x w1[ ] … [ ][ ], ,  
where the feature of interest is computed in multiple temporal windows w1,…,wu within 
trial k.

It is also of interest to decode LFP signals. It should be noted that the brain does not have 
direct access to LFP signals. Except for small effects of extracellular fields (Anastassiou et al., 
2011), postsynaptic neurons need to make their decisions (to spike or not to spike) based on the 
incoming set of spike trains from presynaptic neurons. Still, LFPs have often been shown to 
contain interesting information, their signals can be correlated with spike trains (see “The Rela-
tion between Spikes and the LFP”), they may be more readily accessible in situations where 
spike recordings are not possible and can also have interesting practical properties such as 
increased stability. In the interest of simplicity, we extract the total power in the LFP signal (L(t)) 
in a given window w: k i k i

w

x w L t dt[ ] = ( )∫ 2 . Again, there are multiple other possibilities including 

considering the power restricted to certain frequency bands, the phase of the signal, the coher-
ence between LFPs recorded from different electrodes, and so on. As described above for spike 
trains, the feature of interest can be extracted in multiple windows w wu1, ,… .

It is worth mentioning several practical considerations. It is often of interest to compare 
decoding performance of multiunit activity versus single unit activity obtained after spike sorting 
(see the “Spike Detection” section in this chapter). Nonstationarities abound in neurophysiologi-
cal recordings; it is a good idea to attempt to eliminate such nonstationarities before attempting 
to decode information (Meyers & Kreiman, 2011). In several cases, investigators have considered 
ensembles of neurons that are not recorded simultaneously (e.g., Hung et al., 2005, as opposed 
to simultaneous recordings in Wilson & McNaughton, 1993). These ensembles are referred to 
as pseudo-populations and assume that the responses are independent (i.e., decoding the activity 
of pseudo-populations does not take into account potential interactions across neurons; Meyers 
& Kreiman, 2011).

Learning from Examples
Decoding neural data using machine learning techniques constitutes a typical example of super-
vised learning from examples. We have a set of data k k k k nx x xx = …[ ]1 2, , ,  and a set of labels 
for each trial k nS Sλ ∈ …{ }1, , . The goal is to build a classifier that can learn the structure of the 
relationships between k x and k λ. The typical procedure is shown in figure 6.5, where, for illus-
trative purposes, we consider n = 2 neurons and only two possible labels (k λ is a circle or a 
triangle, which we denote as +1 and –1, respectively, in the next paragraph). After extracting 
relevant features from each neuron (see figure 6.5A–B), we seek a boundary that can separate 
the two labels. In this case, we show a linear boundary.
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There is a rich literature on the mathematics of supervised learning, and multiple algorithms 
are available for classification.2 A simple algorithm for classification is Fisher’s linear discrimi-
nant. We seek a linear boundary characterized by weight vector α and constant b. We can 
describe the linear classifier as f b bk kx x; ,a a( ) = + . In any given trial, we take the neural 
ensemble response, compute the dot product with the weights, and add a constant. If the result-
ing value is greater than 0, then we classify the point as condition +1, otherwise, we classify  
the point as condition –1. The boundary should be able to separate the means of the responses 

for each of the two conditions: m x+ + +
=

= ( )
+

∑1 1 1
1

1
1

/ n k
k

n

 and m x− − −
=

= ( )
−

∑1 1 1
1

1
1

/ n k
k

n

, where n+1 and 

n−1 denote the number of trials with labels +1 and –1, respectively, and k x+1 and k x−1 denote the 
neural ensemble vectors in a trial k where the label is +1 or –1, respectively. In addition to sepa-
rating the means, we also want to minimize the variation within each group. For this purpose, 
we also consider the variances for each condition:
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Figure 6.5
Schematic illustration of machine learning approach to decode neural ensemble data. (A) We record spike trains, and 
we extract relevant features for classification. In this case, we illustrate only two neurons (artificial data), and we compute 
the firing rate in a 1000-ms window. (B) The process is repeated for all N trials where two different stimulus conditions 
(here a represented by a circle and a triangle) are repeated in pseudorandom order. In each trial, we build a vector (here 
of size 2) that represents the ensemble response. (C) The data are separated into a training set and a test set. This plot 
of the training data shows the separation between the two conditions. The classifier (in this case a linear classifier) seeks 
to find a separation between two conditions. (D) Given test data, the classifier uses the same boundary from (C) to sepa-
rate the data. Those points above the boundary are classified as triangles whereas those points below the boundary are 
classified as circles. (E) Classifier predictions. The erroneous labels are marked by filled symbols. In this toy example, 
the classifier correctly labels 88% of the points. spks/s, spikes per second; PC, percentage correct.
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G+ + + + += −( ) −( )1 1 1 1 1k k
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x m x m  and G− − − − −= −( ) −( )1 1 1 1 1k k

T

k
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The Fisher linear discriminant seeks to find the value of the weights α that maximizes the fol-
lowing expression:
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 m m1 1
2

1 1

	 (6.8)

subject to a = 1. It can be shown that this expression is minimized when

G G a+ − + −+( ) = −1 1 1 1. m m ,	 (6.9)

which can be easily solved using MATLAB. While it is always advisable to write your own 
code, MATLAB has an implementation of a simple linear discriminant classifier in the clas-
sify function. Figure 6.5C–E shows how a line can separate the data and minimize the clas-
sification error.

