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1 Recognition of Occluded Objects

2 Hanlin Tang and Gabriel Kreiman

3 Pattern recognition involves building a mental model to interpret incoming inputs.
4 This incoming information is often incomplete and the mental model must
5 extrapolate to complete the patterns, a process that is constrained by the statistical
6 regularities in nature. Examples of pattern completion involve identification of
7 objects presented under unfavorable luminance or interpretation of speech cor-
8 rupted by acoustic noise. Pattern completion is also at the heart of other high-level
9 cognitive phenomena including our ability to discern actions from still images or to

10 predict behavioral patterns from observations.
11 Pattern completion constitutes a ubiquitous challenge during natural vision.
12 Stimuli are often partially occluded, or degraded by changes in illumination and
13 contrast. While much progress has been made towards understanding the mecha-
14 nisms underlying recognition of complete objects, the neural computations under-
15 lying more challenging recognition problems such as object occlusion remain
16 poorly understood. Here we generically refer to object occlusion to include any
17 transformation where only partial information about an object is accessible (such as
18 the multiple examples illustrated in Fig. 1), and refer to object completion as the
19 ability to infer object identity from partial information (without necessarily
20 implying that subjects perceptually fill in the missing information).
21 Understanding how the neural representations of visual signals are modified
22 when objects are occluded is critical to developing biologically constrained com-
23 putational models of occluded object recognition and may also shed light on how to
24 solve manifestations of pattern completion in other domains. The development of
25 feed-forward models for visual recognition of whole objects has been driven by
26 behavioral and physiological experiments establishing the hierarchy of feature
27 tuning and robustness to image transformations. Similarly, by systematically
28 examining when and where neural representations that are robust to occlusion
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29 emerge can help extend our theoretical understanding of vision and develop the
30 next generation of computational models in vision. Understanding pattern com-
31 pletion and recognition of occluded objects is a challenging task: performance
32 depends on the stimulus complexity, the type and amount of occlusion and the task
33 itself. In this chapter, we summarize recent efforts to examine the mechanisms
34 underlying recognition of partially occluded objects and discuss several avenues for
35 future work towards a theory of object completion.

36 1 Visual System Hierarchy

37 Object recognition is orchestrated through a semi-hierarchical series of processing
38 areas along ventral visual cortex (Connor et al. 2007; DiCarlo et al. 2012; Felleman
39 and Van Essen 1991; Logothetis and Sheinberg 1996; Riesenhuber and Poggio
40 1999; Schmolesky et al. 1998; Tanaka 1996). At each step in this hierarchy, the

