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Chapter 1

Summary

Interpreting incomplete information is a critical aspect of intelligence. In the visual domain, hu-
mans e�ciently recognize objects rendered partially visible due to noise, limited viewing angles,
poor illumination or presence of occluders on a daily basis. However, it remains unclear if humans
need extensive previous experience with whole objects and/or their occluded counterparts to per-
form e�cient pattern completion or if this is an inherent property of the visual system, at least up
to certain visibility levels. In the present thesis, we investigate if humans still robustly categorize
heavily occluded renderings of arti�cially created novel objects when having only minimal training
and no pre-existing partial object exposure. In parallel, we augmented state-of-the-art hierarchical
feed-forward computational models with recurrent connections to assess if human-like performance
could be reached for a particular categorization task. Previous studies using such networks were
unable to match human results unless they were trained with occluded objects speci�cally and
their generalization to novel categories is still questioned. However, they did perform signi�cantly
better than their bottom-up counterparts which are not robust to object occlusion, implying that
recurrent connections can facilitate pattern completion. Our results show that although humans
can still categorize partial objects above chance level for very low image visibilities, arti�cial neu-
ral networks augmented with recurrent connections on only one layer are now able to outperform
behavioral results for all visibility levels. Although extensive previous experience with novel oc-
cluded objects is not essential for humans to be robust against novel object occlusion, it could
maybe explain why recurrent models perform less well than humans for the same task involving
everyday objects.
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Chapter 2

Introduction

Although computers are very e�cient at executing tasks involving deterministic numerical algo-
rithms, the human brain still outperforms them in many domains involved in daily life activities.
Some of the brain's characteristics of interest include robustness to noise or incomplete information,
incorporation of contextual information present in the environment, plastic memory formation and
fault tolerance. Therefore, studying the brain as a computational model will provide clues to help
improve hardware and software in order to create better performing arti�cial intelligence algo-
rithms. In the �eld of machine imagery for example, e�orts have been made to better understand
visual processing in the brain with the hope to increase performance for partial image recognition,
a task for which humans were found to perform above chance for visibility levels as low as 15%, a
result which state-of-the art feed forward neural networks fail to match[1].

A broad overview of current neuroscienti�c state-of-the-art regarding the visual cortex architec-
ture and information processing will be presented in Section 2.1, focusing on recognition of objects
given only partial information. Biological architecture and performance will then be compared
to di�erent computational models in Section 2.2. Finally, a summary of the scienti�c aim of this
project by contrasting computational models and biological data will be presented in Section 2.3.

2.1 Biological context

As a �rst approximation, visual information can be depicted as traveling through the brain areas
presented in schematic representation 2.1. Visual input is progressively transformed from a very
speci�c format that is almost pixel-based to a more behaviorally useful representation detailed in
sub-section 2.1.1. While both neurons of early brain areas and arti�cial neurons of computational
models where found to be selective to low-level features such as edges and colors, single units of
the hippocampus amongst other higher brain areas were found to be invariant to speci�c object
categories or even individual faces[2, 3, 4]. However neuroscientists still have only limited under-
standing of the underlying mechanisms of these observed speci�cities. The brain's high processing
speed and surprising combination of selectivity and robustness to variations of scale, occlusion,
luminosity and angle only to name a few[2, 3, 5] remain an intriguing domain of modern research.
In sub-sections 2.1.2, 2.1.3 and 2.1.4 biological knowledge about object completion tasks will be
exposed. Indeed vision in a daily life setting rarely involves whole and/or perfectly isolated object
recognition tasks and therefore recognition of occluded objects is very interesting for multiple arti�-
cial intelligence applications. Understanding the speci�cities of neural responses to occluded visual
signals at di�erent levels of the hierarchy can give new hints to improve existing computational
models.
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Figure 2.1: Highly oversimpli�ed schematic of the visual system. The ventral pathway is shown in blue
while the dorsal one is shown in pink. Boxes represent the main areas involved in image processing. Arrows
show the direction of visual information �ow.

2.1.1 The visual cortex hierarchy

The path from the retina to the cortex

Light reaches the eye and excites photoreceptor neurons of the retina, located at the back of the
eyeball. These neurons subdivide in two types: the rods are mainly activated in dim light con-
ditions while the cone are implicated in color and �ner detail perception. The central region of
the retina provides the highest resolution, being composed solely by cones. The above-mentioned
neurons then transmit the signal through horizontal, bipolar and amacrine neurons to the retinal
ganglion cells which compose the optic nerve. Information travels through the optic nerve to the
lateral geniculate nucleus (LGN) located in the thalamus which provides the �nal link to the pri-
mary visual cortex (V1).

The primary visual cortex

In this area, neurons are arranged into six distinct layers which are perpendicular to columns shar-
ing similar visual preferences[6, 7]. Visual signals are then split into the ventral and dorsal stream.
What is of particular interest in V1 is the neuronal type subdivision which provided inspiration
for early computational neural networks, especially HMAX which will be more detailed in section
3.3.1. At this level in the visual pathway, neurons can be generally divided into either simple
or complex cells although complex cells can also be found in later visual areas such as V2 and
V3. Hubel and Wiesel[8] were the �rst ones to explore how this speci�c architecture can explain
orientation-tuning and position or scale invariance observed at the level of V1 in a simple and
elegant way.
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Simple cells were found to respond speci�cally to tasks involving low-level features such as color
speci�city or edge detection and have on or o� center receptive �elds which are usually modeled
by Gabor functions[9] de�ned by:

F (x ,y) =
1

2πσxσy
exp
− x
2σ2x
−

y
2σ2y cos(kx − ϕ)

where σx and σy determine the spatial extent in x and y, k and ϕ are the preferred spatial frequency
and phase respectively. On the other hand, complex cells receive inputs from multiple simple cells
and therefore do not show simply de�ned excitatory or inhibitory responses anymore. These cells
�re for inputs displayed in a certain orientation but irrespective of their exact location providing
the invariance properties observed in the visual system. One example of more complex generated
behavior are the end stopper cells which respond maximally when an oriented bar ends within the
receptive �eld.

The dorsal stream

The dorsal stream will not be emphasized in this thesis but roughly corresponds to the action
channel since it essentially processes spatial locations, stereopsis and object motion, eventually
transforming this information into motor behavior. V3 is considered to be part of the dorsal
stream.

The ventral stream

The ventral stream, also called the what channel, will be of special interest in this study since it is
responsible for detailed recognition of the visual input. Information passes through the secondary
visual cortex (V2) where it is transmitted through V4, sharing a similar organization to V1, and
�nally transfered to the inferotemporal cortex (IT). Neurons in the IT respond selectively to more
complex shapes such as faces.

Anatomical top-down and recurrent connections

Although input up to area V2 is strongly feed-forward, back-propagations are in fact more abun-
dant than purely feed-forward inputs when looking at the whole picture of the brain areas involved
in vision[10, 11, 6]. Recurrencies are introduced in several ways such as horizontal connections
within each area, bypass and top-down connections between areas and even connections between
dorsal and ventral streams[12]. The high number and di�erent type of connections between vi-
sual areas form a very complex network as presented for macaque monkey in Figure2.2[13]. The
computational contributions and scope of these recurrences is not yet clearly understood. It was
however argued that they are likely involved in the speci�c task of partial object recognition[1]
which will be the focus of this thesis. They also play a role in many other interesting phenom-
ena such as dynamical change in receptive �elds properties like preferred orientation, position or
size[14], providing evidence that even the primary visual cortex is not just a static feed forward
spatio-temporal bank of �lters.
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Figure 2.2: Layout and demonstrated anatomical connectivity of macaque visual cortex[13]. Information
is gathered by the eye's retinal ganglion cells at the bottom of the hierarchy (RGG). It is then processed
by up to thirty-two visual cortical areas, two sub-cortical visual stages and several non-visual areas before
ending up in the hippocampus (HC). A total number of 187 anatomically demonstrated mostly reciprocal
links connect these di�erent areas, showing the extent of potential complexity neuroscientists are faced
with when studying vision and the important to try to constraint, through limited timing or masking
techniques, the number and type of connections used by the brain.

2.1.2 Properties underlying contour completion in early brain areas

It is thought that contour completion is one of the initial steps involved in a partial object iden-
ti�cation task. But even this �rst approach is an ill-de�ned problem since an in�nite number of
solutions can be consistent with the visual input. Exactly how the brain is successful in �nding the
right solution in a fast and mostly reliable way even for very high percentages of occlusion remains
unclear. However some characteristics of contour completion when edges are in close proximity
have been discovered through numerous psychophysics studies. A summary based on the review
of H. Tang and G. Kreiman[15] will be provided here.
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Modal and amodal completion types

Modal completion takes place when an observer is able to build a mental model of the image thanks
to illusory contours revealed with the help of inducers[16] as shown in Figure 2.3 b). However
since this setup does not happen in nature, focus will be set on amodal completion which happens
when an explicit occluder is hiding part of the image, as presented in Figure 2.3 a). For non
extreme occlusion percentages, an observer would be aware of the overall shape despite not seeing
some of its contours[17].

Figure 2.3: Figure from Wagemans et al.
[18], adapted from work by Singh et al. [19]
A. Amodal completion of the black shape by
a gray occluder.
B. Modal completion: a white triangle shape
is seen although contours are illusory because
of the three black inducers.