Support vector machines (SVMs) constitute a robust type of classifier that has proven to be 
successful in many neural decoding applications (as well as in many other domains). For a 
description of the mathematical principles behind SVM classifiers, see Vapnik (1995) and Cris-
tianini and Shawe-Taylor (2000). There are multiple freely available implementations of SVM 
classifiers including one in MATLAB’s svmtrain and related functions.

Cross-validation
A critical component of all the decoding approaches is to perform cross-validation by separating 
the data into a training set and a test set. Failure to do so leads to overfitting the data. Depending 
on the exact characteristics of the problem, dimensionality and number of trials, overfitting can 
lead to overoptimistic measures of performance and hence misleading conclusions.

A schematic illustration of a typical cross-validation procedure is shown in figure 6.6. Essen-
tially, a random subset of the data is used for training (i.e., finding the classifier parameters) and 
the remaining data are used for evaluating the performance of the classifier. The process is also 
emphasized in figure 6.5: part C shows the data used to find the parameters of the Fisher linear 
discriminant, and the resulting boundary line was applied to novel data shown in part D to lead 
to the classification results shown in part E. For a longer discussion of cross-validation proce-
dures, see Meyers and Kreiman (2011).

Real-Time Feedback from Spikes for Closed-Loop Experimentation

Our world is continuous. Therefore, experiments that show discrete presentations of stimuli or 
are broken down into blocks or trials are limited in how well they simulate real life. Wanting to 
better simulate real life, scientists occasionally turn to experiments which modify themselves in 
real time as a function of some brain activity (Fetz, 1969; Griffin et al., 2004; Cerf et al., 2010; 
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Jadhav et al., 2012; Rutishauser et al., 2013). These are experiments whose analysis is done 
quickly (i.e., “real time”) and the outcome of such analysis influences the experiment itself. This 
is commonly referred to as a closed-loop (or “online”) experiment. In contrast, open-loop experi-
ments are those where the neuronal response does not influence the experiment itself. Techni-
cally, closed-loop experiments are challenging as the outcome of the data analysis is directly 
fed back to the subject and thus alters behavior. In contrast, in offline experiments there is no 
interaction between the data analysis and the experiment.

Implementing real-time experiments in humans, using spikes and single unit data, is challeng-
ing for multiple reasons—both technical and conceptual. There are a number of additional 
considerations relative to conducting an offline experiment. Below, we discuss these challenges 
and possible solutions. A critical parameter is the latency from a neuronal event occurring in the 
brain until the desired stimulus change (such as presenting a picture conditional on the firing 
rate of a neuron). What is considered real time? Clearly, these experiments are at best “near”-
real-time experiments, as there will always be a delay. Depending on the exact type of experi-
ment, a latency of less than 100 ms is typically acceptable as patients tend to not change their 
behavior because of these (Szelag et al., 2009).

Single units are very powerful and useful for real-time experiments. That is because their 
speed and short latencies lend themselves to altering the experiment and behavior. If we as 
experimenters learn of a burst of activity that started at time 0, and are able to alter the outcome 
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Figure 6.6
Schematic illustration of cross-validation. (A) Population of neuronal responses (here five neurons) over N pseudoran-
dom labeled trials. (B) In each cross-validation run, the data are divided into a training set and a nonoverlapping test 
set (i.e., without replacement). In this example, 75% of the data go into the training set and 25% of the data go into the 
test set, but other splits are also possible. Here we ensure that the proportion of labels in the training set is equally 
divided between the two possible labels so that chance level in classification will be 50%. Only the training data  
are used to change the parameters in the classifier. Classification performance values reported should be based on the 
test set.
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of a trial in less than 100 ms following this activity, the subject is likely to interpret the entire 
sequence as happening in real time. More so, given the high SNR of single-unit firing, typically 
only a few trials are needed to decode the meaning of a certain unit’s firing. That is, we can 
offer single trial classifiers that operate based simply on separating the baseline activity of the 
unit and the active firing.

Challenges in Designing Real-Time Experiments

Programming Challenges  Much of our programming tools were designed for offline experi-
ments where time is effectively set by internal mechanisms that are placed in the code. That is, 
a typical stimulus presentation routine would present an image on the screen and then wait for 
1 s before removing the image from the screen. In contrast, in online experiments we often have 
to hold a variable that measures the time from previous events. That is, a code block that performs 
the same function in a real-time experiment will often start with a line that sets the time variable 
to the current time, and then starts a while loop that asks whether one second had already passed 
in which the experimenter would repeatedly pull information from the brain, for example, and 
exit the loop to remove the image from the screen. This is mostly true for closed-loop real-time 
experiments where data are being analyzed continuously and processing time is sometimes a 
bottleneck that experimenters want to overcome by not operating sequentially but rather using 
the delay time (in this example 1 s) to perform some of the analyses.