Fig. 1 Object completion examples a Occluded geometric shape (left) and its mosaic counterpart
(right) (e.g. Murray 2004). b Example of modal completion inducing an illusory triangle (left).
This percept is disrupted by adding edges to the inducers (right). c Line drawing of an object
defined by disconnected segments and its fragmented counterpart, similar to (e.g. Doniger et al.
2000; Sehatpour et al. 2008). d Line drawing of an occluded object and its scrambled counterpart
(e.g. Lerner et al. 2004, 2002). e Occluded object and its ‘deleted’ counterpart (e.g. Johnson and
Olshausen 2005). f Example partial image of an object seen through bubbles with a
phase-scrambled background to equalize contrast (e.g. Tang et al. 2014). g Example partial
image of a scene (e.g. Nielsen et al. 2006)
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41 feature specificity of the neurons increases in complexity. For example, neurons in
42 primary visual cortex (V1), respond selectively to bars of a particular orientation
43 (Hubel and Wiesel 1959) whereas neurons in inferior temporal cortex respond
44 preferentially to complex shapes including faces and other objects (Desimone et al.
45 1984; Gross et al. 1969; Perrett et al. 1992; Richmond et al. 1983; Rolls 1991). In
46 addition to this increase in feature complexity, there is a concomitant progression in
47 the degree of tolerance to object transformations such as changes in object position
48 or scale (Hung et al. 2005; Ito et al. 1995; Logothetis et al. 1995). The selective and
49 tolerant physiological responses characterized in the macaque inferior temporal
50 cortex have also been observed in the human inferior temporal cortex (Allison et al.
51 1999; Liu et al. 2009). The timing of these neural responses provides important
52 constraints on the number of possible computations involved in visual recognition.
53 Multiple lines of evidence from human psychophysical measurements (Potter and
54 Levy 1969; Thorpe et al. 1996), macaque single unit recordings (Hung et al. 2005;
55 Keysers et al. 2001), human EEG (Thorpe et al. 1996) and human intracranial
56 recordings (Allison et al. 1999; Liu et al. 2009) have established that selective
57 responses to whole objects emerge within 100–150 ms of stimulus onset in the
58 highest echelons of the ventral visual stream.
59 Research over the last several decades characterizing the spatiotemporal
60 dynamics involved in the neural representation of objects in these successive areas
61 has led to the development of a theoretical framework to explain the mechanisms
62 underlying object recognition. An influential theoretical framework suggests that, to
63 a first approximation, processing of visual information traverses through the ventral
64 stream in a feed-forward fashion, without significant contributions from long
65 top-down feedback loops or within-area recurrent computations (Deco and Rolls
66 2004; Fukushima 1980; LeCun et al. 1998; Mel 1997; Olshausen et al. 1993;
67 Riesenhuber and Poggio 1999; Wallis and Rolls 1997). Consistent with this notion,
68 computational models of object recognition instantiating feed-forward processing
69 provide a parsimonious explanation for the selectivity and tolerances observed
70 experimentally (Serre et al. 2007b). The activity of these computational units at
71 various stages of processing captures the variability in the neural representation
72 from macaque single unit recordings along the visual hierarchy (Cadieu et al. 2014;
73 Yamins et al. 2014). These feed-forward computational models have inspired the
74 development of deep convolutional networks that demonstrate a significant degree
75 of success in a variety of computer vision approaches to object recognition (e.g.
76 Hinton and Salakhutdinov 2006; LeCun et al. 1998; Russakovsky et al. 2015; Sun
77 et al. 2014; Taigman et al. 2014).
78 These purely feedforward architectures do not incorporate any feedback or
79 recurrent connections. However, at the anatomical level, feedback and recurrent
80 connections figure prominently throughout the visual system (Felleman and Van
81 Essen 1991). In fact, quantitative anatomical studies have suggested that feedback
82 and recurrent connections significantly outnumber feedforward ones (Callaway
83 2004; Douglas and Martin 2004). The computational contributions of these feed-
84 back and recurrent projections are largely underexplored in existing computational
85 models of visual recognition because their underlying roles remain unclear. Several
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86 investigators have suggested that these feedback and recurrent projections could
87 play an important role during object recognition under conditions where the visual
88 cues are impoverished (e.g. poor illumination, low contrast) or even partially
89 missing (e.g. visual occlusion) (Carpenter and Grossberg 2002; Hopfield 1982;
90 Mumford 1992; Tang et al. 2014; Wyatte et al. 2012a).
91 Following the approach suggested by Marr in his classic book on vision (Marr
92 1982), we subdivide our discussion of recognition of occluded objects into three
93 parts: (i) definition of the computational problem by describing behavioral per-
94 formance during recognition of occluded objects, (ii) characterization of the im-
95 plementation at the physical level describing the neural responses to occluded
96 objects and (iii) initial sketches of theoretical ideas instantiated into computational
97 models that aim to recognize occluded objects.

98 2 The Computational Problem of Object Completion

99 Figure 1 shows examples of several images that induce object completion. In the
100 natural world, objects can be partially occluded in multiple different ways due to the
101 presence of explicit occluders, shadows, camouflage and differential illumination.
102 Object completion is an ill-posed problem: in general, there are infinite ways of
103 completing contours from partial information. The visual system must be able to
104 infer what the object is despite the existence of all of these possible solutions
105 consistent with the visual input.