Contextual modulation

An interesting property of amodal completion is that it relies on identi�cation of the di�erent
depths within the image inferring that information from outside individual receptive �elds is com-
bined to enable accurate surface-based representation [20].Contextual modulations is unsurprising
in higher brain areas which have performed multiple pooling operations already but interestingly,
it was also suggested to happen to some extent at the level of the primary visual cortex. Indeed,
a small percentage of the orientation speci�c cells (12%) of V1 responded strongly to positive
disparities depicting an occluder presented in front of the moving bar but not to zero or negative
disparities [21]. This behavior could be explained mainly by lateral connection and potentially
close-proximity feedback loops of adjacent areas. Modal completion experiments also favor the
implications of such connections since illusory contour responses were measured �st in V2 and
only later appeared in V1.

The importance of an explicit occluder

Another property of amodal completion was that the presence of an explicit occluder compared to
just erasing part of the image was found to make the completion task easier. The B letters of Breg-
man, presented in Figure 2.4 is a famous example of this e�ect. A similar observation was made
while performing a forced categorization task on images presented through gaussian bubbles with
either gaps �lled by occluders or simple background as shown in Figure 2.5. The performance
was signi�cantly higher for high percentages of occlusion (more than 75% of the pixels missing) [22].

2.1.3 Responses of higher brain areas to occluded shapes

Higher visual area were also studied and some interesting observations were made. In V4, selec-
tivity was maintained for various curvatures occluded by dots within a certain range providing
evidence for the involvement of contour-based mechanisms in segmentation and subsequent recog-
nition of partially occluded images[26].
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Figure 2.4: Bregman-Kanizsa Display [23, 16,
24]: B letter identi�cation is easier when an oc-
cluder is �lling the gaps compared to the deleted
counterparts.
A. unoccluded B letters,
B. Occluded B letters,
C. B letters fragment counterparts. Identi�ca-
tion is harder in this case.
D. occluded B letters with di�erent contrast.
Figure from Kelly et al. [25]

Figure 2.5: Example of sample images
used by Johnson et al. [22] for their exper-
iment. Presence of an occluder compared
to simply deleting image pixels strongly
increased subject performance for occlu-
sion/deletion of 60% and 75% of pixels.
The violin pictured here has 20% of miss-
ing pixels in both conditions.

Another study[27] focused on the IT neuronal responses and presented naturalistic scenes which
were occluded by generating a bubble mask through which the image is seen. By exploring the
e�ect of di�erent bubble locations in a behavioral experiment involving humans and monkeys, they
�rst showed that both species had similar results and further con�rmed the intuition that some
information in the image is more important for object recognition than other depending on the
object type. In parallel, intra-cortical measurements were carried out in monkey using the same ex-
perimental paradigm [28]. Results showed that for occluded scenes where features with diagnostic
value were conserved, �ring rates and local �eld potentials of neurons in the IT remained mostly
invariant to very high amounts of occlusion. In contrast, when only non diagnostic parts were
shown the absolute magnitude of the responses varied linearly with the percentage of occlusion.

Finally, intra-cortical recording in humans exposed to naturalistic objects, again occluded using
the bubble paradigm, measured neuronal responses in the fusiform gyrus that remained similar for
images with up to 89% of occlusion[29]. Interestingly, some of these images shared no common
pixel and still triggered similar neural local �eld potentials.
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2.1.4 Spatio-temporal dynamics of object completion

Intra-cranial recording in epilepsy patients allowed Tang et al. [29] to evaluate how and when
visually selective responses to occluded objects appeared. They observed that neural responses
along the inferior occipital and fusiform gyri were still selective to partial objects showing only 9
to 25% visibility compared to the object's whole counterpart. Despite di�erential occlusion and
therefore variation in speci�c feature presentation across trials, recorded intra-cranial �eld poten-
tials (IFP) waveforms, amplitudes and object preferences were similar between whole and occluded
conditions. However IFP responses were delayed by approximately 100 ms for partial condition
as shown in Figure 2.6, which can be contrasted to image transformations such as scale, posi-
tion or rotation which do not trigger delays [30, 31, 32, 33, 3]. The observed latency di�erence
remained signi�cant after controlling for variations in contrast, signal amplitude and selectivity
strength. Moreover, consistency was maintained when using di�erent frequencies bands and dif-
ferent statistical comparisons. These delays were particularly pronounced in higher brain areas
within the ventral stream. When comparing with other studies, it is clear that it is the presence
rather than the exact value of the delay that is characteristic of occluded stimuli across di�erent
experimental paradigms.In another experiment[34] analyzing amodal completion of more complex
natural images such as faces, the delays were closer to 200 ms. Yet another study[32] focused on
neural responses in areas not only involved in vision and observed delays ranging from 200 to 500ms.

Figure 2.6: Figure from the work of Tang et al. [29] showing an example of intracranial �eld potential
responses to a whole face stimulus (left) and its �ve occluded counterparts from an electrode in the left
uniform gyrus. For the whole condition, average over 9 responses is in green while single trial traces are
shown in gray. For the Partial condition single trial responses are in green and each trial's stimulus was a
di�erent occlusion pattern of the whole image presented left. The dashed line indicates the stimulus onset
time and the black bar corresponds to stimulus presentation duration.

It is very unlikely that these delays are due to slower speed of information �ow through a purely
feed-forward visual hierarchy for partial objects compared to whole ones because early visual areas,
such as V1, did not show signi�cant delay in the response latency. Delayed responses could thus be
used as indicators of recurrent or feedback modulations [35, 36, 37, 38].Moreover, the timing be-
tween long feedback loops connecting IT and V1 and shorter ones between V1 and V2 should also
be distinguishable[32]. Therefore, timing of neural responses can be used to hypothesize the pres-
ence of proximal or distal feedback loops. Previous studies[11, 12] further argued that horizontal
and feedback connections present throughout the visual cortex are the most probable components
involved in these recurrent modulations . Finally understanding the speci�cs could ultimately
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lead to creating more e�cient algorithms for arti�cial intelligence since the observed temporal dy-
namics indirectly show restrictions on the number of underlying computations involved in the brain.

2.2 Computational context

2.2.1 De�nition of Arti�cial Neural Networks

At the basis of every neural network is a single unit called a "neuron" which can be modeled by the
very simple architecture presented in Figure 2.7 (left). Mathematically, the activity of a single
unit u is computed by applying a non-linear activation function f to the combination of an input
vector X with a weight vectorW (including a bias term) as de�ned by the following equation:

u = f (
∑
i

wixi)

Neural networks then combine many of these units, each de�ned by their speci�c weights, into
rows, referred to as layers. In computer vision, each layer outputs a set of features to which its
neuronal ensemble preferentially responds. Complexity is then increased throughout the network
by stacking together multiple di�erent layers, one layer becoming the input of the next as depicted
by Figure 2.7 (right). Such networks are then trained to extract useful features for image recog-
nition using backpropagation, a process we will de�ne later. During training, outputs from lower
layers become sensible to certain edge orientations, colors or curvatures while higher layers will
eventually respond selectively to faces for example.

Figure 2.7: Basic architecture of a neural network. Several single units are combined in a layer. Layers
are then stacked together, the output of one layer becoming the input to the next layer. In computer
vision, complexity of extracted features thereby increases as information �ows through the system, in a
similar fashion as the feed forward hierarchy of the brain. The connections between layers are determined
by weight matrices W, updated to minimize error during training of the network. At the single unit level,
a non-linear activation function is applied to the combination of inputs and learned speci�c weights of a
�neuron �.
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Arti�cial neural networks were originally inspired by the biological observations[8, 39] described
earlier but quickly became dominated by mathematical optimization[40] rather than advances in re-
search about the brain's anatomy and connectivity. Despite this divergence, performance achieved
by several deep convolutional networks on the ImageNet large-scale dataset[41] increases every
year, becoming comparable to human data [42]. Examples are listed in table ?? from which one
can observe that adding layers seems to be necessary to reach higher performance. Increasing
network depth does however require additional precautions to address new challenges such as the
vanishing gradient problem which will be presented later. Moreover, adding layers to the archi-
tecture while keeping the feed-forward re�ects only a very minor percentage of the connectomics
of the brain since most connections are horizontal or feedback connections[14] as argued earlier.
Recent studies[1] have hinted that this might be the explanation of feed forward model's poor
performance with more complicated tasks requiring pattern completion or context awareness. Just
adding complexity to the model without making advances in the underlying learning mechanisms
leads to models that are harder and harder to predict or understand. Nonetheless, neural networks
of increasing depth can perform a variety of tasks by combining di�erent concepts and techniques,
some of which will be presented below[43].

Year Neural Network Number of Layers top-5 error

2012 Alexnet 8 16.4%
2013 ZFNet 8 11.7%
2014 GoggleNet 22 6.7%
2015 ResNet 152 3.6%

Table 2.1: State-of-the-art neural networks that won the ImageNet contest [44] . The number of layers
gives an idea of their complexity while their performance is depicted by the top-5 object classi�cation rate
on the ImageNet test set. Top 5 error is less conservative than other error measurements since it only
requires the network to narrow down the output to 5 potential labels which must contain the correct one.

