Supplementary Figure 1

Supplementary Figure 1. Pseudocode outlining of the computational algorithm. Pseudocode outlining the main steps of our procedure for detecting unannotated translation products. Steps 1

and 5 rely on published search tools such as Mascot or Sequest, as well as step 7. Steps 2 and 4 are straightforward. The source-code for our transcript-calling algorithm is available at klab.tch.harvard.edu. We are currently in the process of developing a streamlined software tool which will enable users to search for novel translation products from RNA-seq and MS data-sets.

Supplementary Figure 2

Steen

A

sp|Q8BXK8|AGAP1_MOUSE (100%), 94,412.1 Da Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 OS=Mus musculus GN=Agap1 PE=2 SV=1 9 unique peptides, 10 unique spectra, 23 total spectra, 143/857 amino acids (17% coverage)

MNYQQQLANS	AAIRAEIQRE	ESVHPNIYSI	YELLER VEEP	VLQNQIREHV	IAIEDAFVNS
QEWTLSRSVP	ELKVGIVGNL	ASGKSALVHR	YLTGTYVQEE	SPEGGR FKKE	IVVDGQSYLL
LIRDEGGPPE	AQFAMWVDAV	FVFSLEDEI	SFQTVYHYYS	RMANYRNTSE	IPLVLVGTQD
AISSTNPRVI	DDVRARKLSN	DLKRCTYYET	CATYGLNVER	V F Q D V A Q K I V	ATRKKQQLSI
GPCKSLPNSP	SHSSVCSAQV	SAVHISQTSN	GGGSLSDYSS	SVPSTPSTSQ	KELRIDVPPT
ANTPTPVRKQ	SKRRSNLFTS	RKGSDPDKEK	KGLESRADSI	GSGRAIPIKQ	GMLLKRSGKS
LNKEWKKKYV	TLCDNGVLTY	HPSLHDYMQN	VHGK EIDLLR	TTVKVPGKRP	PRATSACAPI
SSPKTNGLAK	DMSSLHISPN	SGNVTSASGS	QMASGISLVS	FNSRPDGMHQ	RSYSVSSADQ
WSDATVIANS	AISSDTGLGD	SVCSSPSISS	STSPKLDPPP	SPHANRKKHR	RKKSTSNFKA
DGLSGTAEEQ	EENLEFIIVS	LTGQTWHFEA	TTYEERDAWV	QAIESQILAS	LQSCESSKNK
SRLTSQSEAM	ALQSIR NMRG	NSHCVDCDTQ	NPNWASLNLG	ALMCIECSGI	HRNLGTHLSR
VRSLDLDDWP	MELIKVMSSI	GNELANSVWE	EGSQGRTKPS	LDSTREEKER	WIRAKYEQKL
FLAPLPCTEF	SLGQQLLRAT	AEEDLRTVIL	LLAHGSRDEV	NETCGEGDGR	TALHLACRKG
NVVLAQLLIW	Y G V D V M A R D A	HGNTALAYAR	QASSQECIDV	LLQYGCPDER	FVLMATPNLS
RKSNSRNNSS	GRAPSVI				
	re-state kologi torigi 18				
		11			

RAPADTHSSSAESIEGSPR

AAAAGPGAASEHR

Fragmentation Table

В	B lons	B+2H	B-NH3	B-H2O	AA	Y lons	Y+2H	Y-NH3	Y-H2O	Y
1	329.24				V+229	1,472.92	736.96	1,455.89	1,454.91	11
2	386.26				G	1,144.69	572.85	1,127.66	1,126.68	10
3	499.34				1	1,087.67	544.34	1,070.64	1,069.66	9
4	598.41				v	974.58	487.8	957.56	956.57	8
5	655.43				G	875.51	438.26	858.49	857.5	7
6	769.48	385.24	752.45		N	818.49	409.75	801.47	800.48	6
7	882.56	441.78	865.53		L	704.45		687.42	686.44	5
8	953.6	477.3	936.57		Α	591.37		574.34	573.36	4
9	1,040.63	520.82	1,023.60	1,022.62	s	520.33		503.3	502.32	3
10	1,097.65	549.33	1,080.63	1,079.64	G	433.3		416.27		2
11	1,472.92	736.96	1,455.89	1,454.91	K+229	376.28		359.25		1

AAAAGPGAASEHR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	301.21	151.11	A+229	1,394.73	697.87	13
2	372.24	186.63	Α	1,094.53	547.77	12
3	443.28	222.14	Α	1,023.50	512.25	11
4	514.32	257.66	Α	952.46	476.73	10
5	571.34	286.17	G	881.42	441.21	9
6	668.39	334.7	Р	824.4	412.7	8
7	725.41	363.21	G	727.35	364.18	7
8	796.45	398.73	Α	670.33	335.67	6
9	867.49	434.25	Α	599.29	300.15	5
10	954.52	477.76	S	528.25	264.63	4
11	1,083.56	542.29	E	441.22	221.11	3
12	1,220.62	610.81	н	312.18	156.59	2
13	1,394.73	697.87	R	175.12	88.06	1

Supplementary Figure 2. Known and novel peptides mapping to Centg2 (Agap1) (A) Amino acid sequence for Centg2 (Agap1), canonical peptides that were detected covering the amino acid sequence (17%) are highlighted in yellow. The protein sequence is formatted into 10 residue blocks for readability and the location of the gap is a coincidence. The red dash indicated with double arrows show the novel exon region where the two novel peptides are identified. A canonical peptide's (VGIVGNLASGK) spectrum along with its fragmentation pattern is shown. (B) Validation of one of the novel peptides (AAAAGPGAASEHR) by comparing with its synthetic peptide. The matched m/z ions of the identified peptide (top) and the synthetic peptide (bottom) are shown. Spearman ranked correlation test indicates a good correlation (ρ value 0.96) with a significant p-value (1.2 e⁻²²) between the matched ions identified in the two spectra. The fragmentation table shows common ions (green), those which are observed in identified novel peptide (blue) and those which are detected in the synthetic spectra (pink). (C) Screenshot from the UCSC genome browser of the Centg2 (Agap1) locus for mouse where two novel peptides were identified overlapping the first intron.

5

AADIQGASLGPRK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	301.21	151.11	A+229	1,742.03	871.52	13
2	372.24	186.63	Α	1,441.83	721.42	12
3	487.27	244.14	D	1,370.80	685.9	11
4	600.36	300.68	I	1,255.77	628.39	10
5	728.41	364.71	Q	1,142.68	571.85	9
6	785.44	393.22	G	1,014.63	507.82	8
7	856.47	428.74	Α	957.6	479.31	7
8	943.5	472.26	S	886.57	443.79	6
9	1,056.59	528.8	L	799.54	400.27	5
10	1,113.61	557.31	G	686.45	343.73	4
11	1,210.66	605.84	Р	629.43	315.22	3
12	1,366.76	683.89	R	532.38	266.69	2
13	1,742.03	871.52	K+229	376.28	188.64	1

AAEDEEVPAFFK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	301.21	151.11	A+229	1,810.96	905.99	12
2	372.24	186.63	Α	1,510.76	755.89	11
3	501.29	251.15	E	1,439.73	720.37	10
4	616.31	308.66	D	1,310.68	655.85	9
5	745.36	373.18	E	1,195.66	598.33	8
6	874.4	437.7	E	1,066.61	533.81	7
7	973.47	487.24	V	937.57	469.29	6
8	1,070.52	535.76	Р	838.5	419.75	5
9	1,141.56	571.28	Α	741.45	371.23	4
10	1,288.63	644.82	F	670.41	335.71	3
11	1,435.69	718.35	F	523.34	262.18	2
12	1,810.96	905.99	K+229	376.28	188.64	1

ASGAPSGSATAPAER

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	301.21		A+229	1,558.80	779.9	15
2	388.24		S	1,258.60	629.8	14
3	445.26		G	1,171.57	586.29	13
4	516.3		Α	1,114.55	557.78	12
5	613.35		Р	1,043.51	522.26	11
6	700.38	350.69	S	946.46	473.73	10
7	757.4	379.21	G	859.43	430.22	9
8	844.44	422.72	S	802.41	401.71	8
9	915.47	458.24	Α	715.37	358.19	7
10	1,016.52	508.76	т	644.34	322.67	6
11	1,087.56	544.28	Α	543.29		5
12	1,184.61	592.81	Р	472.25		4
13	1,255.65	628.33	Α	375.2		3
14	1,384.69	692.85	Е	304.16		2
15	1,558.80	779.9	R	175.12		1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	301.21	151.1	A+229	1,334.67	667.84	11
2	388.24	194.62	S	1,034.47	517.74	10
3	445.26	223.13	G	947.44	474.23	9
4	574.3	287.65	E	890.42	445.71	8
5	671.36	336.18	Р	761.38	381.19	7
6	758.39	379.7	S	664.33	332.67	6
7	857.46	429.23	V	577.29	289.15	5
8	986.5	493.75	E	478.23	239.61	4
9	1,073.53	537.27	S	349.18	175.09	3
10	1,160.56	580.79	S	262.15	131.57	2
11	1,334.67	667.84	R	175.12	88.06	1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	345.2		D+229	930.56	465.78	7
2	416.23		Α	586.37	293.69	6
3	515.3		V	515.33		5
4	586.34		Α	416.26		4
5	643.36		G	345.22		3
6	756.45	378.73	I	288.2		2
7	930.56	465.78	R	175.12		1

DDVLGLR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	345.2		D+229	1,016.59	508.8	7
2	460.22		D	672.4	336.71	6
3	559.29		V	557.38		5
4	672.38		L	458.31		4
5	729.4		G	345.22		3
6	842.48	421.74	L	288.2		2
7	1,016.59	508.8	R	175.12		1

DKPANVQPYYLYGSK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	345.2	173.1	D+229	2,430.36	1,215.69	15
2	702.46	351.73	K+229	2,086.17	1,043.59	14
3	799.51	400.26	Р	1,728.92	864.96	13
4	870.55	435.78	Α	1,631.86	816.44	12
5	984.59	492.8	Ν	1,560.83	780.92	11
6	1,083.66	542.33	V	1,446.78	723.9	10
7	1,211.71	606.36	Q	1,347.71	674.36	9
8	1,308.77	654.89	Р	1,219.66	610.33	8
9	1,471.83	736.42	Y	1,122.60	561.81	7
10	1,634.89	817.95	Y	959.54	480.27	6
11	1,747.98	874.49	L	796.48	398.74	5
12	1,911.04	956.02	Y	683.39	342.2	4
13	1,968.06	984.54	G	520.33	260.67	3
14	2,055.10	1,028.05	S	463.31	232.16	2
15	2,430.36	1,215.69	K+229	376.28	188.64	1