Another challenge with online experimental implementation is the tight integration with the 
acquisition system or simulations thereof for testing and debugging. Therefore, the experimental 
code will have to include acquisition-system-specific calls to interact with the acquisition system 
to receive data. This implies that the experiment itself has to be implemented in a way that 
permits inserting such commands. This typically prohibits using closed-source systems such as 
those frequently used in visual psychophysics and a number of popular tools in experimental 
design, which do not support such interaction. Testing and debugging such an approach is chal-
lenging. Ideally, the same experimental code can be used for both an actual patient and a “simu-
lated” situation where simulated data are used or previously recorded data are replayed. Finally, 
an additional challenge in real-time coding involves controlling the flow of experiment time in 
the event of unexpected circumstances.

Real-time approaches are frequently used in other fields (i.e., electrical engineering, gaming), 
allowing us to adapt existing and proven methods. Below, we outline two solutions that we found 
useful in implementing our closed-loop experiments (Cerf et al., 2010).

Event-Based Programming  An efficient way to handle real-time coding is “event based pro-
gramming,” which uses the operating system’s event queue. This allows processes and methods 
to “register” with an event manager, which in turn calls the registered function when a certain 
event has occurred (“callback”). For example, instead of having a while loop that checks at the 
end of each cycle whether a button was pressed, you register a function to be called when a 
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button has been pressed with the event manager, and whenever the button is pressed, this func-
tion is called automatically. One can set functions that are based on events occurring, on the 
period occurrence of a particular event (say, call a function that pulls data from the brain repeat-
edly every millisecond or every 100 ms regardless of the linearity of the code), or events that 
happen a period of time following a certain event (say, run a function exactly 300 ms after a 
button was pressed).

Most programming languages and operating systems offer event-based processing. In the 
following, we use MATLAB to illustrate examples, but similar commands can be used in  
other environments. The main functions in MATLAB for event-based coding are: “timer” and 
“addlistener.”

The addlistener object registers a listener with the event handler, which starts the event 
process. The listener uses strings to capture events (i.e., using ‘ButtonPressed’ as a trigger that 
indicates the event that marks a button press).

The “timer” function allows for setting delays or precise or periodic timing. For example, 
setting the ‘StartDelay’ attribute instructs the timer to trigger an event after a certain delay. 
Calling start(eventlistener) and stop(eventlistener) controls the flow of the experiment. That is, 
at the end of each trial, for example, we can ‘stop’ all listeners and then re-‘start’ them at the 
beginning of a future trial.

Finally, it is important to note the numerous variants of the timer function that really allow 
for optimized control of the experimental timing, with the ability to set time for a certain time, 
for a periodic recurring call (using the ‘Period’ attribute), for a specific delay, or for a delay 
from the occurrence of a certain future event.

Clock-Slowing Debug  Debugging real-time code is challenging. Frequently, specific events can 
only occur in short windows of opportunity, such as when a particular neuronal event occurs 
within 100 ms after the subject presses a button. When testing code—for example, by line-by-
line execution—such time conditions cannot be satisfied. How can this code be debugged then? 
MATLAB and various other OS implementations now allow you to ‘slow time.’ Meaning—one 
can decide that every processor cycle (the metric used to count time in computers) will account 
for a different time unit. As in—instead of one CPU cycle accounting for 1/3500 MHz, one can 
decide that it will actually account for 1 s, therefore providing a slow run of everything. This 
allows for effective real-time debugging. Obviously the brain still works at the same speed in 
the real-time environment, so one needs to think of “slowing down the input to the code as well,” 
but given that oftentimes when debugging real-time codes we are working with simulators (see 
the next paragraph), we should be able to either get “slower brains” by slowing the OS altogether, 
making our spikes simulator slow as well, or by tweaking our spike generator to simply work 
at a much lower sampling rate.

Simulating a Brain  Time working with the patient is the most precious of commodities in single 
neuron recordings, requiring careful testing before performing experiments. Below, we outline 
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methods we found useful: (1) using prerecorded brain data, (2) using existing brain simulators, 
and (3) generating random spikes. The second and the third options utilize simulated data, with 
the difference being that one is using a simulator that was provided by a vendor or by the acqui-
sition system (those are now widely supported by many vendors) while the other is generating 
simulated spikes. Simulators nowadays can go from simple (generating spikes at a Poisson 
distribution with a given rate for each of multiple neurons—where the parameters can often  
be tweaked to some extent) to much more complex simulators that actually were designed to 
simulate a particular brain area or neuronal behavior (i.e., a neuron which changes its firing rate 
based on event triggers from the environment—equivalent to its preferred stimulus being 
presented).3