106 2.1 Amodal Completion

107 Occluded shapes can be perceived as whole (Fig. 1a, compare left and right panels).
108 Object completion can be amodal when there is an explicit occluder and the subject
109 cannot see the contours behind the occluder despite being aware of the overall
110 shape (Singh 2004). In contrast, in the famous illusory triangle example (Fig. 1b),
111 Kanizsa describes the phenomenon known as modal completion whereby the object
112 is completed by inducing illusory contours that are perceived by the observer
113 (Kanizsa 1979). Because these illusory inducers are rare in natural vision, in this
114 chapter we focus on amodal completion. Even though occluded or partial objects
115 such as the ones shown in Fig. 1c, d are segmented, observers view the object as a
116 single percept, not as disjointed segments. Amodal completion is also important for
117 achieving this single `gestalt’. Investigators have used a variety of different stimuli
118 to probe the workings of object completion, ranging from simple lines and geo-
119 metric shapes to naturalistic objects such as the ones shown in Fig. 1e–g.
120 Psychophysical studies of amodal completion have provided many clues to the
121 underlying computations (Kellman et al. 2001; Sekuler and Murray 2001). Amodal
122 completion relies on an inferred depth between the occluder shape and the occluded
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123 object, which in turns generates a surface-based representation of the scene
124 (Nakayama et al. 1995). In fact, presence of the occluder aids in identifying the
125 occluded object, as powerfully illustrated by the Bregman’s occluded B letters
126 (Bregman 1981) Grouping of different parts into a complete whole, and the
127 ‘completion’ of missing lines and contours, represent an important component of
128 object recognition. There are infinite possible ways of completing occluded objects.
129 The ambiguities arise from the many combinations with which occluded edges,
130 called `inducers’ can be paired together, as well as the infinite possible contours
131 between two pairs of inducers (Kellman et al. 2001; Nakayama et al. 1995; Ullman
132 1976). Despite the many possible solutions, the visual system typically arrives at a
133 single (and correct) interpretation of the image.
134 The temporal dynamics of shape completion can constrain the computational
135 steps involved in processing occluded images. Psychophysics experiments have
136 measured the time course of amodal completion with a diverse array of experi-
137 mental paradigms. The most common method is a contrast of an occluded shape
138 against its mosaic parts (e.g. Figure 1a). For example, in the prime matching
139 paradigm, subjects are first primed with a stimulus, and then asked to judge whether
140 a pair of test stimuli represent the same or a different shape. Subjects are faster to
141 correctly respond ‘same’ when the primed shape is the same as the test stimuli.
142 When partly occluded objects are used as the prime, this priming effect depends on
143 the exposure time (Sekuler and Palmer 1992). At short durations (50 ms), occluded
144 objects primed subject’s responses towards mosaic shapes, suggesting that 50 ms is
145 not enough time for amodal completion of the prime stimulus. At longer durations
146 (100 ms or more), the priming effect switched to favor whole shapes. Therefore, the
147 authors estimate that amodal completion for simple geometric shapes takes between
148 100 and 200 ms, depending on the amount of occlusion (Sekuler et al. 1994).
149 A different set of behavioral experiments suggests approximately the same time
150 scales for amodal completion: in several studies, subjects are asked to discriminate
151 shapes in a timed forced-choice task. Response times to occluded shapes lagged
152 those to whole shapes by about 75–150 ms (Murray et al. 2001; Shore and Enns
153 1997). For naturalistic objects such as faces, however, Chen et al. report that
154 amodal completion takes longer than 200 ms (Chen et al. 2009), well beyond the
155 previous estimates based on simpler shapes and tasks.

156 2.2 From Amodal Completion to Recognition of Occluded
157 Objects

158 Many studies of amodal completion have used simple shapes and contours, as
159 outlined in the previous section. When recognizing whole objects, psychophysical
160 studies using simple shapes and neurophysiological studies describing the linear
161 filters in primary visual areas led to the basic building blocks to develop deep
162 models of visual recognition capable of detecting complex shapes. Inspired by the

Recognition of Occluded Objects 5

Layout: T1 Standard STIX Book ID: 312720_1_En Book ISBN: 978-981-10-0211-3

Chapter No.: 3 Date: 11-8-2016 Time: 2:27 pm Page: 5/18

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

163 success of this approach, we assume that contour completion is one of the initial
164 steps involved in interpreting complex objects that are partially occluded.
165 Recognition remains robust to partial occlusion for complex objects. We used
166 naturalistic objects that were occluded by presenting information through “bubbles”
167 (Gosselin and Schyns 2001) (Fig. 1f). After a variable exposure time from 33 to
168 150 ms, subjects performed a five alternative forced-choice categorization task.
169 Recognition was robust even when 80–90 % of the object was occluded across the
170 various exposure times (Fig. 2). Similar results were obtained by (Wyatte et al.
171 2012a). As illustrated by Bregman (1981), the presence of an occluder during object
172 completion aids recognition performance. For example, one study presented natural
173 objects that were either occluded (Fig. 1e, left) or where the same object parts were
174 deleted (Fig. 1e, right). Recognition was significantly impaired in the deleted part
175 case compared to the occluded part case, but only when using high percentage of
176 occlusion (>75 % missing pixels) (Johnson and Olshausen 2005).
177 Intuitively, we would expect successful recognition to depend on the exact
178 features shown. This intuition was quantitatively measured by (Gosselin and
179 Schyns 2001): the facial features critical to recognition varied depending on the task
180 (e.g. the eyes and eyebrows were more relevant for gender discrimination and the
181 mouth provided more information when evaluating expressiveness). Similar con-
182 clusions were reached when using the same paradigm to evaluate recognition in
183 monkeys (Nielsen et al. 2006).