DVAHLGPDPHR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	345.2	173.1	D+229	1,442.77	721.89	11
2	444.27	222.64	V	1,098.58	549.79	10
3	515.3	258.15	Α	999.51	500.26	9
4	652.36	326.68	н	928.47	464.74	8
5	765.45	383.23	L	791.42	396.21	7
6	822.47	411.74	G	678.33	339.67	6
7	919.52	460.26	Р	621.31	311.16	5
8	1,034.55	517.78	D	524.26	262.63	4
9	1,131.60	566.3	Р	409.23	205.12	3
10	1,268.66	634.83	н	312.18	156.59	2
11	1,442.77	721.89	R	175.12	88.06	1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	359.21		E+229	975.53	488.27	6
2	488.26		E	617.33		5
3	587.32		V	488.28		4
4	686.39		V	389.21		3
5	801.42		D	290.15		2
6	975.53	488.27	R	175.12		1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	377.24		F+229	1,169.56	585.29	8
2	464.27		S	793.33	397.17	7
3	579.3		D	706.3	353.65	6
4	708.34		E	591.27		5
5	823.37		D	462.23		4
6	894.4	447.71	Α	347.2		3
7	995.45	498.23	т	276.17		2
8	1,169.56	585.29	R	175.12		1

FTQAQLDSGLVLFSHR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	377.24	189.12	F+229	2,048.11	1,024.56	16
2	478.29	239.65	Т	1,671.88	836.44	15
3	606.34	303.68	Q	1,570.83	785.92	14
4	677.38	339.19	Α	1,442.78	721.89	13
5	805.44	403.22	Q	1,371.74	686.37	12
6	918.52	459.77	L	1,243.68	622.34	11
7	1,033.55	517.28	D	1,130.60	565.8	10
8	1,120.58	560.8	S	1,015.57	508.29	9
9	1,177.61	589.31	G	928.54	464.77	8
10	1,290.69	645.85	L	871.51	436.26	7
11	1,389.76	695.38	V	758.43	379.72	6
12	1,502.84	751.92	L	659.36	330.18	5
13	1,649.91	825.46	F	546.28	273.64	4
14	1,736.94	868.97	S	399.21	200.11	3
15	1,874.00	937.5	Н	312.18	156.59	2
16	2,048.11	1,024.56	R	175.12	88.06	1

GAELVDSVLDVVR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	287.19	144.1	G+229	1,600.91	800.96	13
2	358.23	179.62	Α	1,314.73	657.87	12
3	487.27	244.14	E	1,243.69	622.35	11
4	600.36	300.68	L	1,114.65	557.83	10
5	699.42	350.22	V	1,001.56	501.28	9
6	814.45	407.73	D	902.49	451.75	8
7	901.48	451.25	S	787.47	394.24	7
8	1,000.55	500.78	V	700.44	350.72	6
9	1,113.64	557.32	L	601.37	301.19	5
10	1,228.66	614.83	D	488.28	244.65	4
11	1,327.73	664.37	V	373.26	187.13	3
12	1,426.80	713.9	V	274.19	137.6	2
13	1,600.91	800.96	R	175.12	88.06	1

GFLAGYVVAK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	287.19		G+229	1,482.91	741.96	10
2	434.26		F	1,196.72	598.87	9
3	547.34		L	1,049.66	525.33	8
4	618.38		Α	936.57	468.79	7
5	675.4		G	865.53	433.27	6
6	838.47	419.74	Y	808.51		5
7	937.53	469.27	V	645.45		4
8	1,036.60	518.81	V	546.38		3
9	1,107.64	554.32	Α	447.31		2
10	1,482.91	741.96	K+229	376.28		1

GVMVGMGQK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	287.19		G+229	1,364.78	682.89	9
2	386.26		V	1,078.60	539.8	8
3	517.3		Μ	979.53	490.27	7
4	616.37		V	848.49	424.75	6
5	673.39		G	749.42		5
6	804.43	402.72	М	692.4		4
7	861.45	431.23	G	561.36		3
8	989.51	495.26	Q	504.33		2
9	1,364.78	682.89	K+229	376.28		1

HGDPGDAAQQEAK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	367.23	184.12	H+229	1,781.92	891.46	13
2	424.25	212.63	G	1,415.70	708.35	12
3	539.28	270.14	D	1,358.68	679.84	11
4	636.33	318.67	Р	1,243.65	622.33	10
5	693.35	347.18	G	1,146.60	573.8	9
6	808.38	404.69	D	1,089.57	545.29	8
7	879.42	440.21	Α	974.55	487.78	7
8	950.45	475.73	Α	903.51	452.26	6
9	1,078.51	539.76	Q	832.47	416.74	5
10	1,206.57	603.79	Q	704.41	352.71	4
11	1,335.61	668.31	E	576.36	288.68	3
12	1,406.65	703.83	Α	447.31	224.16	2
13	1,781.92	891.46	K+229	376.28	188.64	1

IAKPLSSLTPLIAAAK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25	172.13	I+229	2,281.48	1,141.25	16
2	414.29	207.65	Α	1,939.24	970.12	15
3	771.55	386.28	K+229	1,868.20	934.6	14
4	868.6	434.8	Р	1,510.94	755.97	13
5	981.69	491.35	L	1,413.89	707.45	12
6	1,068.72	534.86	S	1,300.80	650.91	11
7	1,155.75	578.38	S	1,213.77	607.39	10
8	1,268.83	634.92	L	1,126.74	563.87	9
9	1,369.88	685.44	Т	1,013.66	507.33	8
10	1,466.93	733.97	Р	912.61	456.81	7
11	1,580.02	790.51	L	815.56	408.28	6
12	1,693.10	847.06	I	702.47	351.74	5
13	1,764.14	882.57	Α	589.39	295.2	4
14	1,835.18	918.09	Α	518.35	259.68	3
15	1,906.21	953.61	Α	447.31	224.16	2
16	2,281.48	1,141.25	K+229	376.28	188.64	1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25	172.13	I+229	2,175.25	1,088.13	15
2	456.34	228.67	L	1,833.01	917.01	14
3	571.37	286.19	D	1,719.92	860.46	13
4	686.39	343.7	D	1,604.89	802.95	12
5	801.42	401.21	D	1,489.87	745.44	11
6	902.47	451.74	Т	1,374.84	687.92	10
7	1,015.55	508.28	I	1,273.79	637.4	9
8	1,128.64	564.82	I	1,160.71	580.86	8
9	1,229.68	615.35	Т	1,047.62	524.32	7
10	1,330.73	665.87	Т	946.58	473.79	6
11	1,443.81	722.41	L	845.53	423.27	5
12	1,572.86	786.93	Е	732.45	366.73	4
13	1,686.90	843.95	Ν	603.4	302.21	3
14	1,799.98	900.5	L	489.36	245.18	2
15	2,175.25	1,088.13	K+229	376.28	188.64	1

ILDDDTIITTLENLKR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25	172.13	l+229	2,331.35	1,166.18	16
2	456.34	228.67	L	1,989.11	995.06	15
3	571.37	286.19	D	1,876.02	938.52	14
4	686.39	343.7	D	1,761.00	881	13
5	801.42	401.21	D	1,645.97	823.49	12
6	902.47	451.74	Т	1,530.94	765.97	11
7	1,015.55	508.28	I	1,429.89	715.45	10
8	1,128.64	564.82	I	1,316.81	658.91	9
9	1,229.68	615.35	Т	1,203.73	602.37	8
10	1,330.73	665.87	Т	1,102.68	551.84	7
11	1,443.81	722.41	L	1,001.63	501.32	6
12	1,572.86	786.93	Е	888.55	444.78	5
13	1,686.90	843.95	Ν	759.5	380.26	4
14	1,799.98	900.5	L	645.46	323.23	3
15	2,157.24	1,079.12	K+229	532.38	266.69	2
16	2,331.35	1,166.18	R	175.12	88.06	1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25		L+229	1,442.93	721.97	9
2	414.29		Α	1,100.69	550.85	8
3	542.35		Q	1,029.65	515.33	7
4	641.42		V	901.59	451.3	6
5	712.46		Α	802.52		5
6	825.54	413.27	L	731.49		4
7	954.58	477.79	E	618.4		3
8	1,067.67	534.34	L	489.36		2
9	1,442.93	721.97	K+229	376.28		1

LFLSPAIQGLLLPAR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25	172.13	L+229	1,838.15	919.58	15
2	490.32	245.66	F	1,495.90	748.45	14
3	603.41	302.21	L	1,348.83	674.92	13
4	690.44	345.72	S	1,235.75	618.38	12
5	787.49	394.25	Р	1,148.72	574.86	11
6	858.53	429.77	Α	1,051.66	526.33	10
7	971.61	486.31	I	980.63	490.82	9
8	1,099.67	550.34	Q	867.54	434.27	8
9	1,156.69	578.85	G	739.48	370.24	7
10	1,269.78	635.39	L	682.46	341.73	6
11	1,382.86	691.93	L	569.38	285.19	5
12	1,495.95	748.48	L	456.29	228.65	4
13	1,593.00	797	Р	343.21	172.11	3
14	1,664.04	832.52	Α	246.16	123.58	2
15	1,838.15	919.58	R	175.12	88.06	1

LGDAPR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25		L+229	857.5	429.26	6
2	400.28		G	515.26		5
3	515.3		D	458.24		4
4	586.34		А	343.21		3
5	683.39		Р	272.17		2
6	857.5	429.26	R	175.12		1

LLAALLHNPQLVER

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25	172.13	L+229	1,816.10	908.55	14
2	456.34	228.67	L	1,473.85	737.43	13
3	527.38	264.19	Α	1,360.77	680.89	12
4	598.41	299.71	Α	1,289.73	645.37	11
5	711.5	356.25	L	1,218.70	609.85	10
6	824.58	412.79	L	1,105.61	553.31	9
7	961.64	481.32	н	992.53	496.77	8
8	1,075.68	538.34	Ν	855.47	428.24	7
9	1,172.74	586.87	Р	741.43	371.22	6
10	1,300.79	650.9	Q	644.37	322.69	5
11	1,413.88	707.44	L	516.31	258.66	4
12	1,512.95	756.98	V	403.23	202.12	3
13	1,641.99	821.5	E	304.16	152.58	2
14	1,816.10	908.55	R	175.12	88.06	1

LLSIPLAR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25		L+229	1,111.74	556.37	8
2	456.34		L	769.49	385.25	7
3	543.37		S	656.41	328.71	6
4	656.45		L	569.38		5
5	769.54		I	456.29		4
6	866.59	433.8	Р	343.21		3
7	937.63	469.32	Α	246.16		2
8	1,111.74	556.37	R	175.12		1