Performance Issues  When discussing real-time processing, one question that arises is the notion 
of timing in the brain. A vast literature has explored the notion of time perception, the effects 
of minor delays on the perception of real time, and the psychology of “now.” We won’t address 
any of these questions in this chapter other than to state that studies (Szelag & Poppel, 2000) 
suggest that with small variability humans perceive events that happen with a delay of over 100 
ms as certainly lagging. That is, if your keyboard would respond to your key presses with the 
tiny delay of 100 ms, this would surely be noticeable by you and presumably lead you to use a 
different keyboard. Therefore, when we come to design real-time experiments, and depending 
on the questions and task, we have to set some boundaries to what constitutes real time and what 
delays we accept in our code. Given that the short delay between the moment in which a neuron 
in the brain spiked to the moment it somehow changed the experiment and was perceived by 
the patient is in milliseconds, we need to make sure that all our analyses and according experi-
mental modification happen within that small timescale. There are a number of performance 
considerations that should be taken into account in order to minimize the latency between neu-
ronal responses and the desired effects.

First, frequently the analysis of data from an individual recording channel is identical to that 
from other channels. Thus, parallel processing can be used to take advantage of the recent 
increase in the availability of multiple CPUs/GPUs/cores. Second, there are many speed improve-
ments that can be utilized by appropriate programming techniques. For example, in MATLAB, 
preallocating arrays rather than having those grow in size during runtime can affect speed greatly. 
Usage of correct logical operators (| for array elements versus || for scalar values) improves 
performance. When using compiled languages such as C or Java, the compiler itself has a set 
of flags that can be used to improve real-time performance at the expense of memory.

Generally, real-time programs tend to be harder to read because they occasionally improve 
efficiency at the expense of proper coding. However, some simple tricks can aid in improving 
and analyzing the codes’ performance bottlenecks. CPU timing metrics like the ‘tic’/’toc’ com-
mands in MATLAB indicate locations where runtime operations spend more time than others. 
In addition, many languages including MATLAB and C have a variety of “profiling” tools that 
enable the debugging of code timing following a run.
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Here are a few typical bottlenecks in real-time experiments:

Networking  Conducting closed-loop experiments frequently requires using multiple hardware 
systems (such as for acquisition, data analysis, and stimulus display) that need to exchange large 
quantities of data among them. This requires a fast and dedicated network among those machines. 
Additional parameters that affect network congestion and speed include the type and amount of 
data used. Acquisition systems deliver data of several types: raw continuous data, filtered con-
tinuous data, spike waveforms after a threshold was applied by the acquisition system, clustered 
spikes/shapes after they were thresholded and sorted, only the spike peak times, or just the 
number of spikes within a window (firing rate). Additionally, the amount of data is also influ-
enced by the size of the window of time used to retrieve data, the sampling rate, and the number 
of channels. Some systems allow the user to control these parameters remotely while others do 
not. For instance, at present the Blackrock system allows only a choice between continuous, or 
spikes and shapes; and data are only delivered for all recorded channels together at the sampling 
rate at which the data were recorded (i.e., there is no possibility to subselect a range of chan-
nels). We advise using a local area network with its own routers and switches and short cabling 
to allow for rapid data transfer.

Computer performance  Performance of the hardware/software system itself can greatly affect 
the speed and precision of online analyses. Open processes, small paging files, or unexpected 
update checks can harm our experiments. There are tools to remove all but the essential processes 
when crucial experiments are run, and multiple companies specialize in real-time performance 
tweaking. First, if possible, minimize the displays. Many acquisition applications show spikes 
and continuous data on the screen, which can slow down processing. Also, channels which do 
not yield useful data should be removed from the recording and analysis entirely to save band-
width and computing power. Also, depending on the analysis performed, the sampling rate can 
be reduced. Finally, visualization can be minimized to reduce the load. One additional recom-
mendation is to keep the configuration file used for each and every experiment together with 
the experiment files.

Online Data Access through Application Programming Interfaces (APIs)
The authors of this chapter have worked with two acquisition systems thus far: Neuralynx 
Cheetah, and Blackrock’s Neuroport. The following briefly outlines their methods and what 
consideration one needs to take into account when handling those.

Blackrock’s Neuroport—CBMex  Without going into specific details of the system (which are 
likely to change rapidly) we will briefly discuss the main logic of the CBMex environment and 
the main considerations to account for when using it.

CBMex was not written by Blackrock. This means that parts of the code were tailored to very 
specific needs rather than general users. Currently CBMex is supported only on PC computers 
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with the requirement of a matching CBMex to each Firmware version of Neuroport (i.e., if the 
Neuroport firmware is upgraded, CBMex must be upgraded also).

CBMex provides the standard commands required from an online application—connecting to 
the Neuroport locally or remotely (“cbmex(‘open’)”), syncing the clocks of the acquisition 
system and the experimental machine (“cbmex(‘time’)”), which is the effective synchronization 
of the remote and acquisition systems, the start of a recording buffer (“cbmex(‘trialconfig’)”), 
and the polling of data (“cbmex(‘trialdata’)”). Data is polled from the last time the buffer was 
emptied in every poll, and the parameters of the command determine whether one wants the 
continuous data in full or simply the spikes structure. The window of time used is a buffer that 
can get full if data isn’t pulled often enough. When the buffer is full, data is overwritten in a 
circular fashion. The documentation says that pulling every 3 s is safe, but tests we have done 
show that based on standard computers out there, one can in fact pull data from even much 
longer windows (~10 s) and still not lose any data. The connection and data transfer is done via 
the User Datagram Protocol (UDP), and the protocol as well as the actual CBMex C code are 
readily available.