2.2.2 Supervised Learning in Arti�cial Neural Networks

Backpropagation and Gradient Descent

Backpropagation[45] is a supervised learning technique that repeatedly adjusts the weights of the
connections in the network by minimizing an objective function quantifying the error the model
makes when predicting the label of the input. The most commonly used functions serving this
purpose are the L1 loss and L2 loss, also called mean squared error (MSE) and are de�ned by:

L1 =
∑
i

| yi − ŷi |

L2 =
∑
i

(yi − ŷi)
2

where ŷ is the output predicted by the model and y is the ground truth provided in addition to
the dataset. The L2 metric can be interpreted geometrically as the euclidean distance between the
two vectors. Its gradient is the di�erence between the prediction and the true label and the L2 loss
is therefore very sensible to outliers.
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During backpropagation, errors computed with an objective function L are propagated back
iteratively through the network by applying stochastic gradient descent (SGD) to the weights using
the following mathematical formula[? ]:

W =W − µ∇W LW (Xi ,Yi)

whereW is the weight matrix, µ is the learning rate and ∇W LW (Xi ,Yi) the current gradient approx-
imation for input/output pair i from the training set. The weight parameters update along the
direction of the gradient of the objective function is iterated until a minimum is reached. The par-
ticularity of SGD compared to classic batch gradient descent is that it computes an approximation
of the gradient for one input/output pair at a time. SGD therefore performs updates with higher
variance, enabling it to jump to new solutions but also causing instability through high �uctuation.
The mini-batch gradient descent combines advantages of both batch and SGD by updating the
weights for a subset of training examples. This approach allows computations to take advantage
of big matrix multiplications which are highly optimized in GPUs [46]. Momentum[47] can also
be added to the gradient descent to prevent oscillations. It can be incorporated by simply adding
a fraction of the update vector v of the past time step to the current time step as shown in the
following equation:

W =W −v

v = γv − µ∇W LW (Xi ,Yi)

where µ is the momentum coe�cient, representing the memory of previous gradient directions.
Therefore momentum is ampli�ed in directions where the objective function was persistently de-
creased over multiple time steps [48] and convergence is faster.

Backpropagation can also be used to help visualize and better understand what exactly deep
neural networks learn by performing gradient descent in the input images space [49] rather than
weights space. One can thereby �nd the optimal stimulus for each unit and which features max-
imally activate a given layer but this method does not give information about the unit's invariance.

Activation functions

Activation functions applied to the weight-input combination aim to introduce a non-linearity after
successive element-wise summations and multiplications. Some examples are provided in Figure
2.8.

Figure 2.8: Di�erent frequently used activation function. A common and necessary feature is non
linearity. Sigmoid and hyperbolic tangent are saturating, increasing the problem of vanishing gradient
while ReLU provides faster learning and sparser weights. Leaky ReLU is an attempt to minimize the risk
of "dead" ReLU were the system is unable to update because of negative input and zero gradient.
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Although sigmoid or hyperbolic tangents are still frequently used, choosing recti�ed linear unit
(ReLU) was found to decrease training time while reaching comparable accuracies[50]. It is often
argued that ReLUs are more biologically plausible since studies indicate that cortical neurons rarely
exhibit a maximum saturation regime. Its most interesting properties stem from its mathematical
de�nition:

f (x) =max(0,x)

One immediate advantage is that the gradient will not vanish during backpropagation since it will
have a constant value of one or zero. For sigmoids on the contrary, the gradient would decrease ex-
ponentially through the layers thereby slowing down the learning process signi�cantly. The impact
of hard saturation at zero on optimization with ReLU can of course also be negative if too many
neuronal contributions are canceled since, once the gradient is null and the input is negative, there
is no way for the network to recover and update its output. Although this issue rarely happens, a
common precaution is to use a leaky ReLU by using f (x) = max(0.01x ,x) for example. The van-
ishing gradient problem is then again present but still greatly diminished compared to sigmoids.
However, there are also advantages to keeping the initial de�nition of the ReLU. Indeed, it will
generate sparser weights, meaning that less neurons will be used in the network and features will
be less inter-dependent which greatly reduces over�tting. In a randomly initialized network for
example, it was found that about 50% of the hidden units had a non zero output[51]. In contrast,
most other activation functions are saturating and will always output a very small non zero value
keeping a small contribution for all neurons and generating very dense solutions.

Weight Initialization

As the network is trained, it will update its weights in order to maximize its performance on the
given training set. If the weight matrix W is properly normalized it can be expected that the
number of negative and positive weights would cancel out. However initializing all the weights
at zero would not yield good results since every neuron would compute the exact same output,
leading to computation of the exact same gradient during backpropagation of the error and thus
the same parameters. To break the symmetry, it is best to update the weights to small random
values close to zero so that each neuron generates a random but unique output.

A robust initialization method[52] for a single neuron for deep models using the ReLU activation
function is given by the formula:

w = random(n) ×

√
2

n

where n is a random number are drawn from a Gaussian distribution and the variance is divided
by the number of input units n. The scaling of the variance is important so as to stop it from
increasing with the number of inputs.

Another interesting initialization technique is batch normalization[53] which makes normal-
ization a part of the model's architecture. Indeed during training of deep neural networks, the
distribution of a layer's input changes over time because of the stacking of the layers. This prob-
lem, called the internal covariate shift, may lead a signi�cant slow down of learning because the
distribution then moves towards the saturation regime of activation functions such as sigmoids.
Batch normalization is inserted at the end of every layer of the model, just before applying the
non-linearities and forces the activations to take on a unit Gaussian distribution by normalizing
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features with respect to the mean and variance of each mini-batch independently. It is therefore
more robust to sub-optimal initialization, reduces the internal covariance shift and allows higher
learning rates.

2.2.3 The building blocks of neural networks

Figure 2.9: Example of a neural network architecture containing two convolutional layers, two pooling
layers and two fully-connected layers. Image was taken from https://filebox.ece.vt.edu/~aroma/web/

cv_project_15/approach.html.

Convolutional Layers

A convolutional layers consist of a three dimensional arrangement of parameters called neurons.
Each of these neurons is locally connected to every pixel of a small speci�c input volume called
its receptive �eld. Neurons linked to the same receptive �led are organized into a depth column.
Aligning such depth columns along each image volume de�nes a depth slice. An underlying hy-
pothesis for dimensionality reduction in the case of convolutional layers is that some features,
especially low level ones, that are relevant for some area of the input have high chances to also
be important for other areas. Therefore, neurons of a single depth slice share the same weights
and they can be implemented as a spatially small �lter that is slid across the input's height and
width while extending throughout the input's depth (three channels for RGB images) in order to
be mathematically consistent. The output of the layer is a two dimensional activation maps for
every �lter used. These maps are generated by computing the dot product between the weights
of the �lter and the input while sliding the �lter across each receptive �eld location. The hyper-
parameters to be chosen and optimized include the amount of �lters used per convolutional layer
K determining the depth of the output volume, their spatial extent F also called receptive �eld
size, their stride length S and the extent of zero padding P in order to extract information from
the borders of the input space. Thanks to weight sharing, the number of weights to optimize is
decreased toW = K × F × F × D[43].

During training, the network learns speci�c weights for each �lter using backpropagation. As a
result, each �lter ultimately learns to detect di�erent low level features such as curvature or edges
along certain orientations for early layers as presented in Figure 2.10 or more complex features
such as faces or wheels for higher level layers.
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Figure 2.10: Examples of �lters learnt by the �rst convolutional layer of Alexnet. Each of the 96 �lters
composing the convolutional layer is of size [11x11x3] for RGB images and each �lter is shared by the
55*55 neurons in one depth slice. Image was taken from the course http://cs231n.stanford.edu/

Pooling layers

Pooling layers are frequently introduced between successive convolutional layers to reduce width
and length of the representation and thereby reduce the computational cost by lowering the amount
of parameters to optimize. It commonly downsamples the output of each convolutional layer �lter
by applying a max operation with �lters of size 2x2 and stride 2 as shown in Figure 2.11. Other
pooling functions such as average pooling or L2-norm pooling can also be applied. The depth of
the convolutional layer output (i.e. the number of �lters) remains of course unchanged and no
additional weights are introduced in this process.

Figure 2.11: Example of a 2x2 �lter slid with a stride of 2 across the height and length of the activation
map of a speci�c �lter of a convolutional layer[43]. Image was take from the course http://cs231n.

stanford.edu/

Fully connected layers

Fully connected (Fc) layer neurons have full pairwise connections with neurons of the previous
input layer but no self connections. The output is thus simply a matrix multiplication followed by
a bias o�set.The number of weights to be learned is therefore determined by the number of input
neurons multiplied by the number of output neurons. Fully connected layers are mostly used to
learn non-linear combinations of the high-level features of the last convolutional layers and reduce
dimensionality to a one dimensional vector. The last fully connected layer usually classi�es the
features into the di�erent classes of the dataset labels. It has frequently been observed that they
are less generalizable than convolutional layers because of their higher feature speci�city.
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Recurrent layers

One of the limitations of feed forward networks is that they have a hard-wired number of com-
putational steps determined by the number of layers as well as a �xed input and output size.
Recurrent layers (RNN) on the contrary allow for operations over sequences of vectors and have a
memory which captures information of previous computation steps. Interestingly, any input can
be converted into a sequence and bene�t from recurrent layers. With visualizations algorithms for
example, images can be read patch by patch from one direction to the other.

Mathematically the internal state of these layers h is updated by combining information from
the input x at time t and the previous state of the system at time t − 1.

ht = f (Wht−1 +Uxt )

whereU andW are the speci�c combination weights which enable to �ne tune the importance given
to information in the past compared to information in the present. The function f is a chosen
activation function, usually a ReLU. A prediction y is then given by multiplying the current state
with a weight matrix V following the formula:

yt = Vht

It was argued earlier that convolutional layers allow for complexity reduction by sharing weights
through space. Recurrent layers also exhibit a similar advantage but by sharing the weights (U ,V
andW ) over time. Therefore recurrent layers can be unfolded into multiple stacked fully connected
ones which would in this case all share the same weight matrices as shown schematically in Fig-
ure ??. This approach is the most common way of training RNNs in practice: each time point
corresponds to another fully connected layer and is stacked on top of the previous ones.