MDSFDEDLAR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	361.21		M+229	1,427.67	714.34	10
2	476.24		D	1,067.46	534.24	9
3	563.27		S	952.44	476.72	8
4	710.34		F	865.41	433.21	7
5	825.37		D	718.34	359.67	6
6	954.41	477.71	E	603.31	302.15	5
7	1,069.43	535.22	D	474.27	237.63	4
8	1,182.52	591.76	L	359.24	180.12	3
9	1,253.56	627.28	Α	246.16		2
10	1,427.67	714.34	R	175.12		1

MFQYDSTHGK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	361.21		M+229	1,671.86	836.43	10
2	508.28		F	1,311.65	656.33	9
3	636.34		Q	1,164.58	582.8	8
4	799.4		Y	1,036.53	518.77	7
5	914.43		D	873.46	437.24	6
6	1,001.46	501.23	S	758.44	379.72	5
7	1,102.51	551.76	т	671.4	336.21	4
8	1,239.57	620.29	Н	570.36	285.68	3
9	1,296.59	648.8	G	433.3		2
10	1,671.86	836.43	K+229	376.28		1

NAFLSSSALDK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	344.21		N+229	1,610.92	805.96	11
2	415.25		Α	1,267.71	634.36	10
3	562.32		F	1,196.67	598.84	9
4	675.4		L	1,049.60	525.31	8
5	762.43		S	936.52	468.76	7
6	849.47	425.24	S	849.49	425.25	6
7	936.5	468.75	S	762.46		5
8	1,007.54	504.27	Α	675.42		4
9	1,120.62	560.81	L	604.39		3
10	1,235.65	618.33	D	491.3		2
11	1,610.92	805.96	K+229	376.28		1

NALQELQQIIITPIK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	344.21	172.61	N+229	2,180.34	1,090.67	15
2	415.25	208.13	Α	1,837.14	919.07	14
3	528.33	264.67	L	1,766.10	883.55	13
4	656.39	328.7	Q	1,653.02	827.01	12
5	785.44	393.22	Е	1,524.96	762.98	11
6	898.52	449.76	L	1,395.91	698.46	10
7	1,026.58	513.79	Q	1,282.83	641.92	9
8	1,154.64	577.82	Q	1,154.77	577.89	8
9	1,267.72	634.36	I	1,026.71	513.86	7
10	1,380.80	690.91	I	913.63	457.32	6
11	1,493.89	747.45	I	800.54	400.78	5
12	1,594.94	797.97	Т	687.46	344.23	4
13	1,691.99	846.5	Р	586.41	293.71	3
14	1,805.07	903.04	I	489.36	245.18	2
15	2,180.34	1,090.67	K+229	376.28	188.64	1

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	341.2		Q+212	1,194.70	597.86	8
2	454.29		I	854.51	427.76	7
3	567.37		I	741.43	371.22	6
4	696.41		E	628.34		5
5	809.5		I	499.3		4
6	923.54	462.27	Ν	386.21		3
7	1,020.59	510.8	Р	272.17		2
8	1,194.70	597.86	R	175.12		1

RASGEPSVESSR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	386.27	193.64	R+229	1,490.78	745.89	12
2	457.31	229.16	Α	1,105.51	553.26	11
3	544.34	272.67	S	1,034.47	517.74	10
4	601.36	301.18	G	947.44	474.23	9
5	730.4	365.71	E	890.42	445.71	8
6	827.46	414.23	Р	761.38	381.19	7
7	914.49	457.75	S	664.33	332.67	6
8	1,013.56	507.28	V	577.29	289.15	5
9	1,142.60	571.8	E	478.23	239.62	4
10	1,229.63	615.32	S	349.18	175.1	3
11	1,316.66	658.84	S	262.15	131.58	2
12	1,490.78	745.89	R	175.12	88.06	1

RQQLQELR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	386.27	193.64	R+229	1,299.77	650.39	8
2	514.33	257.67	Q	914.51	457.76	7
3	642.39	321.7	Q	786.45	393.73	6
4	755.47	378.24	L	658.39		5
5	883.53	442.27	Q	545.3		4
6	1,012.57	506.79	E	417.25		3
7	1,125.66	563.33	L	288.2		2
8	1,299.77	650.39	R	175.12		1

SAPADGADLSAHLWAR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	317.2	159.1	S+229	1,866.97	933.99	16
2	388.24	194.62	Α	1,550.77	775.89	15
3	485.29	243.15	Р	1,479.73	740.37	14
4	556.33	278.67	Α	1,382.68	691.84	13
5	671.36	336.18	D	1,311.64	656.33	12
6	728.38	364.69	G	1,196.62	598.81	11
7	799.41	400.21	Α	1,139.60	570.3	10
8	914.44	457.72	D	1,068.56	534.78	9
9	1,027.53	514.27	L	953.53	477.27	8
10	1,114.56	557.78	S	840.45	420.73	7
11	1,185.59	593.3	Α	753.42	377.21	6
12	1,322.65	661.83	н	682.38	341.69	5
13	1,435.74	718.37	L	545.32	273.16	4
14	1,621.82	811.41	W	432.24	216.62	3
15	1,692.85	846.93	Α	246.16	123.58	2
16	1,866.97	933.99	R	175.12	88.06	1

SLFSSPASLAFPYSPVAR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	317.2	159.1	S+229	2,126.15	1,063.58	18
2	430.29	215.65	L	1,809.95	905.48	17
3	577.35	289.18	F	1,696.87	848.94	16
4	664.39	332.7	S	1,549.80	775.4	15
5	751.42	376.21	S	1,462.77	731.89	14
6	848.47	424.74	Р	1,375.74	688.37	13
7	919.51	460.26	Α	1,278.68	639.85	12
8	1,006.54	503.77	S	1,207.65	604.33	11
9	1,119.62	560.32	L	1,120.61	560.81	10
10	1,190.66	595.83	Α	1,007.53	504.27	9
11	1,337.73	669.37	F	936.49	468.75	8
12	1,434.78	717.9	Р	789.43	395.22	7
13	1,597.85	799.43	Y	692.37	346.69	6
14	1,684.88	842.94	S	529.31	265.16	5
15	1,781.93	891.47	Р	442.28	221.64	4
16	1,881.00	941	V	345.22	173.12	3
17	1,952.04	976.52	Α	246.16	123.58	2
18	2,126.15	1,063.58	R	175.12	88.06	1

SRVGLAEAER

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	317.2		S+229	1,316.75	658.88	10
2	473.3	237.16	R	1,000.55	500.78	9
3	572.37	286.69	V	844.45	422.73	8
4	629.39	315.2	G	745.38	373.2	7
5	742.48	371.74	L	688.36	344.68	6
6	813.51	407.26	Α	575.28		5
7	942.56	471.78	E	504.24		4
8	1,013.59	507.3	Α	375.2		3
9	1,142.64	571.82	E	304.16		2
10	1,316.75	658.88	R	175.12		1

TELADGR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	331.22		T+229	990.54	495.77	7
2	460.26		E	660.33	330.67	6
3	573.34		L	531.29		5
4	644.38		Α	418.2		4
5	759.41		D	347.17		3
6	816.43	408.72	G	232.14		2
7	990.54	495.77	R	175.12		1

TFSVMPSPK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	331.22		T+229	1,451.83	726.42	9
2	478.29		F	1,121.62	561.32	8
3	565.32		S	974.55	487.78	7
4	664.39		V	887.52	444.26	6
5	795.43		М	788.45		5
6	892.48	446.74	Р	657.41		4
7	979.51	490.26	S	560.36		3
8	1,076.56	538.79	Р	473.33		2
9	1,451.83	726.42	K+229	376.28		1

TIDFDSLSVGR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	331.22		T+229	1,438.77	719.89	11
2	444.3		I	1,108.56	554.79	10
3	559.33		D	995.48	498.24	9
4	706.4		F	880.45	440.73	8
5	821.42		D	733.38	367.2	7
6	908.46	454.73	S	618.36	309.68	6
7	1,021.54	511.27	L	531.32		5
8	1,108.57	554.79	S	418.24		4
9	1,207.64	604.32	V	331.21		3
10	1,264.66	632.83	G	232.14		2
11	1,438.77	719.89	R	175.12		1

TSTVDLPIESQLLWQLDR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	331.22	166.11	T+229	2,343.28	1,172.14	18
2	418.25	209.63	S	2,013.07	1,007.04	17
3	519.3	260.15	Т	1,926.03	963.52	16
4	618.37	309.69	V	1,824.99	913	15
5	733.39	367.2	D	1,725.92	863.46	14
6	846.48	423.74	L	1,610.89	805.95	13
7	943.53	472.27	Р	1,497.81	749.41	12
8	1,056.61	528.81	I	1,400.75	700.88	11
9	1,185.66	593.33	E	1,287.67	644.34	10
10	1,272.69	636.85	S	1,158.63	579.82	9
11	1,400.75	700.88	Q	1,071.59	536.3	8
12	1,513.83	757.42	L	943.54	472.27	7
13	1,626.92	813.96	L	830.45	415.73	6
14	1,812.99	907	W	717.37	359.19	5
15	1,941.05	971.03	Q	531.29	266.15	4
16	2,054.14	1,027.57	L	403.23	202.12	3
17	2,169.16	1,085.09	D	290.15	145.58	2
18	2,343.28	1,172.14	R	175.12	88.06	1

VAVLQALASTVNR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	329.24	165.12	V+229	1,570.95	785.98	13
2	400.28	200.64	Α	1,242.72	621.86	12
3	499.34	250.18	V	1,171.68	586.34	11
4	612.43	306.72	L	1,072.61	536.81	10
5	740.49	370.75	Q	959.53	480.27	9
6	811.52	406.27	Α	831.47	416.24	8
7	924.61	462.81	L	760.43	380.72	7
8	995.65	498.33	Α	647.35	324.18	6
9	1,082.68	541.84	S	576.31	288.66	5
10	1,183.72	592.37	Т	489.28	245.14	4
11	1,282.79	641.9	V	388.23	194.62	3
12	1,396.84	698.92	Ν	289.16	145.08	2
13	1,570.95	785.98	R	175.12	88.06	1

VLLHLAK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	329.24	165.12	V+229	1,251.86	626.43	7
2	442.32	221.66	L	923.62	462.32	6
3	555.41	278.21	L	810.54	405.77	5
4	692.47	346.74	Н	697.46	349.23	4
5	805.55	403.28	L	560.4	280.7	3
6	876.59	438.8	Α	447.31	224.16	2
7	1,251.86	626.43	K+229	376.28	188.64	1

VSFELFADK

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	329.24		V+229	1,513.87	757.44	9
2	416.27		S	1,185.64	593.32	8
3	563.34		F	1,098.60	549.81	7
4	692.38		E	951.54	476.27	6
5	805.47		L	822.49		5
6	952.53	476.77	F	709.41		4
7	1,023.57	512.29	Α	562.34		3
8	1,138.60	569.8	D	491.3		2
9	1,513.87	757.44	K+229	376.28		1

WMADDLR

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	416.25		W+229	1,135.58	568.30	7
2	547.29		М	720.33	360.7	6
3	618.33		Α	589.29		5
4	733.35		D	518.26		4
5	848.38		D	403.23		3
6	961.47	481.24	L	288.2		2
7	1,135.58	568.29	R	175.12		1

Supplementary Figure 3. Validation of identified spectral matches using synthetic peptides.