Fig. 2 Robust object
categorization despite strong
occlusion a Experiment
timeline. Partial images
similar to the ones shown in
Fig. 1f were presented during
exposure times ranging from
33 to 150 ms. Subjects
performed a five alternative
forced-choice categorization
task determining whether the
image contained animals,
chairs, faces, fruits, or
vehicles. b Performance as a
function of percentage
occlusion across n = 14
subjects for various exposure
times. Error bars denote SEM.
Dashed line indicates chance
performance
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184 3 Neural Representation of Occluded Objects

185 A series of scalp electroencephalography (EEG) studies have measured the latency
186 at which responses differ between occluded objects and suitable control images.
187 Using simple geometric stimuli, differences between occluded shapes and notched
188 shapes emerged at 140–240 ms (Murray 2004). Using more naturalistic stimuli (e.g.
189 Figure 1e), other investigators report differential activity in the 130–220 ms (Chen
190 et al. 2010) and 150–200 ms (Johnson and Olshausen 2005) ranges. In a more
191 difficult task with fragmented line drawings that are progressively completed,
192 Doniger et al. reported that differences are only observed in the 200–250 ms
193 response window. Even though these studies use different stimuli and make dif-
194 ferent comparisons, they consistently conclude that amodal completion effects
195 manifest within 130–250 ms.
196 Several neuroimaging (Hegde et al. 2008; Komatsu 2006; Lerner et al. 2004,
197 2002; Olson et al. 2004; Rauschenberger et al. 2004) and scalp EEG (Chen et al.
198 2010; Doniger et al. 2000; Johnson and Olshausen 2005) studies with more com-
199 plex objects have contrasted activity changes between an occluded object and an
200 appropriately scrambled counterpart (e.g. Fig. 1c, d). In these stimuli, the low-level
201 features are maintained but disruption in their geometric arrangement destroys the
202 percept. For example, investigators have reported differential activity in the
203 lateral-occipital complex between occluded line drawings and their scrambled
204 counterparts (Lerner et al. 2002). The authors reason that, since the occluded
205 images elicit a larger response in the lateral-occipital complex (LOC) than scram-
206 bled images, the LOC could be involved in object completion. It should be noted
207 that LOC also demonstrates increased activity to whole objects compared to
208 scrambled versions of those objects without any occlusion (Grill-Spector et al.
209 2001). Thus, the increased responses to whole objects may not be necessarily
210 related to object completion mechanisms per se, but rather neural activity related to
211 perceptual recognition.
212 Similarly, EEG and intracranial studies compared line drawings against their
213 fragmented counterparts (Doniger et al. 2000; Sehatpour et al. 2008) to measure the
214 timing and brain regions involved in object completion. Sehatpour et al. worked
215 with epilepsy patients who have intracranial electrodes implanted for clinical pur-
216 poses. This approach allows a rare opportunity to record directly from human brain.
217 The authors take advantage of simultaneous recordings from multiple brain regions
218 to show that line fragments elicited greater coherence in the LOC-Prefrontal
219 Cortex-Hippocampus network compared to scrambled line fragments. They suggest
220 that this network synchrony is responsible for the perceptual line closure of objects.
221 In order to understand the neural mechanisms orchestrating object completion, it
222 is also critical to examine the neural architectures that could implement the com-
223 putational solutions suggested in the previous section. Essential aspects of object
224 completion can be traced back to the earliest stages in visual processing. An early
225 study demonstrated that neurons in area V2 show selective responses to illusory
226 contours (Peterhans and von der Heydt 1991; von der Heydt et al. 1984). Other
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227 work has demonstrated that even V1 neurons can respond to occluded shapes. One
228 study recorded single cells in macaque V1 when presented with occluded moving
229 bars (Sugita 1999). Approximately 12 % of orientation-selective cells responded to
230 the moving oriented bar even when it was occluded, thus potentially underlying the
231 phenomenology of amodal completion. These cells responded strongly only when
232 the occluder was presented in front of the moving bar (positive disparity), and not at
233 zero or negative disparity. Notably, responses to the occluded bar were not different
234 from those obtained when presenting the bar alone. These results have led to the
235 suggestion that amodal completion is achieved by contextual modulation from
236 outside the classical receptive field. While other studies have suggested that con-
237 textual modulation occurs with a delay of 50–70 ms with respect to the onset of the
238 visually evoked responses (Bakin et al. 2000; Zipser et al. 1996), Sugita did not
239 observe any latency delays for the amodally-completed response. The author sug-
240 gests that these contextual modulations may come from lateral connections or
241 feedback from proximal areas. In another study, responses to illusory contours in
242 V1 were delayed by about 55 ms compared to the response to real contours (Lee
243 and Nguyen 2001). Importantly, illusory contour responses appeared first in V2
244 before emerging in V1, suggesting that modal completion in V1 might require
245 feedback modulation from V2. Complementing these studies, psychophysical
246 studies on the effect of inferred depth and apparent motion on the perception of
247 occluded surfaces also conclude that amodal completion effects manifests in early
248 visual processing (Shimojo and Nakayama 1990a, b).
249 These neurophysiology studies have focused on the occlusion or inducing of
250 linear contours, where the inducers are close in proximity to the classical receptive
251 field. However in natural vision we complete curvilinear contours over distances
252 much longer than the width of classical V1 receptive fields. Often in these cases,
253 correct completion of an object depends on the global context in which the object is
254 embedded. Future studies are needed to examine whether and when V1 neurons
255 respond to completed contours of varying curvature, length, and context.
256 As outlined above, V1 neurons feed onto a cascade of semi-hierarchical pro-
257 cessing steps through V2 and V4, culminating in the inferior temporal cortex
258 (ITC) (Felleman and Van Essen 1991). How do these higher visual areas respond to
259 occluded shapes? Few studies have examined the responses in intermediate visual
260 areas to occluded shapes. A recent elegant study has begun to fill in this gap by
261 characterizing how macaque V4 neurons respond to different curvatures when they
262 are partially occluded by dots (Kosai et al. 2014). The authors report that neurons
263 can maintain selectivity within a range of occlusion. While the response onset times
264 of these neurons were not delayed by occlusion, the latency at which selectivity
265 arose was delayed by hundreds of milliseconds.
266 Kovacs et al. found that visually selective responses to complex shapes in ITC
267 were similar between whole shapes and occluded shapes defined by adding noise,
268 occluders or deleting shape parts (Kovács et al. 1995). Although selectivity to
269 complex shapes was retained despite up to ∼50 % occlusion, the absolute magni-
270 tude of the responses was modulated linearly with the amount of occlusion. Con-
271 trary to what Kosai et al. found in V4, these authors observed delays of up to 50 ms