Figure 2.12: Unfolding of a recurrent layer into its feed-forward equivalent. Notice how the weights wr ec
are shared across time and the input weight wx is kept constant. The state of the network is updated
at each time steps through the combination of the input and the recurrent contribution. Image was take
from http://peterroelants.github.io/posts/rnn_implementation_part01/

Since h and y are updated at every time step, each new state of the system should contain traces
of all states that proceeded it. Although this memory is in theory in�nite, in practice it is limited
because of the vanishing gradient problem to which RNNs are particularly sensible[54] because
error is now backpropagated through time[55]. This backpropagation technique is implemented in
practice by running standard backpropagation through the previously described equivalent feed
forward arti�cially deep network. Weight values are typically selected to be somewhat distributed
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across neurons, by the L2 regularization for example, and are therefore usually very small. As the
number of time steps gets larger, the number of added layers increases and the number of times
these weights are multiplied also increases which decreases the value of the weights more and more,
eventually leading to an exponential decay of the gradient. The vanishing gradient then pushes
weight values even closer to zero and training can no longer function e�ciently.

Networks architectures such as Long-Short-Term-Memory (LSTM)[56] have recently bypassed
this problem by adding gated memory units to each layer which enable �ne-tuning of the amount of
memory exposure and when to forget information or reset memory. Contrary to standard RNNs,
LSTMs update the current state of the system using additions rather than multiplications and
do not apply an activation function. Speci�c features can thereby be remembered without being
"deformed" by the activation function and the error can be backpropagated e�cienly, reducing
the gradient decrease over time.

2.3 Project aim

The speculation made by Tang et al.[29] is that observed neural delays can be attributed to re-
current computations relying on prior knowledge about objects to be recognized[57]. By using
novel objects, the aim of this thesis is to minimize the prior knowledge of human subjects progres-
sively strengthened through extensive and repeated exposure to images. Behavioral experiments
mainly involving occluded stimuli were conducted and contrasted to previous experiments from the
Kreiman Lab using familiar objects[1]. These results will then be linked to performance of both
feed forward state-of-the-art neural networks, such as Alexnet and HMAX, and neural networks
with added recurrent connections using the same dataset as the one designed for the psychophysics
experiment. Through this work, it is hoped that increased performance of recurrent neural net-
works generalizes well to completely novel shapes, providing a robust implementation for arti�cial
intelligence applications involving recognition of occluded shapes.
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Chapter 3

Materials and methods

3.1 Novel Images used

Novel object were created by manipulating visual attributes so as to generate non-familiar stimuli
for human subjects of behavioral experiments. By using these arti�cial objects, scientists aim to
minimize the in�uence of subject's previous experience on behavioral e�ect. They can thereby be
more con�dent that observations are mostly due to the researcher's manipulations on the stimuli.
Moreover, these stimuli are also a powerful tool for investigating human's learning ability. Five
hundred unique novel objects used for the experiment were chosen from the Center for the Neural
Basis of Cognition stimulus repository1. An equal number of selected objects were taken from �ve
di�erent categories described below containing 4 families each. In total, each family comprised
twenty-�ve unique exemplars, adding up to a hundred images per category.

The Fribble stimulus sets was built using the work of Pepper Williams. The shape and texture
of the main bodies as well as the approximate location and inter-relationships between appendage
parts remain constant for all exemplars of a particular category. The main diversity between exem-
plars is introduced by the variation of the appendage parts' shape and texture. Each exemplar is
thus de�ned by a unique conjunction of appendage parts while its category can be simply inferred
from looking at the main body's shape. For our purposes, 3 di�erent categories were chosen: one
having a horizontal cylindrically shaped main body referred to as α , one having a ball-like shaped
main body referred to as γ , and one having a vertical cylindrically shaped main body referred to
as β . Greek letter names were chosen in our experiment so as not to in�uence subjects from the
behavioral experiment with potential meaning of an invented name. Three exemplars belonging
to the same family but di�erent categories are presented in Figure 3.1

Stimuli from the Gribbles and Yu's Un-Facelike Objects (YUFOs) stimuli datasets were selected
to compose our categories δ and ϵ respectively. These arti�cial images were originally designed by
Scott Yu for di�erent investigations. Indeed, three dimensional shapes of each exemplar are more
consistent inside each speci�c category than for the Fribble objects mentioned above. Instead
variation is mainly introduced through di�erent object viewpoints and lighting conditions. An
object identi�cation task will therefore require more attention to details, as would be the case for
faces, but symmetry is not respected here, making the images "un face-like". Three examplars of
each category are shown in Figure 3.2.

1Novel objects, Center for the Neural Basis of Cognition, http://wiki.cnbc.cmu.edu/Novel_Objects
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Figure 3.1: Categories of the Fribble
Stimulus Set from the work of Pepper
Williams. Presented categories α , β and γ
were used for our experiment and can be
identi�ed thanks to the shape and texture
of the main body. Three di�erent exem-
plars per category with a unique combi-
nation of main body and appendage parts
are displayed labelling speci�c appendage
parts A, B, C and D.

Figure 3.2: Categories of the Gribble
(named δ , shown at the top) and YUFO
(named ϵ, shown at the bottom) stimu-
lus sets from the work of Scott Yu. Three
di�erent examplars of presented categories
δand ϵ are shown. Main intra-category
variation is due to lighting conditions and
change in view point of the 3D model.

3.2 Psychophysics Experiment

A psychophysics visual recognition experiment was designed using Matlab's Psychtoolbox to as-
sess human performance on a categorization task comprising a range of heavily occluded (used for
about 85% of the trials) and whole (used for about 15% of the trials) versions of images described
in Section 3.1.

3.2.1 Experimental setup

Subjects were recruited (n=23, ages ranging from 20 to 34, 11 female) and had to perform 5 way
alternative forced choice categorization (AFC) on the novel objects. Since they have no previous
experience with the presented stimuli, a training phase had to be validated before assessing partial
object performance. A compromise between minimal exposure and correct classi�cation into the
5 di�erent categories (α , β , γ , δ and ϵ) for whole images had to be made. Therefore, the exper-
iment �rst consisted of a short demonstration of one fully visible example of each category and
its corresponding name. Then a training phase was implemented comprising of 10 whole novel
images (2 from each category but from unique families) and subjects were required to get at least
5 times in a row 8 out of the presented 10 images names right before being allowed to proceed to
the experiment assessing human performance on occluded version of the objects. Subject needed
on average 80 exposures to pass the test (i.e. to get at least 8 images right out of 10 �ve times
in a row). The standard deviation among subjects was 40 exposures. The same test was repeated
once more in the middle of the experiment with the pass condition lowered to three trials. This
control was implemented to verify that subjects remembered the categories of full images well so
that performance can be fully explained by the object occlusion e�ect. As expected, all subjects
passed the test with the minimal imposed number of trials.
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During the experiment that followed, subject were presented with 1,000 stimuli resulting from
uniquely renderings of 500 contrast-normalized and grayscaled novel images, resized to 256x256
pixels so as to span about 5◦ of the visual �eld. Amount of presentation time of the stimuli,
termed stimulus onset asynchrony (SOA), was randomly chosen to equal 25, 50, 85, 100 or 150
ms for each stimulus and image presentation was followed for 500ms by a gray screen (unmasked
condition) or spatial noise pattern (masked condition) chosen with equal probability. A choice
screen was then displayed and subject's answer was recorded using a gamepad. The classi�cation
performance is de�ned simply as the percentage of correctly labeled categories and compared to
chance level which is 20% since 5 categories are present. Eye movement was also recorded during
the whole experiment for 21 subjects out of the 23 using an infrared camera eyetracker at 500Hz
from Research Ontario, Canada. It was mainly used to ensure subject attentiveness during the task
by monitoring �xation on a cross positioned at the center of the screen for at least 500ms before
allowing stimulus presentation. A summary of the behavioral experiment setup can be found in
Figure 3.3.

Figure 3.3: Novel Objects Occlusion psychophysics experiment setup: �xation was required for at least
500ms in order to display occluded (shown here) or whole image for SOAs varying from 25 to 150 ms. Image
presentation was either followed by a neutral background (unmasked condition) or a spatial noise mask
(masked condition) for 500ms. The choice between the two conditions was made with equal probability.
Finally they had to classify the presented image into one of the 5 categories shown on the response screen
using a gamepad.

3.2.2 Building the dataset

The stimuli dataset was built from a database of 500 images uniformly subdivided into 5 categories
named α , β , γ , δ and ϵ . Examples can be found in Appendix 5.3. Image background was extracted
for each image using a combination of histogram bin counting, [3x3] median �ltering and erosion
by a [2x2] disk for category ϵ and a [3x3] square for the other categories. Through this process,
500 background masks were de�ned in order to enable computation of speci�c image visibility after
occlusion without the contribution of uninformative background pixels. Next, all images were con-
trast normalized using the histMatch matlab function from the SHINE toolbox to reduce potential
in�uence of low-level features especially relevant for the feature extraction which will be performed
by computational models on the dataset in a complementary experiment. This function equates
the luminance histogram of sets of images to a computed input speci�c average target histogram
while ignoring the image background speci�ed by the background mask. It additionally uses the
SSIM method of Avanaki[58] which optimizes histogram speci�cations for structural similarity.
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Figure 3.4: Typical whole object (category α , left) and occluded counterpart (shown right)

In the next step, a thousand unique renderings per subject were obtained by applying di�erent
occlusion patterns to the original images, resulting in a total of 23,000 di�erent stimuli. An exam-
ple of a whole object and its occluded counterpart is shown in Figure ??. Subject speci�c image
presentation, masking condition, SOA and whole or occluded condition orders were attributed by
random index permutation. Object occlusion was implemented by generating randomly positioned
Gaussian bubbles through which the image is shown. This means that any part of the image out-
side the de�ned bubbles was hidden. The bubble paradigm used[59] enables evaluation of spatial
integration of multiple parts to achieve recognition. The number of bubbles was �xed to 5 and
the standard deviation of the Gaussian was experimentally chosen to be 24 so as to optimize task
di�culty, trying to maximally span heavily occluded images while keeping the subject motivated
for the experiment. Bubble centers locations were generated through random uniform sampling
and bubbles were created using the following algorithm:

1 f unc t i on [ bubbledImage , mask ] = . . .
2 AddBubbles ( img , bubbleCenters , bubbleSigmas , c o l o r )
3 % cen t e r s are indexed over numel ( img )
4 myeps = 10^−8;
5 bubbledImage = double ( img ) ;
6 mask = ze ro s ( s i z e ( img ) ) ;
7 [ y , x ] = ndgrid ( 1 : s i z e ( img , 1) , 1 : s i z e ( img , 2) ) ;
8 [ yc , xc ] = ind2sub ( s i z e ( img ) , bubbleCenters ) ;
9 f o r i = 1 : l ength ( xc )

10 maskt = exp(− ( ( x − xc ( i ) ) .^2 + (y − yc ( i ) ) .^2) / 2 / bubbleSigmas (
i ) ^2) ;

11 maskt = maskt / max(maskt ( : ) ) ;
12 mask = max(mask , maskt ) ;
13 end
14 mask(mask < myeps )=0;
15

16 foreground = co l o r / 255 ;
17 m = max(255 , max( bubbledImage ( : ) ) ) ;
18 bubbledImage = bubbledImage / m − foreground ;
19 bubbledImage = bubbledImage .∗ mask + foreground ;
20 bubbledImage = uint8 ( bubbledImage ∗ 255) ;
21 end
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where:

−imд is the array of the whole grayscaled image

−bubbleCenters is the array with the coordinates of the center of each of the 5 bubbles

−bubbleSiдmas is the standard deviation which determines the size of the bubble

−color is the background color in grayscale

−bubbledImaдe is the occluded image

−mask is the bubble mask though which the image will be seen

Image visibility was de�ned as the ratio of total amount of visible object pixels after and before
adding the bubbles to the image. Background pixels were not considered in this computation since
they are uninformative of object category.

3.2.3 Experimental conditions

We were particularly interested in human performance for high occlusion conditions since this
is where purely feed forward computational models fail to match human scores in this context of
perfectly isolated objects. Most image renderings therefore resulted in occlusion patterns spanning
the 0 to 40% image visibility range as shown in Figure 3.5. As a control, 15% of image renderings
were presented to the subject without occlusion (whole condition).

Figure 3.5: Examples of partial object with di�erent visibility percentages

Moreover, we wanted to analyze the e�ect of presenting a mask directly after image presenta-
tion, depending on amount of occlusion and SOA. Indeed, backward masking and short SOAs have
been used in several psychophysics experiments as tools to approximately isolate the feed forward
information �ow from most of the numerous horizontal and feedback connections that modulate
it[60]. Several studies[61, 62, 63, 64, 65, 66] previously showed that presenting a high-contrast
spatial noise mask stimulus directly after an image presented with a short SOA e�ciently inter-
rupted any additional processing, thereby strongly limiting modulation by recurrent connections
in the visual pathway. Therefore, each of the 500 images was occluded twice in our experiment,
generating two unique renderings per image with one rendering used for the masked and one for
the unmasked conditions. A speci�c spatial noise mask was computed for each rendering using
its corresponding whole image. This approach was motivated by the observation that mixing the
spectrum noise bands with information of the image's spectrum is more e�ective at interrupting
neural responses[67].
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The formula used for each grayscaled 256x256 whole image was thus:

mask = <(F −1(A × expiI ))

where:

A is the average across images of the complex modulus of the fourier transform of each image,

I = atan(=(Z ),<(Z )) + atan(=(H ),<(H ))
with Z being the fourier transform of the grayscaled 256x256 image and H being a 256x256
matrix of pseudorandom values drawn from the standard uniform distribution on the open
interval (0, 1). The < and = symbols refer to the real and imaginary part of a complex
matrix while F denotes the Fourier transform.

3.3 Feature extraction using feed forward neural network

models

3.3.1 HMAX

For a simple task such as whole and isolated object identi�cation, visual processing in the cortex
can be represented by a hierarchical feed forward information �ow with increasing complexity as
explained in Section 2.1. The HMAX model[39] was the �rst quantitative computational model to
conform to anatomical and physiological constraints, extending the principle of Hubel and Wiesel's
model[8] of simple and complex cells to other brain areas than V1. This early model is purely feed
forward and its architecture was inspired by the visual cortex from V1 to IT by combining simple
cells (S layers) performing linear template matching and complex cells (C layers) with invariance
properties as shown in Figure 3.6.

Simple cells layers perform linear template matching using a dot product operator between
their preferred stimuli and a small image patch mimicking their receptive �eld. They thereby are
sensible to stimuli such as bar orientations. Invariance to position as illustrated in Figure 3.6
and scale are then realized by C1 and C2. To achieve this fundamental property, complex cells
layers uses an idealized nonlinear pooling mechanism with the maximum operation rather than a
linear sum operation as is done in layers S. Summing increases response with increasing number
of inputs and the limitation of this operator becomes clear in case of clutter, presence of multiple
objects in a cell's receptive �eld or if size invariant responses are desired. Max pooling on the
other hand is more robust against these problems since only the most active a�erent determines
the post-synaptic response. The MAX-like mechanism is moreover biologically plausible since,
when multiple stimuli are present in an IT neuron's receptive �eld, its response is dominated by
the stimulus that also produces highest �ring rate in isolation. In conclusion, the combination of
linear operations performed by the S layers and the max pooling operation performed by the com-
plex layers provides selectivity while preserving feature speci�city. The top layer of the hierarchy
are composed of view tuned cells which receive pre-processed features from C2 and are trained to
map these to images labels of the dataset, acting as the read out layer.

In this thesis, �nal feature layer C2b was tested and output was classi�ed using a support vector
machine (SVM) described in sub-section 3.6.
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Figure 3.6: HMAX architecture and composing units[39]: simple cells (named S) perform linear template
matching (solid lines) while complex cells (named C) implement non linear MAX pooling operation (dashed
lines) by combining multiple S templates give the model invariance to translation. By combining multiple
small receptive �elds from the bottom layers, pattern selectivity can be achieved in the top layers. Also
note that connections can be skipped in the hierarchy since C1 has some projections which map directly
to C2, bypassing composite feature layer S2. Feature extractor cells here described as view tuned are then
trained on labeled images of the dataset.

3.3.2 Alexnet

Thanks to the evolution of GPUs and optimization of 2D convolution implementation, training of
convolutional neural networks (CNNs) on extensively large image datasets became possible and
AlexNet[68] was the �rst deep convolutional neural network to win the ImageNet competition. Its
architecture is composed of 8 sequential layers, the �rst 5 being convolutional and the last three
being fully connected as depicted in Figure 3.7.

The network was trained on the ImageNet dataset[41] comprising 15 million high resolution
images belonging to about 22,000 cateogories labelled using Mechanical Turk crowd sourcing tool.
The only pre-processing steps applied to the input images are rescaling and demeaning. In the �rst
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Figure 3.7: Alexnet architecture: the �ve �rst layers (C1-C5) are convolutional and process the input
image with �lters of di�erent sizes and steps. The output of C5 is then fed into three fully connected
layers (Fc6-Fc8) where Fc8 is performing the �nal read-out (by classifying images into one of 1,000 possible
categories. Max pooling steps occur after layers C1, C2 and C5. Spatial size is progressively reduced
throughout the convolutional layers as the number of �lters used is increased. Computations were shared
between 2 GPUs, one using the top of the image as an input (as depicted in this �gure) and one using
the bottom (not shown). GPUs communicate only in the fully connected layers. Image was adapted from
http://www.cc.gatech.edu/~hays/compvision/proj6/

step, the RGB images are scaled down to 244x244x3 and are �ltered by the �rst convolutional layer
(C1) using 96 kernels of sizes 11x11x3 and step size of 4 pixels. The output of this operation is then
response-normalized and max-pooled to reduce dimensionality and �ltered by the second convolu-
tional layer (C2) with 256 kernels of sizes 5x5x48, also applying response-normalization and max
pooling at the end of this step. Convolutional layer 3 (C3) uses 348 kernels of sizes 3x3x256, layer
4 (C4) subsequently uses 328 kernels of sizes 3x3x192 and �nally layer �ve (C5) uses another 256
kernels of size 3x3x192. The output of C5 is again max pooled. The �rst two fully connected layers
(FC6 and FC7) then reduce the dimensionality sequentially to a 4096x1 vector while the last layer
(FC8) serves as a read out layer and outputs the �nal 1000x1 vector containing the category la-
bels of the image. Visualization of the output weights of di�erent layers is presented in Figure 3.8.

Figure 3.8: Visualization of computed weights of convolutional layers 1, 3 and 5 and �nal read out
layer Fc8. The �rst convolutional layer performs basic edge detection while the third convolutional layer
is sensible to texture and the �fth one can detect complex shapes in small receptive �elds. The Fc8
layer provides the �nal classi�cation step, given a label to each image. Image was taken from http:

//www.cc.gatech.edu/~hays/compvision/proj6/
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Because AlexNet has 60 million parameters and 650,000 neurons, reducing over�tting was a
primordial concern and a combination of techniques have been used for this purpose. Data aug-
mentation through translations, horizontal re�ections and alternation of RGB channels intensities
not only proved to be good ways to enlarge the dataset but additionnally provided human-like
properties to the network such as invariance to illumination intensity or color. Another technique
that was used is called dropout[69] and consists in changing the output of hidden neurons to zero
with a 50% probability thereby reducing interdependence between neurons as they can no longer
rely on the output of speci�c other neurons. Finally, faster training can also reduce over�tting and
therefore AlexNet's usage of the recti�ed Linear Unites (ReLU) non linearities were also useful for
this purpose. They were used at the outputs for the max pooling steps after C1, C2 and C5.