Spectra of 41 identified novel peptides (top) were compared and statistically validated to synthetic peptides (bottom). All these peptides show a strong positive rank-ordered Spearman correlation coefficient with a significant p-value of less than 0.05. The fragmentation table indicates the y and b ion series for the peptides, ions depicted in green color indicate that they were identified in both the spectra, ions depicted in blue color were identified only in 'identified peptide spectra' and ions depicted in pink color were identified only in synthetic peptide spectra (see Methods). Including Figure 2E, Supplementary Figure 2B, Supplementary Figure 3, Supplementary Figure 5B and Supplementary Figure 7C, a total of 45 novel peptides were validated.

Supplementary Figure 4. A screenshot from the UCSC genome browser of the FARP1 locus from human with RNA-seq data from HeLa cells. Intron 13 (magnified) is similar to mouse with an elevated level of expression (Figure 2A). The top track in the bottom panel indicates stop codons (red) and start codons (green). The third frame has an amino acid sequence which is consistent with the longer exon.

Supplementary Figure 5

Steen

A

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25		L+229	2,087.26	1,044.14	14
2	442.32		V	1,745.02	873.01	13
3	555.41		I	1,645.95	823.48	12
4	670.43		D	1,532.86	766.94	11
5	727.46		G	1,417.84	709.42	10
6	1,084.71	542.86	K+229	1,360.82	680.91	9
7	1,181.77	591.39	Р	1,003.56	502.28	8
8	1,294.85	647.93	I	906.5	453.76	7
9	1,395.90	698.45	Т	793.42	397.21	6
10	1,508.98	754.99	I	692.37		5
11	1,656.05	828.53	F	579.29		4
12	1,784.11	892.56	Q	432.22		3
13	1,913.15	957.08	E	304.16		2
14	2,087.26	1,044.14	R	175.12		1

Overlapped Fragmentation Table

Supplementary Figure 5. Spectral validation data for a pseudogene (**A**) Screenshot showing two peptides from the pseudogene PGOMOU00000135506 on chromosome 11 (number 13 in Supplementary Figure 7B). The format and conventions are as in Figure 2A. (**B**) Experimental and synthetic spectra validation for the first peptide LVIDGKPITIFQER.

Supplementry Figure 6. Screenshot from the UCSC genome browser of the Flnb locus from mouse.

Steen

Α

В

1 Suvn (g1) - 1325 bp 2 Armc9 (g3) - 1396 bp 3 Grpbp10 (g4) - 1473 bp 4 Elmo2 (g4) - 1177 bp 5 E13006D01Rik (g5) - 1310 bp 6 Cacna23d (g4) - 1278 bp 7 Gprk5 (g4) - 1394 bp 8 Nars2 (g4) - 1394 bp 9 Cox17 (g4) - 1367 bp 10 Mlstd2 (g4) - 1243 bp 11 Fars2 (g4) - 1155 bp 12 St6galnac3 (g4) - 1295 bp 13 PGOMOU00000135506 (g2) - 1002 bp 14 PGOMOU00000135766 (g2) - 1008 bp

В	B lons	B+2H	AA	Y lons	Y+2H	Y
1	343.25		I+229	1,339.83	670.42	10
2	456.34		I	997.59	499.3	9
3	569.42		L	884.5	442.75	8
4	700.46		Μ	771.42	386.21	7
5	797.52		Р	640.38	320.69	6
6	884.55	442.78	S	543.32		5
7	997.63	499.32	L	456.29		4
8	1,094.68	547.85	Р	343.21		3
9	1,165.72	583.36	Α	246.16		2
10	1,339.83	670.42	R	175.12		1

Overlapped Fragmentation Table

Supplementary Figure 7. Validation of novel peptides in extragenic regions. (A) RNA integrity profile from bioanalyzer showing DNA-free, high quality and intact RNA. The shaded spectrum is hypothetical example for presence of genomic DNA shown as reference from bio analyzer. (B) RT-PCR for 14 different anti-sense loci (C) Validation of Identified and synthetic peptide spectra for the novel peptide overlapping the anti-sense region of Cox17 (IILMPSLPAR). The format and conventions are the same as in Figure 2E. The anti-sense peptide to Cox17 is located at position 38,351,276 on chromosome 16, overlapping but antisense to the second intron.

Supplementary Figure 8. Comparison of median intensities across TMT channels for peptides in the dataset. The box plots from median intensities values of log₂ intensities of all peptides among different TMT channels are represented. The data show that there is no quantitative bias in the labeling for each channel.

3

Supplementary Figure 9. Quantitative regulation of known proteins. Hierarchical clustering of the intensity temporal profiles for known proteins (3284). Each row represents one protein. The four columns indicate abundance at 1h, 2h, 3h and 6h post KCl stimulation. The colors represent up- or down-regulation with respect to the 0h time-point (see color map on left, arbitrary units). The clustering reveals several distinct regulatory patterns present both for known.

Supplementary Figure 10. Phylogenetic comparisons of novel peptides (**A**) Distribution of dN/dS ratios for peptides and controls. The controls were chosen either 1000, 1001 or 1002 bps downstream of the novel peptides. As a more strict control (Methods) the dN/dS ratio for the best of the three control frames for each peptide was used (dotted line). The dN/dS ratio is lower for the data compared to both the stringent control (p-value<0.01, KS-test) and the less stringent (p-value<0.0001, KS-test). (**B**) Fraction of peptides with dN/dS ratio<0.8 as a function of the number of species where the sequence was successfully mapped.