Notably, the interaction between the Neuroport system and the PC (currently the only OS) 
computer which manages the acquisition (start, stop, file names, etc.) can be done using cbmex 
as well (“cbmex(‘fileconfig’)”). CBMex allows for sending triggers from the code to the system, 
alerting on certain events as well, and altogether gives the basic required functionality.

One major conceptual problem in the current version of the system has to do with certain race 
conditions that can exist between the cbmex initialization and the acknowledgment from the 
Neuroport that often results in a crash or freezing of the interaction and an ultimate crash of  
the MEX interpreter and, subsequently, of MATLAB. This is caused if two cbmex commands 
are sent in sequence but arrive in conflicting order—say, cbmex(‘open’) followed by 
cbmex(‘trailconfig’)—which often results in a crash. The simple workaround involves imposing 
a short pause between the commands, which is long enough to ensure the arrival of one  
before the other (this is a UDP-related problem that is often occurring in protocols of that nature). 
The above code would then be translated to the following: cbmex(‘open’); pause(0.1); 
cbmex(‘trialconfig’); this is enough to solve this problem.

Neuralynx’s Cheetah—NetCom  Neuralynx offers a .NET-based API “NetCom” to interact with 
the acquisition system. It can therefore interact with any language that supports .NET, including 
MATLAB. NetCom acts as a client to the Cheetah acquisition server. However, contrary to the 
Neuroport, which broadcasts its data over the network to the ‘network address’ (x.x.x.128), 
NetCom uses a single communication channel and requires registering to open the data. This is 
effectively similar still to Neuroport since the cbmex(‘open’) command effectively operates as 
a single channel of transport. Only a single Netcom client can directly communicate with the 
acquisition system. However, Neuralynx provides an additional program called the “Netcom 
router” that permits multiple clients to connect to the acquisition system.
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NetCom provides commands such as “NlxConnectToServer” to connect to the acquisition 
system or router or “NlxGetNewCSCData” to receive new data.

Netcom’s strategy is to separate the connection to the server from the data streams themselves, 
which allows for exchange of system commands before choosing which data to use. Netcom 
follows a subscription model: Each client can specify which data channel(s) to subscribe to and 
then subsequently poll data from only this subset of channels. In comparison to Neuroport, 
NetCom provides more choices to users such as choice of channels and objects to load and does 
not require the polling of all the objects for any given query. For example, users can first request 
a list of available objects using “NlxGetCheetahObjectsAndTypes()” (where objects include 
continuous and spike channels, Event (TTL) channels, video channels, etc.). This is then fol-
lowed by a choice of which data to subscribe to by indicating to NetCom the relevant streams. 
Data is streamed in blocks of 512 samples, which can create some difficulties requiring the client 
to wait for the next buffer in order to get a full spike shape if it happened to be at the edge of 
a 512-sample block. Table 6.1 compares the features of online data access provided by the 
Neuroport and Cheetah.

Data Analyses Challenges

Real-Time Experiment Decisions  Unlike offline experiments, which can be analyzed in multiple 
ways after finishing the experiment, online experiments suffer (and benefit) from the fact that 
the analysis has to be structured before running the experiment. That is because the experiment 
flow is part of the analysis and is affected by it. If an experiment tests some learning effect, for 
instance, and makes the trials harder or easier based on the performance on previous trials, then 

Table 6.1
Comparison of the features of online data access provided by the two Food and Drug Administration–approved systems 
at time of writing

Feature Blackrock Neuroport Neuralynx Cheetah

Ability to select a subset of objects 
rather than all existing objects

– +

Multiple clients can connect + + (With NetCom router)
Company-provided and supported code – +
Support – +
Ability to read separately video data, 
events, spikes data, etc. (Blackrock only 
events, spikes)

– +

Documentation Partial; not used much 
and not debugged much

Partial, not used much but exists; the 
documentation file format is Windows only

Support for other platforms – (Only PC at present) All .NET platforms (effectively only PC)
Minimal latency possible 1 ms 15 ms (due to 512 samples transfer block 

size for continuous data)
Ability to receive data at lower sampling 
rate or with different filters than recorded

– +
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nearly every experimental run is going to be different for each patient and each session, based 
on the performance in that very run. That is, the experiment will rarely be exactly the same when 
repeated twice. Thus the analysis has to take this difference into account and still be able to 
draw overall conclusions about the population. For example, if learning affects the performance 
of the patient in the next trial, then the experimental information that led to it must be used for 
the analysis.