AQ1
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272 in the response latency of occluded shapes. While it is tempting to attribute this
273 discrepancy to differences in processing between V4 and IT, we note that the
274 stimuli and occluding patterns used are different between the two studies.
275 Nielsen et al. extended this work by examining the responses of IT neurons to
276 occluded objects embedded in naturalistic stimuli (Fig. 1f) (Nielsen et al. 2006a).
277 Using the bubbles paradigm (Gosselin and Schyns 2001), the authors defined parts
278 of an image that provided more diagnostic value (i.e. provided information that
279 aided recognition) versus other non-diagnostic parts. The authors first demonstrated
280 that monkeys and humans show striking behavioral similarities in terms of what
281 object parts are considered diagnostic (Nielsen et al. 2006b). For occluded scenes
282 containing diagnostic parts, both firing rates and local field potentials in ITC
283 remained largely invariant to significant amounts of occlusion, in contrast to the
284 findings of the Kovacs study with simpler stimuli (Kovacs et al. 1995). However,
285 for scenes that contained only non-diagnostic parts, the results from the Kovacs
286 study were reproduced—the firing rate varied linearly with the amount of occlusion.
287 This comparison also serves as a cautionary tale against extrapolating results based
288 on geometric shapes to the processing of more naturalistic stimuli because the
289 details of which features are revealed can play a very important role in dictating the
290 effects of occlusion. Issa et al. reached similar conclusions when demonstrating that
291 ITC responses selective to faces were particularly sensitive to occlusion of certain
292 parts (one eye) and that those parts could drive the responses almost as well as the
293 whole face (Issa and Dicarlo 2012). These results suggest that the robustness of the
294 neural representation to missing parts depends on the diagnosticity of the visible
295 features.
296 Tang et al. used intracranial recordings to evaluate how and when visually
297 selective responses to occluded objects emerge. Naturalistic objects were presented
298 through the bubbles paradigm (Gosselin and Schyns 2001) in a task similar to the
299 one illustrated in Fig. 2. The use of objects seen through bubbles evaluates the core
300 ability to spatially integrate multiple parts to subserve recognition. Figure 3 (left)
301 shows the responses from an example electrode in the fusiform gyrus that displayed
302 a strong response to face stimuli. Remarkably, the electrode showed similar
303 responses to images that displayed only ∼11 % of the object content (Fig. 3, col-
304 umns 2–6). Even in cases where the images shared essentially no common pixel
305 (e.g. columns 3 and 5), the responses remained similar. Overall, the magnitude of
306 the responses did not vary with the amount of visible pixels. Yet, the responses to
307 occluded shapes were not identical to those obtained upon presenting whole ima-
308 ges. A notable difference was that the responses to occluded objects were signifi-
309 cantly delayed (compare the position of the arrows in Fig. 3). Selective neural
310 response emerged with a delay of ∼100 ms. These delays were also apparent when
311 using a machine learning approach to decode the category or identity of the objects
312 from the physiological responses to the whole or occluded images (Fig. 4).
313 Image processing does not end with visual cortex. Information from visual
314 cortex is conveyed to frontal cortex and to medial temporal lobe structures
315 including the amygdala, hippocampus and entorhinal cortex. One group recorded
316 single unit activity in the amygdala of human epilepsy patients, and found that
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317 neurons were surprisingly sensitive to even small degrees of occlusion (Rutishauser
318 et al. 2011). Their firing rates varied non-linearly with the amount of occlusion and
319 the responses to image parts did not necessarily bear a resemblance to the responses
320 to the whole images. These non-visual medial temporal lobe neurons, in effect,
321 ‘lost’ the robustness developed in the ventral visual stream, in that individual parts
322 were not sufficient to drive the response to the level observed for whole faces.
323 In addition to the type of spatial integration demonstrated in the studies above,
324 the visual system is able to integrate information over time. Temporal integration is
325 particularly prominent in examples of action recognition. Yet, in some cases, dif-
326 ferent parts of the same object may appear in a dynamic fashion over time. At the