Supplementary Figure 11

Supplementary Figure 11. Full gel images of Figure 2C and Figure 2D

Supplementary Table 1

#peptide	no_copies chr	pos st	rand	RNA_1h	RNA_6h	1h	2h :	3h (6h	validated_IBLAST_search	Ribosomal	dNdS	overlapping_gene_	_r category
AAAAGPGAASEHR	1	1 91478037	1	-0.613	0.648	1.1	1.69	1.87	1.22	1 -		1 NaN	Centg2	Novel internal exon
AADIQGASLGPRK	1	7 1.48E+08	1	-0.309	1.85	-0.00896	0.475	-0.447	-0.211	0 -		0 1.08	Cox8b	Short alternative ORF
AAEDEEVPAFFK	10	14 67529554	C	-0.249	1.04	-0.14	0.188	0.0406	0.0717	1 -		0 NaN	-	Alternative 5' start
AAPPPICPSTALCPCLAR	1	2 33420519	C	-0.585	-0.644	-2.6	-0.399	-0.608	1.13	0 -		0 NaN	Lmx1b	Overlaps intron
AAVSIAEER	1	1 91567439	1	-0.613	0.648	0.463	0.971	1.16	0.312	0 -		0 0.667	Centg2	AS
ACQSMLNTGIIIFK	1	2 1.65E+08	0	-0.263	-1.42	0.385	0.379	-0.435	-0.122	0 -		0 2.6	Elmo2	Divergent
AGVIPASQNR	1 X	20939669	1	. 0.1/	2.79	-1.09	0.0414	-0.0426	-0.317	0 -		0 NaN	EG331392	Pseudogene (BLAST)
AILQALVK	1 X	84544638		0.3/1	0.76	0.713	0.292	0.654	0.902	0 -		0 NaN		AS Outplace interes
AILQGEEK	1	5 1.3/E+U8		0.38/ 0	-1.21	0.713	0.292	-0.19	0.902	0 -		0 NaN	Cuti1 Thed4	Overlaps intron
	5	7 1 215+09	1	0 0009	0.05	0.0745	0.105	0.13	0.0001	1 -		0 111	Mictel 2	Ac
ALLOALVK	1	7 1.04F+08	1	0.447	1.92	0.713	0.292	0.654	0.902	0 -		0 NaN	Nars2	AS
ALVIPK	1	2 32434758	1	-0.21	-1.65	0.0745	0.169	-0.19	0.0861	0 -		0 NaN	Pin5kl1	AS
ANLGGLWLL	1	18 64518528	1	-0.103	0.427	1.27	2.18	-0.459	0	0 -		0 1.83	Onecut2	AS
APEGSREGVR	1	9 1.21E+08	c	-0.737	0.678	0.898	1.1	0.184	-0.0301	0 -		0 NaN	Ulk4	Overlaps intron
APFRLCPLPVEK	1	5 67827299	1	1.58	3.37	0.25	0.335	-0.279	0.0821	0 -		0 2.5	EG666938	Putative ncRNA
ASGAPSGSATAPAER	2	2 25066765	C	-0.397	-1.25	-0.524	-0.261	0.979	1.19	0 -		1 NaN	A730008L03Rik	Alternative 5' start
ASGEPSVESSR	6	14 67529332	C	-0.249	1.04	0.293	0.64	0.312	0.0562	1 -		0 1.33	-	Alternative 5' start
ASSSILINEAEPTTDIQIR	1	5 49944247	C	-0.348	0.363	0.0874	-0.628	0	-0.208	0 ASSSILINEAEPTTNIQIR		0 0.329	EG433885	Pseudogene
ATWAVARR	1	10 70891149	1	. 0	0	-0.149	-0.32	0.545	0.957	0 -		0 NaN	-	AS
AVCLLSNTTAIAEAWAR	1	12 52234717	C	1.51	-1.57	0.655	-0.333	1.01	-0.298	1 -		0 0.429	-	Pseudogene (BLAST)
AYHEQLSVAEITNVCFEPTNQMVK	1	17 5111198	1	-0.559	0.0766	-0.744	-0.956	-0.317	-1.17	0 AYHEQLSVAEITNVCFEPANQMVK		1 0.239	Arid1b	Pseudogene
CDFPYLVLWVQFR	2	16 42107151	1	. 0	0	-0.0268	0.599	0.415	0.891	0 -		0 NaN	Lsamp	AS
CLLAAGRGLR	1	16 23133852	1	. 0.704	3.25	-0.268	1.66	1.42	-0.253	0 -		0 NaN		Putative ncRNA
CPFLLMRTLR	1	8 80130867	C	0 0	0	1.15	0.111	1.06	0.627	0 -		0 4	Tmem34	Overlaps intron
CPGNLFEGGR	2 X	1.03E+08		-0.113	-1./3	-0.131	-0.52	-0.21	-0.779	0 -		0 3	-	Short alternative ORF
CPIDCIRIER	1	14 66988529		0.322	0.263	0	0	0 200	0 700	0 -		0 1	-	Overlaps intron
DAVAGIR	1	3 32430580		0.417	-0.423	0.153	0.208	0.389	-0.706	0 -		1 NaN	NITT1	AS
DDIGLGAR	1	7 01104667		-0.2	0.045	0.951	0 991	0.462	0 290	0 -			002001212284	Overlans intron
DDOFCULCOR	1	1 37813851		.0551	-0 277	0.851	0.001	1 31	-0.0469	0 -		0 1175	Tsga10	Overlaps intron
DEDGLGLB	1	3 1 53F+08		0.585	0.29	0.567	0.633	-0 312	-0 343	0.		0 133	St6galnac3	Overlaps intron
DEDVAGIB	2	16 3969222	0	0.505	0.25	0.277	0.428	0.0619	0.192	0 -		0 NaN	NIrc3	Alternative 3' end
DELGALDOGR	1	4 1.02E+08		0	0	-1.35	-1.04	-0.142	-0.958	0 -		0 2.33	B020004107Bik	AS
DGIRPSNPOPPOPSTGPASR	1	14 1.22E+08	1	-0.466	0.93	-1.35	-1.49	-0.433	-0.663	0 -		1 NaN	Farp1	Overlaps intron
DKPANVQPYYLYGSK	2	11 46053502	C	-0.662	0.572	0.489	0.577	0.731	1.04	1 -		0 0.267	Cyfip2	UCSC (BLAST)
DLYLPLLLQRNILR	2	4 1.3E+08	1	-0.613	-1.7	0.237	-0.287	0.324	0.913	0 -		0 NaN	Sdc3	eRNA
DMCISSDTLGVSDR	1	3 1.58E+08	C	-0.268	1.75	0.914	0.421	1.32	1.51	0 -		0 NaN	-	Alternative 3' end
DQLVDAR	1	18 80860859	C	0.17	0.907	0.851	0.881	0.462	0.389	0 -		0 NaN	Nfatc1	AS
DVAHLGPDPHR	10	14 67529377	C	-0.249	1.04	0.249	0.514	0.789	0.516	1 -		0 0.783	-	Alternative 5' start
DVQQYILHR	5	3 38356427	C	-0.277	1.11	-0.126	0.991	1.03	0.396	0 -		0 0.235	-	Novel internal exon
EDSLLMQILR	1	14 87169352	C	-0.193	1	0.172	0.0369	0.378	0.901	0 -		0 NaN	Diap3	Overlaps intron
EDYYNPSR	1	4 28748296	1	-0.581	0.0765	-0.101	-0.068	0.791	-1.37	0 -		0 2	Epha7	AS
EEEMRDTNESTNTR	1	13 36082831	C	-0.628	-0.28	-0.302	-0.247	-0.373	-0.863	0 -		0 NaN	LOC100042773	Pseudogene (BLAST)
EIGGGGEIR	1	1 84400192	0	-0.272	-0.175	0.293	0.161	0.285	-0.035	0 -		0 1.58	Dner	AS
EMESRDEEVEEAR	1	11 77659932	1	-0.801	1.33	0.361	-0.153	0.716	0.454	0 -		0 NaN	Myo18a	UCSC (BLAST)
EQUICEFSFICER	1	6 64474513	1	0.348	0.837	-2.34	0.2/1	0.578	0	1 -			Gridz	Overlaps Intron
EQUIDATER	1	1 1.02E+08		0.757	.0.0995	-0.097	-0.489	-0.339	-0.885	0 -		0 1.07	4408296	AS Overlans intron
	1	5 1 19E+08	1	-0.525	1 14	1 42	0.405	2.06	2.5	0.		0 NaN	Hrk	Overlaps intron
ETVEECCILAR	1	5 1.49E+08	1	-0.415	0.322	0.531	0.3	-0.0249	0.781	0 -		0 NaN	C130038G02Rik	Overlaps intron
EVAGRSGGR	1 X	1.32E+08	1	-0.316	-0.521	0.293	0.161	0.285	-0.035	0 -		0 NaN	-	Alternative 3' end
EYEEDGSR	1	1 36756941	0	-0.376	0.524	-0.234	0.469	-0.156	0.265	0 -		0 0.474	Actr1b	UCSC
FEDEDFILK	3	5 92235820	c	0	0	0.242	0.195	0.6	0.686	0 -		1 1.67	-	Pseudogene
FLVIMALGMSRAR	4	8 1.09E+08	1	. 0	0.83	0.376	-0.88	-0.701	-0.137	0 -		0 NaN	Tmco7	AS
FQGPLDWLR	3	18 77462336	1	-0.538	0.756	-0.427	0.339	-0.295	-0.0871	0 -		0 3.12	St8sia5	Overlaps intron
FSDEDATR	1	3 55337524	1	-0.1	1.29	-0.64	-0.386	-0.384	-0.0634	0 -		0 2	Dclk1	UCSC
FSSHNSLLLSPR	1 X	70764755	1	-0.823	-0.796	0.391	0.99	0.353	1.47	0 -		0 2	Atp2b3	AS
FTQAQLDSGLVLFSHR	3	9 56740276	1	-0.807	-0.989	-0.724	0.337	-0.0432	0.547	1 -		0 0.651	Cspg4	UCSC (BLAST)
FWEVISDEHGIDPTGSYHGDSDLQLER	1	12 11889329	C	-0.971	0	1.65	1.65	2.16	1.6	0 -		0 NaN	-	Pseudogene (BLAST)
GAELVDSVLDVVR	5	13 63069659	1	-0.531	0.547	-0.202	-0.123	-0.439	-0.404	1 -		1 0.2	-	Pseudogene (BLAST)
GAHLVSSPAR	1	13 23875947	C	-0.585	-0.3	1.58	2.44	1.9	2	0 -		0 NaN	Trim38	Putative ncRNA
GASQUAVPLR	1	4 1.25E+08	1	-0.844	1.48	-0.872	0.46	1.09	1.45	U -		U NaN	Grik3	AS
GDASPAVLR	4	8 96458995	1	-0.31	0.662	-0.0327	-0.304	-0.17	-0.105	U -		U 0.7	Gnao1	eknA
GDSVVNLK	3	1/ /9010529	1	0.401	-0.521	-0.129	-0.0753	-0.0388	0.491	U -		U NaN	VIC	AS Dutative acDNA
GERGRAGGGR	5	5 1.12E+08	0	-0.585	-0.322	1.14	0.303	0.211	0.35	U -		U NaN 1.22	- Boro	Putative ncRNA
GGAMOGGLB	2	19 61104526	1	u.556 n	0.651	-0.268	-0.5/3	-1.1/	-0.35	0 -		0 1.33	Gork5	
	-	01104520		. 0	1.11	0.0401	0.02/2	0.101	0.2//	-			-p. 00	