The version that was used in this thesis was trained using Ca�e[70]. Alexnet layers 5 and 7,
respectively the last convolutional layer and last fully connected layer before read out, were tested
on the same image dataset as used for the psychophysics experiment, consisting of 23,000 images
of partial objects generated from 500 whole novel images distributed in 5 categories.

3.4 Feature extraction using recurrent neural network mod-

els

3.4.1 General Architecture and aim

Recurrent connections were added on top of either the last convolutional layer (pool 5) or the last
fully connected layer (fc7) in all-to-all fashion to explore the e�ect on performance of combining
di�erent types of connections rather than just adding complexity to a feed-forward network. Only
one layer was augmented at a time and all other layers remained kept their set of �xed feed-forward
weights obtained from pre-training on ImageNet. This setup is of course far from re�ecting the
true diversity and density of connections in the brain but provides more interpretable results due
to its simplicity.

In an RNN, the state vector h is updated at every timestep t through a non-linear weighted
combination of the input xt at time t and the previous state at time t − 1. Mathematically this
update equation is, in our case, de�ned as:

ht = f (Whht−1,xt )

where

- ht is the state vector at the current time t in our case representing either the updated
[9216x1] pool 5 or the [4096x1] fc7 feature vector at time t.

-Wh is the learned weight matrix of the RNN.

- xt is the feature vector of the previous layer (either pool 4 of fc6) multiplied by the transition
weight matrix, respectivelyW4→5 andW6→7. In our case its value will remain �xed.

- f is a function introducing a non linearity, in our case a ReLU
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Using the approach described above, di�erent RNNs were obtained by the manner of updating the
weight matrixWh and the chosen activation function f.

3.4.2 The Hop�eld recurrent neural network

A Hop�eld network[71] (RNNh) stores information, in our case whole object features extracted
from AlexNet, in the attractor states corresponding to energy minima and can then retrieve this
information when presented with incomplete data such as occluded object features by converging
to the appropriate attractor. This learning method was recently shown to be equivalent to the way
previously mentioned feed forward networks learn if the derivative of this energy function is used
as the activation function[72]. It however relies on convergence to learned attractors and several
precautions need to be taken in order to assure stability and decrease the probability of spurious
attractors.

Units of the Hop�eld network take only binary values of either -1 or 1 and are initialized to
a start pattern. Their states are traditionally updated synchronously or asynchronously using a
binary step function de�ned by:

si =

{
+1, if

∑
jWijsj ≥ θi

−1, otherwise

where si is the state of the i-th unit, θ is the threshold for the state �ip of the unit and Wij is
the weight given to the connection between unit i and j. An alternative activation function called
the saturated linear transfer function (satlins) is most often used for modern implementations of
RNNh because it outputs continuous values in the [−1,+1] range. It is mathematically de�ned by
satlins(y) =max(min(1,y),−1) and presented in Figure ??. Using a continuous transition between
the binary values enable an easier analysis of the network. The original Hop�eld network is in then
described by �rst order linear di�erential equations and weights can be computed using singular
value decomposition [73].
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(a) Binary step activation function between -1
and +1 which was originally used in Hop�eld
networks
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Figure 3.9: Visualization of the activation functions used in the Hop�eld network
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The weight matrixW is constrained to be symmetric (Wij =Wji ,∀i, j) and to have a zero diagonal
(Wii = 0,∀i). The symmetry property implies that there is a single bi-directional connection
between any two units reducing oscillations while forbidding self-connections is important for the
system's stability by avoiding units to receive permanent feedback from their own state. The
associated energy of each unit is then computed using the following formula:

E = −
1

2

∑
ij

Wijsisj +
∑
i

θisi

The state's energy is high when it far from the attractors but decreases as it converges closer to
them. During training, each weight Wij is updated according to the pairwise similarity between
the units of n features using a rule which stems from Hebbian theory[74]:

Wij =
1

n

np∑
p=1

x
p
i x

p
j

with np = 500, the patterns of whole objects to be stored and x
p
i the activity of unit i in response to

feature p. This learning rule has two biologically plausible properties. First, units, which can also
be called neurons, respond locally since they take into account information only from the units
they are connected with, being "blind" to the whole network state. Second, the update does not
require reference to previous patterns to learn a new training pattern. This incremental behavior
is di�erent from most deep neural networks which are exposed to the whole dataset at once.

RNNh was implemented using a matlab built-in function called newhop. Values of input vector
x were �rst binarized to -1 if negative or +1 else. The weightsWs are then learned for each state
by using solely the features of the AlexNet extracted for the whole objects. It is important to
emphasize that the model does not have any parameters trained with partial objects so it never
explicitly learned about occlusion. The features s are then updated by RNNh using the following
iteration until convergence was reached:

st = satlins(Wsht−1) + bfort > 0

with b a constant bias and s0 = x for t = 0 with x =W4→5 × pool5 orW6→7 f c6 so that ho belongs
to {−1,+1}9216 or {1,+1}4026.

3.4.3 RNN5

Unlike humans, RNNh was never familiarized with the concept of occluded objects. Therefore,
a di�erent type of RNN was implemented by directly training the weights Wh to minimize the
feature distance between partial objects and their whole counterparts over time. The considered
network, named RNN5[1], was exposed to examplars of all �ve categories during training. Since
the number of weights to be learned is very high compared to the number of training images,
additional precautions are needed to prevent over�tting. Therefore, a subset of the objects, which
was never shown to the network during training, was saved for performance testing. The RNN5
model was implemented once on top of features of the pool 5 layer and once on top of the fc7
layer of Alexnet which determined the constant input x . The states were then updated with the
following equation:

st = ReLU (Ws × ht−1 + x)fort > 0
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where s0 = x for t = 0 with x =W4→5 × pool5 orW6→7 f c6 The objective function to be minimized
can be interpreted as the mean squared euclidean distance between the features from the partial
objects and the features from the whole objects Five fold cross validation was used during training
in combination with the gradient descent optimization algorithm called RMSprop[]. To further
reduce over�tting, early stopping at 10 epochs was additionally implemented and the weights for
the epoch with lowest validation error were selected. RNN5 was trained with the RMSprop op-
timizer and with 5 fold cross validation so that each object occurs in testing set exactly once.
Early stopping is also done to counteract RNN over�tting its high number of weights on the small
number of training examples. Performance on validation set was computed after each epoch and
use weights where validation error is minimal.

3.5 Parallel Pooling and Orchestra

A parallel pool is a set of Matlab workers on a computer cluster. When using the matlab nota-
tion parfor instead of a classical for loop, a parallel pool is started automatically. This enables
to distribute computations along di�erent computer cores, running sections of the parfor loop in
parallel and thereby speeding up the execution time.

Feature extractions were conducted on the Orchestra High Performance Compute Cluster of
Harvard Medical School2. This NIH-supported shared UNIX-based facility consists of thousands
of processing cores and terabytes of associated storage. Using Orchestra did signi�cantly speed up
computation by distributing the computations among several cores using the integrated parallel
pooling code.

3.6 Image Classi�cation

A Support vector machine (SVM) with a linear kernel is a supervised learning algorithm which
constructs a set of maximum margin hyperplanes to separate the di�erent categories present in
the dataset as presented in Figure 3.10 in the case of two categories. The hyperplane should be
positioned where its distance with the nearest point of either category is maximized.

In this thesis, the previously described linear SVM was used for classi�cation after feature
extraction using the above mentioned di�erent networks to evaluate tolerance to occlusion. Like
in other studies exploring invariance to object transformations such as size and position changes,
the SVM was trained on one condition and tested on the others. The decision boundary was thus
trained on the 500 whole images and evaluated on the 23 000 uniquely occluded renderings of
these images. Cross validation was done 5 fold across the 500 objects. In each fold, 400 objects
were used for training, 100 for validation or testing assuring each object was used only once in the
validation and testing splits and each split contained a roughly equal number of objects from each
category.

2chestra High Performance Compute Cluster at Harvard Medical School, partially provided through grant NCRR
1S10RR028832-01, http://rc.hms.harvard.edu
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Figure 3.10: Example of SVM classi�-
cation trained on samples from two cat-
egories. The dashed lines represent the
two hyperplanes that separate the two
categories where their di�erence is maxi-
mal. The datapoints positioned closest to
the two hyperplanes are called the sup-
port vectors. The maximal margin hy-
perplane used for classi�cation lies in the
middle of these two margins. Image was
taken from https://en.wikipedia.org/

wiki/Support_vector_machine.