Choices of parameters and analysis methods cannot be changed post hoc, as is usually done. 
Here is an example of this: In an experiment run by one of the authors (MC) the decision was 
made that the analysis of spikes would be done on multiunits rather than on online sorted data 
since the sorting time would slow the processing too much, which could affect the actual runtime 
decisions (the patient would become aware of the fact that there is a delay between his or her 
thoughts and their manifestation on the experimental computer; see Cerf et al., 2010). The deci-
sion was therefore made to use only unsorted spikes for the experiment. The analysis of existing 
data showed that this would introduce a certain level of noise, but we felt that the patients would 
be able to perform well nevertheless. Once the data were collected, we proceeded to perform 
detailed offline analysis including careful spike sorting to look at the single units that drove the 
results. While the results were a little different (2% improvement in the performance would have 
been achieved from single units) we cannot with confidence know the extent of the actual 
improvement that would have been observed in reality. We cannot say that using single units 
would have been simply an improvement on using the multiunits, because the additional hidden 
variable here is how it would affect the patient’s performance. It is conceivable that running the 
experiment with single units would make the patient “work harder” or try different strategies to 
control the particular brain–machine interface that was used in the experiment, and therefore the 
performance would have been much improved (or vice versa: maybe the patient would have lost 
interest and tried less hard since things would be great early on). Simply put, there is no way to 
draw a conclusion on what would have happened were the experiment conditional on different 
data than the ones used in the actual experiment.

Choice of Data to be Analyzed  Similar to the previous point, we feel the need to emphasize 
that, more so than in other experiments, online experiments can benefit significantly from prior 
knowledge on the properties of the neurons one records from.

That is, if one has the capacity (time, patient time, human hours, etc.) to arrive at the patient’s 
room prior to the experiment, acquire data before the beginning of the experiment, and tailor 
the variables to the particular experiments, this always proves invaluable. In our ideal experi-
ments we set the thresholds and sorting algorithms for the particular patient’s needs before 
experiments start. Then the experiment is run, and the parameters are saved and fixed and used 
throughout.

Here’s a concrete example of such: The Cheetah system, as was mentioned earlier, is able to 
separate the channels read during the experiments and transfer to the analysis computer only a 
small set of relevant channels. In the study by Cerf et al. (2010) it became clear to us that we 
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would need to look at the raw data from the acquisition system and filter/threshold/analyze it 
locally ourselves rather than relying on the filtering done by the acquisition system. Transferring 
the raw data of a few seconds of multiple channels can be taxing on the network and could lead 
to an overwhelming strain on the acquisition system that could end up delaying processing or 
affecting the experiment. Therefore, we began every experiment by a prescreening of the units 
to be used in the experiment, and we decreased the dimensionality of our units to only channels 
that had uniquely responsive units (i.e., units responding to stimuli which were not repeated in 
other channels). This typically decreased the number of channels we looked at from 64 to about 
5. This allowed us to focus on smaller amounts of data, and we could even focus on tweaking 
some of our decoding parameters to the nature of those channels (mainly, how we normalized 
the firing rates). This only came from knowing our data well and, particularly, knowing that 
some units in areas like the parahippocampal cortex have higher firing rates and will result in 
more demanding bandwidth needs than others; this even allowed us to separate in the code the 
retrieval of channels at different times within our 20-ms window to make sure we controlled the 
flow of information and analyses. These are the types of knowledge that are hard to change later 
as suggested in the previous section but could improve the analyses significantly.

Experimental choices for real-time data processing include using multiunits or single units; 
using raw data or only spikes, LFPs, or firing rates; using all channels or a smaller number of 
channels; acquiring and sampling all channels or only some (usually one would want all here 
at the highest sampling rate unless this really poses a strain on the acquisition system); and 
deciding what network architecture to use.

Bandwidth and Processing Time  In the context of real-time experiments the following variables 
can impact performance:

Bandwidth = <number of channels> x <window of activity> x <sampling rate>
Data arrival latency = <bandwidth> / <network congestion >
Processing time = <data arrival latency> + <filtering time> + <spike detection time> + [spike-
sorting time]

The main choices we can control are the number of channels used for the analysis and the 
window of activity used. The bandwidth is also governed by the type and formatting of the data. 
We often consider three data types: the entire continuous data (LFPs), filtered or unfiltered; the 
thresholded data (spikes); or the firing rate. Bandwidth requirements differ significantly among 
these.

Storage of Experimental Data  Unlike offline experiments, where the analyses can be fully 
reproduced postexperiment, the variables in real-time experiments are part of the experiment. 
As such, it is essential in real-time experiments to maintain as many of the environmental con
ditions and variables as possible. In order to do so, saving all the data every few trials is 
recommended.
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On the acquisition system side, storing data in the most raw form possible is advantageous. 
Some systems offer two ways of storing data to facilitate this—in a compact format for future 
analysis, in addition to a raw format. For example, the Cheetah system saves the filtered continu-
ous data in individual files, one for each recording channel. However, an additional file (“NDMA 
file”) can also be stored, which contains all recorded data in its raw form before filtering (similar 
to the structure used by Neuroport). This file is very large (for example, 40 GB/h for a 64-channel 
system) but can be used to fully replicate the experiment offline (“replay”). Such data replay is 
an excellent means for system development.