GGDGLGSLTVGLFK	2	7 53669782	1	-0.936	1.5	0.684	0.596	0.563	0.9	0	I -	0 Naf	N	Kcnc1	AS
GGGCVSSALSILSK	1	5 99285415	1	0	0	-0.313	-0.064	-0.181	-0.406	0	-	0	1.93	Bmp3	Overlaps intron
GGGGGGGGGGGGGGGGGGGGGRER	1	9 28395874	1	-0.342	0.12	1.13	0.236	1.35	0.155	0	GGGGGGGGGGGGGGGGGGGGGGGGG	0 Naf	N	Opcml	AS
GGGGGGGGGGGGRGRGGSR	1	18 12042894	0	-0.485	0.441	0.915	0.983	0.658	0.824	0	1 -	0 Nal	N	Cables1	AS
GGHGGIR	4	11 43365085	1	-0.515	1	0.12	0.174	0.292	-0.156	0	1 -	0	1	Ccnjl	Overlaps intron
GIAILRR	2	2 1.7E+08	0	0	1.22	0.85	0.685	0.762	0.662	0	1 -	0 Nal	N		Putative ncRNA
GILTGSRR	1	4 1.49E+08	0	-1.46	0.0641	0.446	-0.297	0.453	0.649	0	1 -	0 Nal	N	Pik3cd	Overlaps intron
GISYVRR	1	3 1.04E+08	0	-1	1	0.244	0.0279	0.14	0.313	0	I -	0 Nal	N		Putative ncRNA
GLAIIRR	5	19 50306195	0	0	2.49	0.85	0.685	0.762	0.662	0	I -	0	0.842	Sorcs1	Overlaps intron
GLSYVRR	1	14 21587505	0	-0.279	-1.01	0.244	0.0279	0.14	0.313	0	-	1 Naf	N	Camk2g	Overlaps intron
GLTLILRR	1	7 20428525	0	-0.522	-1.28	0.137	0.623	0.269	1.69	0	I -	0	1.67	-	Putative ncRNA
GLTLLLRR	1	15 23362683	1	0.263	1.49	0.137	0.623	0.269	1.69	0	-	0 Nal	N		Overlaps intron
GMIEALLVR	1	2 22195185	1	0	1.36	0.321	-0.171	0.00606	-0.446	0	-	0 Nal	N		Overlaps intron
GPVTCLPR	1	14 78011663	1	-0.527	1.09	0.623	0.586	0.71	0.126	0	-	1	1.5	D230005D02Rik	Overlaps intron
GSGOVVAOOR	6	14 67529410	0	-0.249	1.04	0.134	0.104	0.458	0.243	1		0 Nat	N		Alternative 5' start
GSILASI STEOOMWISK	1	8 47315377	0	-0.365	-0.975	1.58	0	1.97	1.97	1		0	0.647	-	Pseudogene (BLAST)
GSLLSNWACVOLSPGR	1	3 1.33E+08	ō	-0.485	0	0.58	0.902	0.642	1.5	0	-	0 Nal	N	Nont	Overlaps intron
GSSDEEMPI	2	8 1.22F+08	1	-0.481	-0.667	-0.256	-0.221	-0.279	-0.439	0		0 Nat	N	Cdh13	AS
GTITDGDSNNORB	2	9 14412177	0	-0.737	1.35	0.045	0.0787	-0.05	0.242	0		0	0.889	Amot11	Overlans intron
GVIVRCR	1	3 1.53E+08	0	-0.585	0.29	0.735	0.488	1.11	1.26	0	-	- 0 Nat	N	St6galnac3	AS
GVIVECB	1	17 51925415	0	-0.48	-0.622	0.735	0.488	1 1 1	1.26	0		0 Nat	N	Sath1	Overlans intron
GVMVGMGOK	1	19 34326318	0	-0 379	0.692	0.148	0.293	0.61	1 26	0		0 Nal	N	Acta?	ursc
	1	10 12566226	0	0.575	1 /0	-0.949	0.200	-0.074	-1.04	0		1 Not		litro	Breudogene
	1	0 50709214	0	0.585	0.226	-0.040	0.300	0.467	-1.54	0		0 Not	N.	Sof1 k7	Overlans intron
HEDREDAAOOEAK	1	1 1 01E+08	0	0.075	0.515	0.264	-0.0576	0.407	-0.703	0		0 Nat	N.	100100042424	Broudogopo (BLAST)
	2	1 57420615	1	-0.485	1 1 2	0.204	1.06	1 5 3	0.05	0				1700066142424	LICEC (DLAST)
	1	1 57459015	0	0.120	-1.12	-0.507	-1.00	1.52	0.765	0			N 1 C	1700000ivi21Kik	AC (BLAST)
HSLEGKGURLLEUNFK	1	15 47903515	0	-0.219	0.34	-1.04	0.472	-0.63	-1	0	-	0	1.8	CSmd3	AS
HSSLIDDMFR	1	14 1.22E+08	1	-0.466	0.93	1.58	0.661	0.152	1.13	1	-	1	0.75	Farpi	Overlaps Intron
HIGPEILSMANAGPNINGSQFFICISK	2 X	21883037	0	0	0	-0.626	-0.599	0.968	0.299	0	HIGPGILSMANAGPNINGSQFFICIAK	0 Nai	4	-	Pseudogene
HIGPGILSMANAGENINGSQFFICIAK	1	2 83230557	1	0	0	-0.51	0.693	1.35	1.75	0	HIGPGILSMANAGPNINGSQFFICTAK	u Nai	4		Pseudogene
IAKPLSSLIPLIAAAK	5	7 1.05E+08	1	-0.461	-0.69	-0.456	-0.142	0.304	0.299	1	LAKPLSSLIPLILAAK	0	0.317	Ракі	UCSC (BLAST)
IEGDMIICAAYAHELPK	8	6 83551442	0	-0.415	-0.415	-0.0191	-0.227	0.16	-0.118	0	IEGDMIVCAAYAHELPK	0	0.163	-	Pseudogene
IGALSCPRRR	1	12 8/860099	1	0	0	0.1/4	0.226	0.0215	-0.0665	0	-	1 Nai	4	ESTED	Overlaps intron
IHFPIAT	3	7 1.07E+08	0	-0.366	1.21	0.412	0.646	0.853	0.877	0	-	0 Nal	4	-	AS
IIISLAPR	2	6 37869262	1	-0.444	-0.613	0.011	-0.438	-0.0165	-0.102	0	-	0 Nal	4	Trim24	Overlaps intron
IILMPSLPAR	18	16 38351276	1	0	0	-0.126	0.0985	0.43	0.354	1		0 Nal	4	Cox17	AS
ILAILDAV	1	1 1.54E+08	0	-0.344	-0.328	0	0.834	1.26	1.95	0	-	0 Nal	4	RgI1	Overlaps intron
ILDAGNGTIR	1	1 1.73E+08	1	0	0	-0.556	-0.207	0.147	-0.558	0	-	0 Nal	4	Pvrl4	Overlaps intron
ILDDDTIITTLENLK	13	12 1.12E+08	1	-0.313	3.27	0.478	0.184	0.737	0.352	1		0 Nal	4	Dync1h1	UCSC (BLAST)
ILDDDTIITTLENLKR	7	12 1.12E+08	1	-0.313	3.27	0.478	0.184	0.737	0.352	1		0 Nal	4	Dync1h1	UCSC (BLAST)
ILELDIEDLLLR	3	3 96586664	1	-0.167	-0.752	1.01	0.622	0.912	0.0753	1		0	1	Zfp364	Overlaps intron
ILISPLAR	1	1 1.65E+08	0	0.597	0.724	-0.0933	-0.379	-0.206	-0.0539	0	-	0 Nal	4	Bat2d	AS
ILLLSPAR	1 X	1.09E+08	0	0.447	1.54	-0.0933	-0.379	-0.206	-0.0539	0	-	0 Nal	4		Pseudogene
ILNNLNNILR	1	3 1.07E+08	0	-0.276	0.383	1.13	0.713	0.72	1.22	0	-	0 Nal	4		Putative ncRNA
ILSLLPAR	2	10 79093067	0	-0.485	-0.57	0.011	-0.438	-0.0165	-0.102	0	-	0 Nal	4	Shc2	Overlaps intron
ILSSPLTFQLLASLAPR	2	1 88138943	1	-0.4	0.505	0.63	-0.462	-1.25	-0.868	1		0 Nal	4	Armc9	Overlaps intron
ILVTLIH	4	13 49058457	0	-0.269	-0.788	0.708	0.837	1.11	-0.578	0	-	0	1.33	BC010304	Overlaps intron
IPGLLGEDLLCGSR	1	16 37956669	1	-0.138	0.541	-0.491	-0.183	-0.705	-0.779	0	I -	0 Nal	N	Gpr156	Overlaps intron
IQSLAEER	1	18 76314644	1	0	1	0.463	0.971	1.16	0.312	0	I -	0 Nal	N	-	Alternative 3' end
IQTMFEQLALVDHPNIVK	1	15 75921106	0	-0.915	-1.36	-0.41	-0.768	0.396	1.55	0	I -	1 Naf	N	-	Alternative 5' start
IRQGMPLILR	1	3 1.47E+08	1	-0.415	0.737	1.13	0.713	0.72	1.22	0	I -	0	1.33	Ttll7	Putative ncRNA
IVLLPQDFVIPN	6	1 1.49E+08	1	-0.255	0.376	0.102	-0.104	0.102	-0.0412	0	I -	0 Nal	N	B830045N13Rik	AS
IVVLGIR	2	17 73210269	1	-0.265	-1.27	0.318	0.238	-0.0108	0.134	0	I -	0 Nal	N	-	Alternative 3' end
KLLMMAGIEDCYTSAR	1	2 1.71E+08	0	0	0	0.582	-0.191	0.912	0.249	0	KLLMMAGIDDCYTSAR	0	0.528	-	Pseudogene
KPPPPASPGSSDSSAR	2	8 73438387	1	-0.56	-0.517	1.17	1.03	1.53	1.7	1		0 Naf	N	Mtap1s	UCSC (BLAST)
KQEEQMETEQ	2	4 83109494	0	-0.617	1.04	0.701	0.251	1.31	-0.0514	0	I -	0 Nal	N	Snapc3	UCSC
KTLQLYIQAIDSLA	1	18 69838152	1	-0.11	0.777	1.5	0.971	1.04	1.53	0	I -	0 Nal	N	Tcf4	AS
LAPLMLLPAR	5	13 36301302	1	-0.521	0.278	0.202	0.16	0.684	0.284	0	I -	0	2.5	Fars2	AS
LAQVALELK	2	9 1.07E+08	1	-0.186	0.647	0.419	0.0925	0.102	-0.139	0	-	0	3	Vprbp	Overlaps intron
LAVDTEGQRR	1	5 74029635	0	-0.162	-0.467	0.508	-0.946	-0.673	-0.41	0	1 -	0	1	Sgcb	Overlaps intron
LEDALMENR	2	17 25321158	0	0	0	-0.125	-0.497	-0.215	-0.747	0	1 -	1	2	-	Novel internal exon
LELMVILLPQTLK	1	2 12896039	1	0	0	1.51	-0.64	1.89	0.634	0	1 -	1	1	Pter	Putative ncRNA
LFLSPAIQGLLLPAR	2	17 8994702	1	-0.136	1.57	0.259	1.08	0.279	0.217	1		1 Naf	N	Pde10a	Novel internal exon
LGIALNF	15 X	98344394	0	-0.281	-2.02	0.0673	0.027	0.227	-0.0263	0	1 -	0	3	-	Overlaps intron
LGTESRDTVTENER	1	7 1.41E+08	0	-0.334	-0.103	0.508	0.632	0.369	0.656	0	L	0	1.6	Adam12	Overlaps intron
LIEPVLIIQK	15	14 1.23E+08	1	-0.327	-1.57	0.0998	0.146	0.455	0.261	0	L.	0 Nal	N	Zic2	Putative ncRNA
LIGLPLQILM	1	16 76368640	0	-0.681	-0.387	2.28	0	2.58	1.54	0	I -	0	2.73	Nrip1	Overlaps intron
LILLGLGDR	1	4 1.01E+08	1	0	0	0.0608	-0.855	1.05	0	0	L.	0 Nal	N	-	Pseudogene
LINDLPAR	1	16 43497573	1	-0.344	0.75	0.613	0.525	0.815	0.501	0	-	0	0.8	-	Overlaps intron