Fig. 3 Physiological responses in the human fusiform gyrus show tolerance to strong occlusion.
Invasive intracranial field potential recordings from an electrode in the fusiform gyrus in a subject
with epilepsy (modified from Tang et al. 2014). This electrode responded selectively to faces (left,
gray = individual trials, green = average of 9 repetitions). The other panels show single trial
responses to five partial images of the face. Black bar indicates stimulus presentation time
(150 ms). Despite heavy occlusion (89 %), the neural responses were similar to those obtained
when presenting the whole object. However, the responses to partial images were significantly
delayed. The arrow indicates latency of the response peak with respect to image onset

Fig. 4 Physiological
responses to occluded objects
were delayed compared to
whole objects. Single trial
decoding performance from a
pseudopopulation of n = 60
electrodes for categorization
(black, n = 5 categories) or
identification (gray, n = 25
exemplars) (modified from
(Tang et al. 2014)). The
latency of selective
information was delayed for
occluded objects (dashed line)
compared to whole objects
(solid line)

10 H. Tang and G. Kreiman
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327 behavioral level, presenting object parts asynchronously significantly disrupts
328 object recognition performance, even when the temporal lag is as short as 16 ms
329 (Singer and Kreiman 2014). This disruption by asynchronous presentation is also
330 evident at the physiological level (Singer et al. 2015). Thus, the ability to spatially
331 integrate parts into a whole for recognition is quite sensitive to deviations from the
332 synchronous presentation of those parts.
333 In sum, early visual areas show evidence of contour completion in the presence
334 of both occluded and illusory contours when the corresponding edges are in close
335 spatial proximity. In some, but not all cases, these contour completion responses
336 show a delay with respect to both responses to real contours and responses in higher
337 visual areas. In higher visual areas responsible for object recognition, physiological
338 signals show strong robustness to large degrees of occlusion, consistent with
339 behavioral recognition performance, and these physiological signals also show a
340 significant delay. The robustness in the physiological responses and the dynamic
341 delays are consistent with the behavioral observations. These delays are interpreted
342 as originating from the involvement of recurrent and/or top-down connections
343 during the process of object completion. Given these initial steps in understanding
344 plausible neural circuits underlying recognition of occluded objects, we turn our
345 attention to describing the possible biological algorithms instantiated by these
346 neural signals.