3.7 T-distributed Stochastic Neighbor Embedding

While PCA is widely used to �nd lower dimensionality combinations variables in a dataset which
explain a high percentage its the variance, it is not ideal to analyze a classi�er's performance. In-
deed, it is a linear method focusing on preserving the distance between widely separated datapoints
rather than nearby ones. On the other hand, T-distributed stochastic neighbor embedding[76] (t-
SNE) is a non-linear dimensionality reduction technique used to visualize high-dimensional datasets
in two or three dimensions and is widely used in machine learning. It starts by computing pair-
wise Euclidean distances between the datapoints of the high dimensional space and converts them
into a matrix of conditional probabilities representing pairwise similarities. To do so, it de�nes a
personalized standard deviation for each high dimensional point while conserving a pre-determined
constant perplexity. An initial set of low-dimensional points is then created and iteratively up-
dated by minimizing the Kullback-Leibler divergence between a Gaussian distribution in the high
dimensional space and a heavy tailed t-distribution in the low dimensional space. The perplexity
is a hyperparameter which allows to balance importance given to local structures with respect to
global ones such as the presence of clusters at di�erent scales. It can be compared to the expected
number of nearest neighbors for each datapoint. The authors of this method have argued that
values drawn from the [5, 50] range conserve robust t-SNE performance. However if it is set too
high, t-SNE will try to display all points as being equidistant as presented in Figure 3.11. This
is only one example of a possible e�ect due to sub-optimally chosen parameters and care should
always be taken not to over-interpret two dimensional displays of higher dimensional data. Since
t-SNE performs di�erent transformations on di�erent local regions, it is very sensible to the curse
of the intrinsic dimensionality of the data [77]. Moreover, the cost function of t-SNE is not convex
meaning that di�erent results can be obtained for di�erent runs on the same data.
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(a) Case for which the t-SNE algorithm fails.
The perplexity hyperparameter was set most
probably chosen too high. All datapoints are
positioned so as to minimize their distance with
respect to each other.

(b) Case where t-SNE gives more interpretable
results, in this case the categorization of novel
objects after feature extraction by the last con-
volutional layer of Alexnet

Figure 3.11: Presentation of two di�erent outputs of the t-SNE dimensionality reduction algorithm.
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Chapter 4

Results

As described in the Materials and Methods chapter 3.2, twenty-three subjects were recruited
to gather human performance data for categorization of partial novel images described in section

3.1. After an initial training phase, the visual recognition task involved categorization of heavily
occluded rendering of 500 di�erent novel objects into 5 categories. In 85% of the trials a varying
percentage of the image was shown through Gaussian uniformly distributed bubbles, while 15% of
the images were presented in the whole condition to serve as a positive control. Two other con-
ditions were also explored: the stimulus onset asynchrony (SOA) measuring the time of subjects
exposure to the image was varied in the {25, 50, 85, 100, 150} interval while a spatial noise mask
was presented after the image in 50% of the trials (masked/unmasked conditions). First results in
the unmasked condition will be described in section 4.1. These results will then be contrasted to
the masked condition in section 4.2.

In parallel, human results were compared to performance of feed forward and recurrent compu-
tational neural networks (CNNs) when exposed to the same dataset comprising a total of 23,000
randomly occluded versions of 500 whole novel images. Performance of early purely feed-forward
object recognition networks such as HMAX and Alexnet are presented in section 4.3 while per-
formance of such networks after augmentation with recurrent neural networks are presented in
section 4.4.

4.1 Recognition of partially visible objects by humans is also

robust with novel objects

In the absence of a mask, subjects recognition of whole objects is near ceiling (above 90%, see
the points at 100% visibility) as presented in Figure 4.1 meaning the performance dominantly
re�ects the behavioral e�ect of object occlusion. However, performance degrades when subjects are
exposed to poorly visible stimuli compared to whole images ((p< 10−30, paired left tailed t-test).
Surprisingly, humans still categorize images above chance level (58 ± 6% versus 20%) for image
visibility as low as 5 ± 2.5% (p< 10−50, paired right tailed t-test) despite very limited information
provided. Regarding the SOA condition, Figure 4.2 (full line) shows that there was a small but
signi�cant improvement in performance for the longest (150ms) SOA for the partially visible ob-
jects (p=0.0083<0.05, Spearman's correlation coe�cient: s=0.9, permutation test). In conclusion,
human still reached surprisingly high performance for very low image visibilities even though their
previous exposure to novel whole objects was minimal and they had no previous experience with
the corresponding occluded renderings.
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Figure 4.1: Human behavioral performance as a function of image visibility for the unmasked condition
meaning that no spatial noise mask was presented after the image. Each curve denotes a speci�c stimulus
onset asynchrony (SOA) represented in a di�erent color. Error bars were computed using standard error of
the mean (s.e.m.). This psychophysics experiment involved 23 subjects. Horizontal dashed line represents
chance level performance (20%). Bin size was chosen to be 5%. A discontinuity was introduced in the x
axis in order to show whole object performance as a positive control.
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Figure 4.2: Behavioral image recognition performance as a function of stimulus onset asynchrony (SOA)
averaged across image visibility for all the collected data except the whole images. Error bars were
computed using standard error of the mean (sem). The solid blue line represents the unmasked condition
while the dashed magenta line represents the masked condition. Chance level is shown by the black dashed
line (20%)
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4.2 Backward masking disrupts recognition as a function of

object visibility and soa

Behavioral e�ects of backward masking can be understood by contrasting results presented in
Figure 4.3 to previously described Figure 4.1. It can be noted that only performance of stimuli
presented at the shortest SOA (25ms) is a�ected in the whole condition (p=0.0020<0.05, paired
two tailed t-test, Bonferoni corrected). Regarding the occluded objects, backward masking sig-
ni�cantly impairs object categorization performance at low visibility levels since values decreased
compared to the unmasked condition. This e�ect is especially obvious for shorter SOA times cor-
responding to the black, blue and magenta curves which are drawn farther apart from each other
while without masking their di�erential impact is less clear. These observations are con�rmed
by a two-way ANOVA table analyzing the e�ect of SOA and masking on human performance.
The interaction of these two factors is found to be statistically signi�cant (F(mask,SOA)=18.83,
p<10−10). Figure 4.2 also enables clearer visualization of the increasing strength of backward
masking as SOAs are shortened. Signi�cance of this e�ect was achieved for all SOAs smaller or
equal to 100ms (the p-values of SOAs 6 100ms were inferior to 0.0001 using a paired one-tailed t
test, Bonferoni corrected).
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Figure 4.3: Human behavioral performance as a function of image visibility for the masked condition
meaning that image speci�c spatial noise masks was presented after the image. Each curve denotes a
speci�c stimulus onset asynchrony (SOA) represented in a di�erent color. Error bars were computed using
standard error of the mean (s.e.m.). This psychophysics experiment involved 23 subjects. Horizontal
dashed line represents chance level performance (20%) Bin size was chosen to be 5%. A discontinuity was
introduced in the x axis in order to show whole object performance as a positive control.
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4.3 Recognition of partially visible objects by feed forward

models is not robust

State-of-the-art neural networks such as HMAX or Alexnet reach very high performance for object
recognition in computer vision competitions. They are characterized by a hierarchical purely feed-
forward architecture with increasing receptive �eld sizes and selectivity. Interestingly, when using
everyday isolated objects, they reached invariance to certain object transformations such as scale
or orientation[39, 5, 65] but not to occlusion[1]. By using these networks on the same dataset as
the one used in the psychophysics experiment, we wanted to investigate how well they generalize
over novel objects and con�rm that their architecture is not su�cient to explain the behavioral
observations described in section 4.1. Presence or absence of similarity between human and model
performance could indeed give a hint about the underlying computational mechanisms of pattern
completion. Features were extracted using HMAX's �nal feature layer C2b and Alexnet's last con-
volutional layer pool 5 and last fully connected layer before classi�cation Fc7. The corresponding
number of dimensions were 1000, 9216 and 4096 respectively. A SVM was then used to classify
the di�erent features by training the decision boundary on the whole images and testing on the
occluded ones. Pixels were also directly classi�ed without further processing to account for the
e�ect of potential low-level di�erences between categories such as contrast or object area.

The performance of the classi�er when using raw image pixels did not perform signi�cantly
above chance level as shown in Figure 4.4 (p>0.1, right-tailed t-test). Performance of HMAX was
found to be below chance level for occlusion percentages higher than 80% (p=1, right-tailed t-test)
but slightly above lower occlusions.

0 5 10 15 20 25 30 35 40

Image Visibility (in %)

0

5

10

15

20

25

30

35

40

P
e
rf

o
rm

a
n

c
e

 (
in

 %
)

pixels

hmax
chance level

Figure 4.4: Performance of the HMAX computational model (red) compared to raw image pixels clas-
si�cation (blue). Chance level at 20% is represented by a dashed line. Extracted features by the HMAX
model and pixel value were classi�ed using a SVM trained on whole images and tested on occluded ren-
derings. Occluded counterparts of objects used to train the classi�er were not used in the test set. Error
bars are the s.e.m across the 5 fold of cross validation.
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In contrast, the AlexNet pool 5 and Fc7 feed-forward models presented in Figure 4.5 performed
well above chance level. They reached 50% performance for image visibilities greater than 16%
and 8% respectively. However, both models have a signi�cantly lower performance than humans
at visibility levels below 40% (p<10−4, Chi-squared test). While humans almost reach 60% per-
formance for image visibilities of only 5 ± 2.5%, AlexNet Fc7 performs slightly above 30% and
AlexNet pool 5 reaches about 38%. Interestingly, it can also be observed that AlexNet fc7 has
signi�cantly lower performance for all shown visibility levels than the earlier pool 5 layer (p<2−13,
Chi-squared test) which contrasts results obtained previously[1] using everyday objects resembling
the ones composing ImageNet.
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Figure 4.5: Performance of pool 5 (red) and fc7 (blue) layers of the feed-forward computational model
named AlexNet. They can be contrasted to chance level (dashed line), raw pixel classi�cation (blue) and
human performance on the same dataset (black). Extracted features by Alexnet were classi�ed using a
SVM trained on whole objects and tested on partial renderings of the objects absent from the training
set. Error bars are the s.e.m (5-fold cross validation).