LINISEILK	1	16 40822205	1	0	0	0	0	0	0	0	-	0 NaN	-	Overlaps intron
LIYIEMIIIR	2	2 1.35E+08	1	-0.257	1.34	2.1	0.97	0.785	1.6	0	-	0 NaN	Plcb1	AS
LLAALLHNPQLVER	1	16 31948474	0	-0.427	-1.36	0.204	0.522	0.99	0.902	1		1	1.04 0610012G03Rik	UCSC
LLETDLILRN	2	8 84434162	1	-0.485	1.1	0.895	-0.159	0.353	0.798	C	-	0 NaN	Inpp4b	AS
LLLSPLAR	1	3 51960827	0	1	2	-0.0933	-0.379	-0.206	-0.0539	a	-	0	1.2 -	Putative ncRNA
LLLVSSLAPR	1	14 18167137	0	-0.515	0.138	0.429	-0.152	0.207	0.417	C	-	0	1.5 -	Putative ncRNA
LLSIPLAR	1	10 8083470	0	-0.469	0.637	-0.0933	-0.379	-0.206	-0.0539	d	-	0	2 Ust	AS
LISLIPAR	2	9 /4888348	1	-0.163	-0.0675	0.011	-0.438	-0.0165	-0.102	1	-	0	0.75 Arpp19	Overlaps intron
LLSNLSAPR	1	1 68680567	0	-0.302	0.569	0.353	0.35	0.578	0.309	1	-	0 NaN	Erbb4	AS
LLVFLPFILGGP	1	0 50122947	1	-0.5	0.469	1.04	-0.766	-0.599	-0.291	0	-	0 NoN	2 Mpp6	overlaps intron
LLWRGGUUR	1	4 92006910	0	-0.310	0.475	0.0012	0.16	0.92	0.05			0 NaN	AllK5	AS
I NKEVI VICVETR	1	19 16784133	0	-0.335	0.0	0.0013	3.09	0.21	2.5	0		1 NaN	Vns13a	AS
L PPSEL PAR	5	14 8673935	1	-0.358	1 47	0 202	0.16	0.684	0 284	0		0	0.5 Elph	AS
I TTPTYGDI NHI VSATMSEVTTCI B	127	13 63069299	1	-0.531	0.547	0.292	NaN	0.465	0.39	0	I TTPTYGDI NHI VSATMSGVTTCI R	- 1 NaN	-	Pseudogene
LVELLLRN	1	13 21289375	1	-0.57	-1.72	1.88	0.734	1.17	1.38	a	-	1 NaN	-	Alternative 3' end
LVIDGKPITIFQER	8	11 3851927	1	0	0	0.506	0.0888	0.611	0.77	1	LVINGKPITIFQER	1 NaN	-	Pseudogene
LVITDVVLNR	1	2 1.58E+08	0	-1.29	-0.316	0.908	-0.17	0.659	0.571	1	-	0 NaN	-	Overlaps intron
LYIVFSLLILCR	2	3 97557685	0	-0.0849	0.976	-0.469	0.132	0.659	-0.588	C	-	0 NaN	Pde4dip	Overlaps intron
MDSFDEDLAR	2	4 1.26E+08	0	-0.204	0.824	0.662	-0.237	0.571	0.756	1		0 0	0.667 Thrap3	UCSC
MFQYDSTHGK	4	11 99539579	1	0.517	0	0.382	0.127	0.927	0.9	1	-	0	0.6 -	UCSC (BLAST)
MSIFGH	4	1 1.79E+08	0	-0.384	0.425	-0.231	0.353	0.227	0.408	C	-	0	2 -	Overlaps intron
MVILELRR	1	15 76514928	1	-0.49	-1.19	-1.03	0.0759	-0.0338	-1.56	0	I -	0 NaN	Ppp1r16a	AS
MVVSEEYHLSSISK	1	5 1.06E+08	1	-0.516	0.765	0.404	-0.64	-0.716	-0.515	C	-	0 NaN	Zfp326	AS
NAFLSSSALDK	3	19 12534993	0	1.58	0	0.159	0.595	0.81	0.457	C	-	0	4 -	Alternative 3' end
NALQELQQIIITPIK	6	7 29191631	0	-0.259	0.147	0.656	-0.18	0.617	0.429	1		0 NaN	Samd4b	UCSC (BLAST)
NCLPGLQLQEESTGLER	3	19 3819420	0	0	0	-1.18	0.569	0.919	2.49	1		0	1 -	Alternative 3' end
NDSDSVLISILEK	1	3 35805209	0	-0.617	-0.226	-0.984	0.0322	-0.412	0.346	a	-	0 NaN	Dcun1d1	Overlaps intron
NLISAGGQGPR	1	8 1.25E+08	1	-1.22	0.193	0.731	0.27	0.402	1.34	1	-	0 NaN	Zfpm1	Overlaps intron
NMETPLSVHHCFVK	1	3 3/122645	0	-1.32	0	-0.35	0.737	-2.67	-1.//	0	-	0 NaN	1121	Putative ncRNA
NSNILMENR	2	4 49601752	0	-0.48	-1.18	-0.131	-0.514	-0.184	-0.763			0	1.29 2810432L12KIK	AS
NSSTFVEWIPNDVK	1/	4 24166130	1	0.649	-1.64	0.562	0.507	0.24	0.547	1	NSSTEVEWIPNNVK	0 10	J./14 -	Pseudogene Overlans introp
	12	14 1.18E+U8	1	-0.33	0.916	-0.0119	0.0148	-0.157	0.875	1		0 NaN	Gpco	Overlaps Intron
DECOMPTION D	12	3 21430403	0	-0.409	0.222	0.650	0.21	0.367	0.721	1	NVVHQLSVILEDLINGAIN	0 NoN	Remo?	rseuuogene
	1	14 20912217	0	-0.441	0.559	0 105	-0.21	-0.742	-0.900			0 NaN	2 19 Cacna2d2	AS Overlans intron
OARSI DPLALIR	1	4 1.4F+08	0	-0.437	0.303	-1 58	1.02	0.327	2 73	0		0	2.10 Cachazos	Divergent
OCWKMI OMASGYGTTMR	1	1 68551590	ő	-0.302	0.569	-0.269	-0.684	0.50	0.731	0	-	0	4.73 Frbb4	Overlaps intron
ODLDVAR	1 X	35701835	0	0	1	0.851	0.881	0.462	0.389	a	-	0 NaN	-	Putative ncRNA
QEAVAGSLSK	4	12 59839129	0	-0.367	0.268	0.401	0.272	0.239	-0.0952	a	-	0 NaN	-	Putative ncRNA
QEFDTMEDHAGDYTLLODQEGDMDHGLK	1	11 1.04E+08	1	-0.648	0.159	-0.717	0	1.72	0.862	a	I -	0 NaN	Mapt	UCSC (BLAST)
QGAEELAR	1	15 59195487	0	-0.295	1.35	1.74	1.58	2.85	0	a	I -	0 NaN	E430025E21Rik	Overlaps intron
QGLILYLR	1	9 56157990	0	-0.57	0.595	0	0	0	0	C	-	0 NaN	C230081A13Rik	AS
QIIEINPR	1	11 47353320	0	-0.459	-0.25	1.19	0.404	1.15	0.831	C	I -	0 NaN	-	Pseudogene
QLALEEQHER	2	5 1.22E+08	1	-0.533	-0.115	0.311	1.01	0.709	-0.0069	1	-	0	0.5 EG545802	UCSC
QNNILIVANNSCVLK	1	1 74490131	0	1.08	0.113	0.889	-0.0544	2.04	0.48	0	I -	0	4 Usp37	AS
QPALGTALK	5	17 27624222	0	-0.628	1.2	0.193	0.0447	0.425	-0.0162	C	I -	0 NaN	Grm4	AS
QPTHLPR	1	8 1.22E+08	1	-0.531	-0.305	-0.861	0.357	-2.23	0.357	C	-	0 NaN	Usp10	AS
QQVLLTMSEAPACK	2	9 67118687	0	-0.55	0.0687	0.215	0.0109	0.351	0.973	a	-	0 NaN	Tin2	AS
QTERGGGGGGGGGGGGGGGGGG	1	14 30226844	0	-0.497	0.503	-0.365	-0.0292	-0.376	-0.265	C	-	0 NaN	Cacna2d3	AS
RAPADIHSSSAESIEGSPR	1	1 914/81/2	1	-0.613	0.648	0.482	0.256	-0.243	-1.09	0	-	1 NaN	Centg2	Novel internal exon
RASGEPSVESSR	19	14 6/529332	0	-0.249	1.04	-0.186	0.187	0.739	-0.126	1	-	0 0	J.909 -	Alternative 5' start
RIEAGSCPR	1	5 1.22E+U8	0	-0.519	1.33	0.991	1.27	0.747	0.308	u	-	0 NaN	Ptpn11	Overlaps Intron
RECOGIVEIR	2	1 1 05:09	1	0.495	0 802	0.344	-0.624	0.200	0.519			0 Nain	-	A3 Dutative coDNA
REFUGUENEN HMR	2	9 1 225+08	0	-0.4652	0.895	0.490	-0.951	-1 22	0.154	0		0 NaN	U.5 - Tmem16k	Alternative 3' end
ROLGNNILLB	1 X	74870093	1	-0.0498	-0.22	1.13	0.713	0.72	1.22	0	-	0	2 Thi1x	Overlaps intron
RQQLQELR	1	5 1.44E+08	0	-0.697	-1.05	0.729	1.05	0.547	0.614	a	-	0	1.5 Fbx118	AS
RRVLELGDLER	1	3 1.23E+08	0	0	0	0	0	0	0	d	-	0 NaN	Synpo2	Overlaps intron
SAPADGADLSAHLWAR	1	14 31944491	0	0	0	0.000787	-0.117	-0.18	0.722	1	-	1 NaN	-	Alternative 5' start
SCSLLVLNLK	1	14 12560810	1	-0.48	1.42	1.82	0.347	0.748	0.0342	C	L.	0	1.67 Ptprg	AS
SDLHALVVASSVPLLFR	1	8 1.27E+08	1	-0.39	-0.788	0.17	0.0297	1.14	-0.585	1		0	1.21 AK122209	UCSC (BLAST)
SHFEQWGTLTNCVVMR	5 X	1.39E+08	1	0	0	0.282	0.435	1.37	0.426	0	-	0 NaN	-	UCSC (BLAST)
SIVETLVLSPSTVGSGR	1	19 45796161	0	0	0	3.89	3.85	0	1.58	0	-	0 NaN	-	Putative ncRNA
SLFDFLLSRN	5	1 32403440	1	-0.302	0.474	0.988	0.0747	-0.467	0.0576	0	-	0 NaN	Khdrbs2	AS
SLFSSPASLAFPYSPVAR	12	14 1.04E+08	1	-0.364	1.18	0.0889	0.661	-0.00528	0.00626	1	-	1 NaN	Slain1	UCSC
SMTEAEQQQLIDDHFLFDKPVSPLLLASSMAR	2	16 38483886	1	0.29	0	-0.346	-0.502	-0.305	-1.18	0	SMTEAEQQQLIDDHFLFDKPVSPLLLASGMAR	1 NaN	Cd80	Pseudogene
SRVGLAEAER	1	8 75251940	1	-0.167	-1.06	0.0241	0.652	0.994	0.554	0	1 -	0 NaN	Sin3b	Overlaps intron
SSSWLVVQSLEAR	9	11 81715748	0	-0.507	-0.111	-0.155	-0.188	0.243	0.0834	0	I -	0 NaN	Accn1	Overlaps intron