347 4 Computational Models of Occluded Object Recognition

348 There has been significant progress over the last decade in developing computa-
349 tional models of object recognition (Deco and Rolls 2004; DiCarlo et al. 2012;
350 Kreiman 2013; Riesenhuber and Poggio 1999; Serre et al. 2007a). To a first
351 approximation, these models propose a hierarchical sequence of linear filtering and
352 non-linear max operations inspired by the basic principles giving rise to simple and
353 complex cells in primary visual cortex (Hubel and Wiesel 1962). Concatenating
354 multiple such operations gave rise to some of the initial models for object recog-
355 nition (Fukushima 1980). Recently, these ideas have also seen wide adoption in the
356 computer science literature in the form of deep convolutional neural networks (e.g.
357 (Krizhevsky et al. 2012) among many others). Both biologically inspired models
358 and deep convolutional neural networks (CNNs) geared towards performance on
359 benchmark datasets share similar core architectures.
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360 4.1 Performance of Feed-Forward Models in Recognizing
361 Occluded Objects

362 The canonical steps in feed-forward computational models is inspired by the
363 observation of simple and complex cells in primary visual cortex of anesthetized
364 cats. In their classic study, Hubel and Wiesel discovered ‘simple’ cells tuned to bars
365 oriented at a particular orientation (Hubel and Wiesel 1959). They also described
366 `complex’ cells, which were also tuned to a preferred orientation, but exhibited a
367 degree of tolerance to the spatial translation of the stimulus. They hypothesized that
368 to generate this spatial invariance, the complex cells pool over simple cells whose
369 receptive files tile the visual space with a max-like operation. This complex cell
370 would then respond to an oriented bar regardless of its spatial location. Both
371 hierarchical models of biological vision such as HMAX (Riesenhuber and Poggio
372 1999; Serre et al. 2007b) and CNNs are composed of alternating layers of tuning
373 and pooling with increasingly more complicated tuning functions as one ascends
374 this hierarchy. Whereas biologically-inspired models such as HMAX have about 4
375 layers, state-of-the-art computer vision models have moved to complex topologies
376 with up to 20 layers and different mixtures of tuning and pooling layers (e.g.
377 Russakovsky et al. 2015). Performance of feed-forward models such as HMAX on
378 object recognition datasets match the pattern of human performance (Serre et al.
379 2007b). Additionally, the activity of individual layers in deep learning networks can
380 capture the variance of neurons in the corresponding layers in macaque cortex
381 (Cadieu et al. 2014; Yamins et al. 2014).
382 While these feed-forward architectures are designed to build tolerance to image
383 transformations such as position and scale changes, they are not necessarily robust
384 to the removal or occlusion of object features. Indeed, Fig. 5 shows the perfor-
385 mance of an HMAX-like architecture in recognizing the same occluded objects
386 form Figs. 2, 3 and 4. Small amounts of occlusion do not impair performance.
387 However, performance drops rapidly with increasing occlusion, much more rapidly
388 than human performance (see “behavior” line in Fig. 5 and compare Fig. 2 versus
389 Fig. 5. Experimental simulations with other similar models confirm that that both
390 HMAX and CNN models are challenged by recognition of occluded objects (Pepik
391 et al. 2015; Wyatte et al. 2012b). Unlike position or scale transformations, the
392 underlying representation in these models is not robust to occlusion. Feed-forward
393 networks do not have explicit mechanisms to compensate for the missing features
394 of occluded objects. In addition, because these models do not distinguish between
395 the occluder and the object, the occluder can introduce spurious features that,
396 through spatial pooling, are mixed with the object features. With small amounts of
397 occlusion, the remaining features may be sufficient to lead to successful classifi-
398 cation. However, with increasing levels of occlusion, the lack of sufficient infor-
399 mation and completion mechanisms lead to a significant impairment in
400 performance. AQ2
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401 4.2 Beyond Feed-Forward Models