Experimental Challenges
Finally, we will address some of the challenges that need to be noted simply due to the running 
of an experiment online.

Architecture  Figure 6.7 (plate 3) illustrates a typical online experimental setup. Wires lead from 
the patient’s brain directly to the acquisition system, from which the data are transferred over 
the network to an additional computer (either directly to the experimental computer or, prefer-
ably, to a dedicated computer for data analysis), and then, after a decision is made based on the 
previous data, ultimately fed into the experimental computer to drive the machine in the brain–
machine interactive setup.

5

Acquisition

Spike 
detection and sorting

Decoding

Figure 6.7 (plate 3)
Illustration of a typical online experimental setup.
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Real-time experiments present a technical challenge beyond simply setting up a laptop in front 
of the patient. Instead, a cluster of computers is typically required. In the authors’ experience, 
these challenges end up being difficult to handle. Problems include setting up a network locally, 
making sure that all computers communicate with each other, and trying to replicate the condi-
tions as much as possible each time (use the same bandwidth, use the same cables, use the same 
network architecture, etc.).

One versus Multiple Trials  An ideal online experiment is one in which decisions effectively 
are made in runtime using the data from only one trial. That is, some occurrence in the envi-
ronment is analyzed in real time and affects the experimental flow immediately. This is hard 
to do. Decoders often need a significant number of preluding training trials before they can 
arrive at the stage where a choice can be made over one trial in real time, and many codes 
will never reach this threshold due to a number of possible problems (decoder, data recorded, 
noise, etc.). This means that the experimenter will have to make choices in the experiment as 
to what level of decoding performance is required, how many trials are used for training, and 
then how many trials are used to make a decision. Each experiment has different needs, and 
the data drive much of these decisions, but one of the main advantages of single neuron record-
ing is that we can aim for single trial decoding of choice and behavior, unlike with other 
methods.

In his classical “volition” experiment, for instance, Benjamin Libet could see the principal 
result (the readiness potential) only by averaging dozens of electroencephalography (EEG) trials. 
This is still true to date even with the improvement of EEG acquisition methods. Analysis based 
on LFPs (or ECoG) of single trials is possible (Chen et al., 2013; Maoz et al., 2012) but suffers 
from the same limitations to some degree. However, recent online experimentation in real-time 
single neuron recordings in humans (Cerf et al., 2010) and analysis of offline experiments as if 
they were online—to test the potential ability to have analyzed data in single trials (Quiroga  
et al., 2007; Fried et al., 2011)—suggest that the data have the potential of being ideal for these 
types of experiments.

Training Length  While the decoding literature suggests ways to estimate the optimal level of 
training a decoder requires in order to reach best results in the eventual testing phase, online 
experiments often cannot abide by these calculations. This is merely because we are also bound 
from above by the patient and clinical constraints. One way to decide when to end the training 
phase and advance to the testing phase is simply to set a fixed predetermined performance 
threshold and lock the parameters (or keep updating them to improve performance) once the 
threshold is met. This, however, could result in some runs of the experiment that never arrive at 
the testing phase. An alternative is, of course, to ignore the performance altogether and just set 
a fixed number of trials after which the decoder is locked no matter what and is used for testing 
regardless. The authors have used both methods in the past and currently propose a combination 



PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

Fried—Single Neuron Studies of the Human Brain

R

Data Analysis Techniques for Human Microwire Recordings	 93

of the two which is not ideal in most experimental conditions but is the optimal one for real-time 
experiments in humans: fixing a threshold for ideal move to testing, in addition to setting a 
maximal number of trials at which one shifts to testing regardless of the performance.

Offline Analysis of Online Data  One additional recommendation for conducting real-time 
experiments is to ultimately analyze the data from the online experiment offline later as if the 
experiment was not run in a closed loop. Such analysis done by Cerf et al. (2010) showed, in 
fact, that the performance could have improved only slightly from using single units (rather than 
multiunits), different filtering, and wider windows of brain data polling. While one cannot 
change any of the analysis parameters post hoc in an online experiment, one can surely use this 
information for improved future analyses and for future reporting to determine the ideal param-
eter for potential online experiments replicating the results or building upon this knowledge. The 
authors encourage any experimenter considering future online experiments to ultimately report 
both the results of the online experiment and the results of offline data analyses.

Philosophical and Ethical Considerations in Real-Time Closed-Loop Experiments
Chapter 4 discussed important ethical considerations with respect to recording data from human 
patients. Here we extend some of those considerations in the particular context of real-time 
closed-loop experiments.