STYEDQSAR	1	6 71833517	0	-0.472	-0.253	0.0724	-0.454	-0.231	-0.753	0 -	0 0	.526 Ptcd	з (UCSC
TEGRETGGRER	3	16 63563279	0	0.142	0.624	0.0783	0.402	0.0597	-0.26	0 -	0	1.62 Epha	13 /	AS
TFCVFILTLR	5 X	72401812	0	-0.415	-1	1.1	-0.322	0.494	-0.145	0 -	0 NaN	4930	428E23Rik F	Pseudogene
TFSVMPSPK	3	13 63069500	1	-0.531	0.547	-0.0663	-0.0996	0.253	0.285	0 -	1 0	.312 -	F	Pseudogene
TGSGFTSLLMER	3	2 1.51E+08	1	-1.54	-3.41	-0.0586	-0.0585	0.0611	-0.558	1 -	0 1	0.25 -	F	Pseudogene (BLAST)
TIDFDSLSVGR	8	14 67529440	0	-0.249	1.04	0.101	0.169	0.273	0.282	1 -	0 0	.719 -		Alternative 5' start
TLILGH	1	1 95590235	0	-0.688	-1.53	0.392	-0.213	0.175	-0.575	0 -	0 NaN	Bok	(Overlaps intron
TLLIGH	1	6 1.11E+08	1	-0.439	0.561	0.392	-0.213	0.175	-0.575	0 -	0 NaN	Grm	7 (Overlaps intron
TLQAEQFIVYRLDQKAK	2	12 76925629	1	-0.444	1.45	0.181	0.806	1.1	1.58	0 -	0	3.5 Syne	2 0	Overlaps intron
TLSQITITNR	1	13 18082330	0	-0.737	-0.152	0.725	-0.589	-0.585	-0.567	0 -	0 NaN	1600	012F09Rik F	Putative ncRNA
TLWASVQLLLTLISK	1	11 69727257	1	-0.467	0.0332	0.713	0.454	0.0863	0.179	0 -	1	2 0610	025P10Rik /	Alternative 3' end
TRLSSDSQSSACFCLLR	1	12 33692187	0	0	0	1.25	0	2.16	1.66	0 -	0 NaN		F	Putative ncRNA
TSFLEMLMGALLLVISDCCLLVCSFLPPHSGAGEFQL	1	2 74632604	0	-1.58	0	-0.737	0	0.642	1.46	0 LLHLKDRCLISCSVLSPRAGARELGEFH	0	2.91 -	F	Putative ncRNA
TSTVDLPIESQLLWQLDR	14	11 53080494	0	1.11	2.23	0.455	0.68	0.612	0.526	1 -	0 0	0.525 Hspa	14 L	UCSC (BLAST)
TTSMNLARNVHIIMPISK	1	4 19987497	1	0.298	-0.361	-0.717	-0.649	-0.668	0.147	0 -	0	1 LOC6	567301 0	Overlaps intron
VAEVLFDAADANAIEEVNLAYENVK	4	12 1.12E+08	1	-0.313	3.27	1.72	1.84	1.03	2.29	0 -	0 NaN	Dync	:1h1 l	UCSC (BLAST)
VAILFLALVSVLGAQS	1	11 56929950	1	-0.641	0.342	0.933	1.64	2.78	1.38	0 -	0	1.52 Gria:	1 /	AS
VAVLQALASTVNR	7	6 71855088	0	-0.328	0.142	0.267	0.636	0.425	0.284	1 -	0 NaN	Ptcd	3 ι	UCSC (BLAST)
VDNDEDEHQLSLR	1	10 27000624	0	0	0	1.39	-0.3	0.732	0.0626	0 -	0 NaN	Lama	a2 /	AS
VEEQVFPLLDLR	1	13 21360267	0	0	0	2.12	0.785	1.48	2.37	0 -	1 NaN		F	Putative ncRNA
VGLLLVFPLIQSQSR	3	5 1.22E+08	1	-0.533	-0.115	0.885	1.08	1.52	0.613	0 -	0 NaN	EG54	15802 U	UCSC (BLAST)
VIHDNFGIAEGLMTMVHAITATQK	1	8 89183665	1	-0.607	0.693	2.83	3.93	2.07	3.02	0 IIHDNFGIMEGLMTMVHAITATQK	1 NaN	Lonp	2 1	Putative ncRNA
VIHDNFGIVEGLMTTVCAITATQK	6	9 1.1E+08	0	-0.472	-1.18	0.346	0.33	0.168	-0.0471	0 VIHDNFGIVEGLMTTVHAITATQK	1 NaN		F	Pseudogene
VIHDNFGIVEGLMTTVHGITATQK	12	14 1.04E+08	1	0	0	0.857	0.882	1.17	0.829	0 VIHDNFGIVEGLMTTVHAITATQK	1 NaN		F	Pseudogene
VIIILWLK	1	14 62005615	0	-0.0589	-0.447	0.584	0.53	-0.208	0.256	0 -	0 NaN	Kpna	13 (Overlaps intron
VIISTPSANAPMFVMGVNHEK	3	11 1.09E+08	0	0	0	1.09	0.97	0.721	1.31	0 -	0 NaN		F	Pseudogene (BLAST)
VILLVV	1	1 1.33E+08	0	-0.778	-1	0	0	0	0	0 -	0 NaN	Srga	p2 (Overlaps intron
VILLVVVMGMGNLR	1	9 47671285	1	-0.429	0.555	-2.75	-3.08	-0.142	-2.24	0 -	0 NaN		,	AS
VIPELDGK	2	11 3852386	1	0	0	0	0	0	0	0 -	1 NaN		F	Pseudogene
VLIHLAK	2	5 40139120	0	-0.459	1.52	0.127	0.0743	0.204	-0.283	0 -	0 NaN	Hs3s	t1 (Overlaps intron
VLIIWILK	5	3 1.14E+08	1	-0.263	1.42	0.416	0.354	0.467	0.585	0 -	0 NaN	Col1	1a1 /	AS
VLLHLAK	2	5 1.02E+08	0	-0.354	1.44	0.127	0.0743	0.204	-0.283	0 -	0	1.14 Wdfy	y3 (Overlaps intron
VLLIIWIK	1	19 58945723	0	-0.566	-1.69	0.584	0.53	-0.208	0.256	0 -	1 NaN		,	Alternative 5' start
VLLLWLLK	2	18 46761781	1	-0.276	-0.769	0.416	0.354	0.467	0.585	0 -	0 NaN	Eif1a	. (Overlaps intron
VLTISLLGH	1	6 98988990	0	-0.459	-0.372	0	0	0	1.79	0 -	0 NaN	Foxp	1 (Overlaps intron
VSQHFPGEDVLQRTR	1	5 1.13E+08	0	-0.556	-0.286	-0.408	0.241	0.24	0.579	0 -	0 NaN	Myo	18b /	AS
VTHTVPIYEGYALPHAILR	8	13 81204153	0	-0.263	1.12	1.04	0.865	0.732	0.727	1 -	0 0	.188 -	F	Pseudogene (BLAST)
VTSIILLMFS	1	5 5563174	0	-1	1.58	0	0	0	-2.65	0 -	0 NaN		(Divergent
VVDLLACR	2 X	1.31E+08	0	0.286	-0.965	0.975	1.05	0.399	-0.621	0 -	0 NaN	Btk	,	AS
VWVSQGSDAPR	1	15 80226262	1	-0.62	-1.45	-1.32	-1.34	-0.531	-1.6	0 -	0 NaN	Cacn	ali /	Alternative 3' end
WEGGMQRGGGGMGGGSER	1	16 81459937	1	-0.349	0.836	0.973	0.76	0.314	0.681	0 -	0 NaN	Ncan	n2 /	AS
WMADDLR	2	16 59592942	0	0	2	1.22	1.34	1.54	1.2	0 -	0	1 LOCE	572884	AS
WWGRGGEGVGVGVGVGEGWGRLGEGR	1	5 89346189	1	-0.389	0.134	-0.146	0.0525	1.09	0.678	0 -	0 NaN	Slc4a	4 (Overlaps intron
YNAAGTGLQVEDCR	1	19 59990938	0	-0.494	-1.93	0.0855	-0.103	-0.00075	0.0826	0 -	0 NaN	Rab1	1fip2 0	Overlaps intron

Supplementary Table 1. The table lists all of high-quality novel peptides which were mapped to the RNA-seq database

GIAILRR	GLAIIRR
GISYVRR	GLSYVRR
GLTLILRR	GLTLLLRR
GVIVRCR	GVLVRCR
ILISPLAR	ILLLSPAR
TLILGH	TLLIGH
VLIIWILK	VLLLWLLK

Supplementary Table 2. The table lists the seven pairs of peptides which matched two different non-coding RNAs that differed only by an isobaric I/L amino acid, while the unambiguous identification of the source of these peptides is not possible, it is clear that these peptide sequences are not found in the canonical mouse protein sequences.

Supplementary Table 3

	PCR Region	Forward Primer	Reverse Primer
1	Farp1, novel intron region 1	GCT GGA GGC AGT AGC AAT TC	CGT CTC ATC CTT CCT CTT GC
2	Farp1, novel intron region 2	GGG TTG CCA CAG AGA AGG TC	CAC CAT GGC TGA TGG AGA AA
3	Farp 1, novel intron region 3	TAG GAG CCT TCT GTG GCT GT	GAG GTC TCA GGA AGC CCT CT
4	Suvn, alternative 3' end	GCC AAA CTG TCA CCC AAA CCC	TTC ACA TCT CCC CAA ACC TC
5	Armc9, intron retention	CCC ATG GTT CAT CTG CTC TT	GCT GGT TAC TAG CGG AGA CG
6	Grpbp10, divergent	CAT GCA TGT TAT CCC AGC AC	TAT GGA GCC AGT GGT TGA CA
7	Elmo2, divergent	CCC AGC AAG CTA AGA AGT GC	TCT GGT GTG CCT CAC TCT TG
8	E130006D01 Rik, overlaps intron of annotated ncRNA	GTA AGC TGC AGG CAC ATC AA	CTT CAT GGC AGA ACC TGG AT
9	Cacna2d3, AS	CTG GGT TGG CAA GAA CAA AT	CGG TTC CCA GGT AAT AGC AA
10	Gprk5, AS	GGA AGA ATC ATG GGC ACT GT	TAT CAG CCT GAC CTG GGA AG
11	Nars2, AS	CAT GCA CAC AAT GGA CAC AA	TGG CAG TGG ATG TAG CTC AG
12	Cox17, AS	AGG ACA CAC CAC CCT AGT CG	TCT CCA GAC CAG AGG CAC TT
13	Mlstd2, AS	TAA GCA GCA GCA AAG GGA AT	CTG GGC CCT CTC TCT CTT TT
14	Fars2, AS	ACC CTC ACT GGG ACT CCT CT	TTC AGC AAG GTG TCA GAT GC
15	St6galnac3, AS	TCC AGT GTG CCA ACA TTC AT	CAC CAT CCC TGT CAC TCT CA
16	PGOMOU0000135506, pseudogene	AAT GGT GAA GGT CAG TGT GAAC	ACT CCT TGG AGG CCA TGT AG
17	PGOMOU0000135766, pseudogene	AAT GGT GAA GGT CGG TGT G	TAC TCC TTG GAG GCC ATG TAG

Supplementary Table 3. The table lists the regions of interest and primers sequences that were designed to verify the expression of 14 anti-sense RNAs (Supplementary Figure 6B) along with 3 novel intron regions of FARP1 (Figure 2C) by RT-PCR.