402 Models that incorporate additional computations beyond feed-forward architectures
403 can be subdivided into several categories. A group of computational models
404 describes the process by which contours are amodally completed (Ullman 1976;
405 Yuille and Kersten 2006). These models typically rely on an axiomatic set of
406 desirable qualities that completed curves must satisfy (such as minimum total
407 bending energy).
408 Another set of ideas argues that creating an understanding of the surfaces in a
409 scene is critical to object recognition for occluded objects. Nakayama (1995)
410 proposes a theory where surface representation is constructed via feedback in early
411 visual cortex by learning associations between a viewed image and the underlying
412 surface representations. The authors argue that this intermediate surface represen-
413 tation is vital for subsequent recognition for occluded objects and mediates many
414 important functions in texture segregation and visual search.
415 A different model proposes that neural representations of surfaces are created in
416 three stages based on the low-level features (Sajda and Finkel 1995). First, points
417 belonging to the same contour are bound together, followed by a process that
418 determines the surfaces, and finally the surfaces are ordered by depth. Both
419 feed-forward and feedback connections subserve to communicate between these
420 three stages.

Fig. 5 Challenge to feed-forward computational models Performance of a hierarchical
feed-forward model of biological vision (Serre et al. 2007) on recognition of partial images
similar to the one shown in Fig. 1f. Dashed line indicates chance level. Performance (red line) of
the model is well below that of human subjects (solid black line) for heavy occlusion. Span of the
black line indicates the range of difficulty tested for humans
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421 Several theories based on the role of feedback connections emphasize inference,
422 but these ideas have largely not been operationalized into object recognition
423 models. Predictive coding models are generative models of object recognition (Rao
424 and Ballard 1999). In these models, higher visual areas send their predictions to
425 lower levels, which then return only the mismatch between the predicted activity
426 and the actual activity. This creates an efficient system where each layer only sends
427 forwards signals that deviate from the receiving layer’s predictions. The higher
428 layers then attempt to generate the correct hypothesis of the image by reducing the
429 incoming prediction errors. A related model proposes that visual cortex is essen-
430 tially performing Bayesian inference where feed-forward inputs combine with
431 top-down priors for recognition (Lee and Mumford 2003; Yuille and Kersten 2006).
432 As pointed out by (Wyatte et al. 2014), predictive coding models would expect
433 occluded images to lead to increased activity in visual cortex, since the first gen-
434 erated hypotheses would have a very large prediction errors due to occlusion. Over
435 time, we would expect this activity to subside as the system converged on an
436 accurate hypothesis. Neurophysiological studies, however, find decreased or
437 unchanged activity throughout visual cortex (Kovacs et al. 1995; Nielsen et al.
438 2006a; Tang et al. 2014).
439 Several models that more directly examine object recognition deal with recog-
440 nition from partial information, and do not incorporate any of the amodal com-
441 pletion mechanisms previously described. These models take advantage of the
442 extensive feedback and recurrent connections in visual cortex. While the role of
443 these connections in attentional modulation has been extensively studied, their
444 contribution to object recognition remains unclear. A particularly prominent and
445 attractive class of models that can perform pattern completion is the all-to-all
446 connectivity architectures such as Hopfield networks (Hopfield 1982). The Hopfield
447 network generates attractors for previously learned patterns in such a way that if the
448 network is initialized with partial information, it can dynamically evolve towards
449 the right attractor. Interestingly, this type of dynamical convergence towards the
450 attractor state could account for the type of delays observed in the behavioral and
451 physiological experiments. This general principle is operationalized by a neural
452 network model that combines bottom-up input with top-down signals carrying
453 previously learned patterns to complete occluded objects (Fukushima 2005). For
454 occluded patterns that are novel, this network attempts to interpolate from visible
455 edges. The author applies this model to complete occluded letters of the alphabet.
456 This concept has been extended to naturalistic objects with a feed-forward model
457 that is augmented with recurrent feedback (Wyatte et al. 2012a). This recurrent
458 feedback served to strengthen the feed-forward signals that were diminished from
459 the occluded image.
460 Given that strong behavioral and neurophysiological evidence exists for amodal
461 completion in human brain, and that surface representations are important for
462 organizing the visual scene, theories of object recognition would be remiss to
463 exclude these features in favor of purely feature-based recognition. An important
464 step towards models that fully capture natural biological vision would be to inte-
465 grate traditional feed-forward models with feedback mechanisms, including amodal
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466 completion, surface generation, and top-down modulation based on priors and
467 context. The challenge of recognizing occluded objects stands as the first test of
468 these future integrative theories.
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