While our behavior is controlled by our brain at all times, we have the subjective experience 
(perhaps illusory) of an “interaction” between our brain and our reflective consciousness that is 
very familiar to us. We operate in the world and feel we are the agents of our behavior. Online 
experiments profoundly change this access architecture by giving patients direct feedback on 
their brain activity. There are currently probably only a few dozen humans that were actually 
able to directly hear the activity of their own brain and manipulate their behavior accordingly. 
We do not know if and how this feeling and unique experience changes behavior. It may very 
well be that just the sheer access the individual has to his or her brain allows for changes in 
neuronal patterns. Simply put, it could be that a person who moves a cursor on a screen based 
on the activity of a neuron is not just reading the neuron’s activity but actually modifying the 
activity in real time. We currently have no way to separate the two cases or test this difference, 
but as experimenters we should be aware of this concern and think of ways to figure out what 
is entailed when giving a person external access to his or her thoughts.

In our online experiments, we pride ourselves on the fact that the patients’ behavior can be 
manipulated by the experiment itself and feel that we gain unique knowledge about the way in 
which the brain operates. However, one needs to remember that while this constitutes acquiring 
a unique and unprecedented access to the brain, this is also a very atypical situation, which is 
not necessarily representative of normal behavior. One should also note that, in our experience, 
all (100%) of our patients who participated in online experiments provided feedback indicating 
that the experience was fascinating and remarkable for them.
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When and Why to Consider Online Experiments
A few things make online experiments advisable for scientists venturing into the world of single 
neuron recordings in humans:

1.  Unlike many noninvasive methods, single neuron recordings can make use of real-time infor-
mation. Functional magnetic resonance imaging, for instance, does not have sufficient temporal 
resolution for real-time experiments (with delays of seconds after neuronal activity manifested 
in the blood-oxygen-level-dependent signal); EEG experiments often require averaging over 
numerous repetitions in order to arrive at a result that is easily registered in a single trial in the 
direct readout of a neuron.
2.  Online experiments are still new and are in many ways an uncharted territory for scientists. 
This is especially true for human electrophysiology ones. Thus there is ample room to develop 
and refine new methods.
3.  Online experiments are typically more engaging for the patients. Given the unique nature  
of access that the patients have to their own brain, our experience suggests that they are  
often more likely to find these engaging and try harder and with more enthusiasm to explore the 
level of access they get to their brain. Real-time experiments tend to be more satisfying for the 
patients.
4.  Online experiments allow us to address questions that are at the heart of the most exciting 
inquiries in neuroscience, such as the nature of free will.
5.  Finally, real-time experiments give us access to internal processes in a way that is not simply 
the equivalent of an offline experiment, just done online, but is actually a practice that provides 
us with the ability to interact with neurons in a way that circumvents some of the internal network 
flow. By taking the output of one neuron and effectively using it as the input to a new system, 
we actually, in a simplified way, create connections in the brain that otherwise do not exist. For 
example, by taking the output of memory cells in the hippocampus and giving the patient direct 
access to these neurons (as done in Cerf et al., 2010), the network doesn’t just get an additional 
source of information to interact with but effectively simulates a set of connections from the 
memory to the visual system, such that input from one feeds into the other. This is something 
that is not in the original connectivity map but is rather a set of connections that we the experi-
menters created effectively. Controlling and wisely choosing which two systems to connect can 
actually allow us to study interactions that otherwise cannot be tested.

Software

On the website (www.humansingleunit.org) we provide open source software as well as links 
for many of the algorithms and methodology presented in this chapter. In particular, we include:

•  A comprehensive open-source closed-loop framework called StimOMatic (Rutishauser et al., 
2013). It offers a flexible software framework that provides a plug-in architecture to facili
tate development of closed-loop experiments. All components discussed in this section are  
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implemented (stimulus display, real-time analysis, continuous and spike-data analysis), and data 
is processed in parallel on many CPUs/cores in parallel. New functionality can be added by 
implementing new plug-ins specific to the experiment. These plug-ins are small and self- 
contained, enabling experimenters to focus on the task at hand. In addition, we provide careful 
evaluation of the latencies and bottlenecks of the different system components.
•  Documented object-oriented event-based code used for the experiments in Cerf et al. (2010).
•  A list of links to several freely available algorithms for machine learning and decoding 
analyses.
•  A simulator which allows for setting up of multiple neurons (up to 512 channels at near real 
time (see note 3).

Notes

1.  In some cases, investigators assume that averaging over trials is equivalent to averaging over multiple independent 
neurons (Parker, A. J., and Newsome, W. T. (1998), “Sense and the single neuron: Probing the physiology of perception,” 
Annual Review of Neuroscience, 21, 227–277). The extent to which this approximation holds depends on multiple 
assumptions and remains a topic of debate in the field.

2.  The boundary in figure 6.5 was computed using MATLAB’s classify function. A list of links to several freely avail-
able algorithms can be found in http://tinyurl.com/klabdecoding.

3.  We provide one such simulator on the website www.humansingleunit.org which allows for setting up of multiple 
neurons (up to 512 channels at near real time), each with its own baseline firing rate, preferred stimulus firing rate, 
duration, and latency) and the ability to generate single/multiunits per channel. The control of the virtual appearance of 
the preferred stimulus is governed by external events that can be sent, via TCP/IP, serial port, or direct command, to the 
listening process, which will alter the particular preferring neurons’ firing rate.
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