To graphically display why object invariance was not reached by the AlexNet based feed-forward
models, stochastic neighborhood embedding (t-SNE)[76] was used to project the pool 5 and Fc7
features onto two dimensions as shown in Figure 4.6. As expected, whole objects (denoted by
open circles) group together well and are visually easy to separate. Even families within the α , β
and γ categories can be distinguished, con�rming the high performance of AlexNet for whole im-
ages recognition. However, the partial images represented by full circles are not close to their whole
counterparts and do not form clear clusters which explains the observed decreased performance.
We can thereby con�rm that feed forward models such as AlexNet or HMAX are not robust to
object occlusion and suggest that altering their hierarchical structure might help for this task.
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Figure 4.6: Two dimensional visualization of di�erent alexnet model features using the t-SNE dimen-
sionality reduction technique. Whole objects (open circles) can be easily separated and one can even
distinguish the di�erent families within a category for α ,β and γ . Partial objects however do not form
clearly distinguishable clusters and are not close to their whole counterparts, explaining why performance
is low for small image visibilities.

We also veri�ed that sub-human performance of the AlexNet bottom-up models for partial
image recognition tasks depends strongly on the amount of removed pixels. Indeed AlexNet mod-
els performance reached ceiling levels for image visibilities greater than 70% for AlexNet Fc7 and
greater than 50% for AlexNet pool5 as shown in Figure ??. We also displayed the representation
of features computed by AlexNet Fc7 using t-SNE in Figure 4.8. This time, occluded images were
clustered with their whole counterparts, in agreement with the high obtained performance. This
con�rms that when large amounts of pixels are missing from an object, the model's representation
of partial rendering is pushed farther and farther away from their whole counterparts. The distance
between whole and partial cluster means can be interpreted as a measure of the impact of object
occlusion on the image representations.

In conclusion, AlexNet was found to achieve successful feature extraction for whole novel objects
that were very di�erent from examplars of the ImageNet dataset showing its generalization power.
It was also found to be invariant to light occlusion levels. However, its last fully connected layer
fc7 generalized less well than its last convolutional layer pool 5 when the task was made more
challenging by increasing partial image deletion. We also con�rmed that these models are not
robust to object occlusion for low visibility renderings below 40% and did not match human
performance in pattern completion even though humans had only minimal training with the whole
objects.
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Figure 4.7: Performance of pool 5 (red) and fc7
(yellow) layers of the feed-forward computational
model named AlexNet for higher visibility percent-
ages, demonstrating the high performance of these
models for fully or highly visible object classi�cation.
Results can be contrasted to chance level (dashed
line) and human performance on the same dataset
(black). Error bars are the s.e.m across(5-fold cross
validation).
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Figure 4.8: Two dimensional visualiza-
tion of AlexNet Fc7 model features in the
case of partial objects with high visibility
(spanning the 50% to 95% range) using the
t-SNE for dimensionality reduction. No-
tice how occluded versions converge to-
wards the appropriate whole counterparts.

4.4 Recurrent neural networks improve performance for par-

tial object recognition

Since backward masking was found to impair human performance for short SOAs, we hypothesize
that adding recurrent connections to bottom-up models would probably achieve a more robust
representation of partial object and thereby increase categorization performance. Two di�erent
recurrent neural networks (RNNs) were used for this purpose. The �rst one called RNNh was
proposed by Hop�eld[71] and relies on attractor states de�ned by all-to-all connections weights
determined solely by whole objects. Images which are more heavily occluded are initially farther
away from the attractors and would require more recurrent time steps to converge. However,
this model has no training with occluded images. Therefore, another RNN, called RNN5, was
implemented so as to directly minimize the distance between whole and occluded objects. It was
trained on images from all �ve categories. The schematics of newly obtained models to AlexNet
pool 5 and fc7 layers are presented in Figure 4.9.

Figure 4.9: Schematic of recurrent neural network
(RNN) addition on top of AlexNet pool 5 (shown left)
and AlexNet Fc7 (shown right) layers. Last fully con-
nected layer before readout Fc7 receives input from
Fc6 multiplied by the characteristic weight matrix be-
tween these two layers W6→7. This input will be kept
constant throughout the recurrent computations. The
weight matrix Wh from the added RNN governs the
temporal evolution of fc7 features. The de�nition
and update of this weight matrix determines of the
attractor-based Hop�eld (RNNh) or RNN5 network is
implemented. RNN5 is trained to minimize distance
between whole and partial images.
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In a �rst investigation, the purely feed-forward model AlexNet Fc7 is augmented with a Hop-
�eld network just before applying the activation function and run for 256 time steps (referred
to as the RNNh+fc7 model). It signi�cantly improves initial Fc7 performance for all visibility
levels below 40% as shown by comparing the red and purple curves in Figure 4.10 (p<3 × 10−9,
Chi-squared test) and even approaches human results although still being just signi�cantly lower
(p<0.04, chi-squared test). Similarly, a RNNh network was added after the AlexNet pool 5 feature
extraction but was run only for 16 time steps because of lack of time to get all desired results (I
will run it until 256 time steps later). As illustrated by the blue and yellow curves, adding re-
current connections to the pool 5 architecture also increases performance compared to the purely
feed-forward base model (p<10−9, Chi-squared test). Moreover, the RNNh augmented model of
pool 5 once more outperforms the augmented fc7 one as shown by the purple and yellow curves
(p<0.002, Chi-squared test) which is consistent with previous observations from the feed-forward
model analysis. Interestingly, RNNh + pool 5 even has higher performance than human results
across all presented image visibility levels (p<0.02, Chi-squared test).
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Figure 4.10: Performance of the AlexNet Pool 5 and Fc7 layers after addition of a recurrent Hop�eld
model as a function of image visibility. For both new models, augmenting the purely feed-forward coun-
terpart lead to a signi�cant increase in performance compare to step t=0. The RNNh + fc7 combination
now almost reached human-like performance while RNNh+pool5 even outperforms human results for all
visibility levels. Dashed line indicates chance level. Error bars denote s.e.m.

The performance of RNN models is dynamic, meaning that it initially evolves with the number
of time steps during which the features are updated until it reaches convergence. Time 0 denotes
the original purely feed-forward AlexNet model performance, before any recurrent computations
are started. The RNNh + pool 5 model's overall performance was found to increase signi�cantly
after the �rst time step but did not change signi�cantly after that, suggesting that computing
more than 16 time steps might not add much to the model anyway. On the other hand, the RNNh
+ fc7 model's overall performance is found to initially increase with the number of time steps as
shown in Figure 4.11 b). Convergence happens at 32 time steps where performance reaches a
plateau, meaning that computing 256 time steps was probably an overkill.
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(a) RNNh + pool 5 model

0 2 4 8 16

Recurrent time step

0

10

20

30

40

50

60

70

80

90

100

O
v

e
ra

ll
 p

e
rf

o
rm

a
n

c
e

 (
in

 %
)

RNNh + pool5

human

chance level

(b) RNNH + fc7 model

Figure 4.11: Performance evolution of Alexnet pool 5 (left) and fc7 (right) models augmented with
RNNh (blue line) across number of recurrent time steps used. Performance is compared to chance level
(dashed line) and human results (continuous black line). RNNh was only run up to 16 time steps due to
lack of time before thesis submission.

In order to get a better intuition about why performance increases compared with the cor-
responding feed-forward models and with the number of time steps, the dynamic trajectory of
the feature representations of both augmented models is visualized using t-SNE in as shown in
Figure 4.13 and Figure 4.12. Before adding any recurrent connections, at time step t=0, the
representations of partial object cluster together far away from their whole counterparts as pre-
viously observed. But as the number of time steps of the recurrent computation increases, the
partial objects cluster is pulled apart and corresponding feature representations migrate towards
the whole counterparts clusters of each category, explaining the increased performance of the RNNs.

Whole

Partial

Image Condition

Image Category

(a) RNNh + AlexNet fc7 at
timestep t=0

(b) RNNh + AlexNet fc7 at
timestep t=16

(c) RNNh + AlexNet fc7 at
timestep t=256

Figure 4.12: Temporal evolution of representations of the RNNh augmeted AlexNet Fc7 model features
using t-SNE for dimensionality reduction. Whole objects (open circles) and their partial counterparts (�lled
circles) are colored according to their category label. Only one partial object for each object is shown so
as not too create representations being too dense. As the number of recurrent time steps increases, partial
renderings gradually converge to their whole counterparts, explaining the observed increase in performance
from �gure 4.11 b).
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Whole

Partial

Image condition

Image Category

(a) RNNh + pool 5 at timestep
t=0

(b) RNNh + pool 5 at timestep
t=4

(c) RNNh + pool 5 at timestep
t=16

Figure 4.13: Temporal evolution of representations of the RNNh augmeted AlexNet pool 5 model features
using t-SNE for dimensionality reduction. Whole objects (open circles) and their partial counterparts (�lled
circles) are colored according to their category label. Only one partial object for each object is shown so
as not too create representations being too dense. As the number of recurrent time steps increases, partial
renderings gradually converge to their whole counterparts.

Interestingly, adding an attractor based model of recurrent connections to the top a feed for-
ward hierarchical model was able to drastically improve classi�cation performance while there
was no exposure to partial objects during the de�nition of the attractor weights. Therefore, we
next investigated if an additional increase of performance would be obtained by augmenting our
best performing feed forward layer, AlexNet pool 5) with RNN5 which was explicitly trained to
minimize distance between whole and occluded objects for all �ve object categories. Results are
presented in Figure 4.14. Performance is increased with respect to the RNNh augmented model
and human data for very low visibility levels. However, it drops below the other models for higher
visibility levels.

In conclusion, adding attractor based recurrent networks such as the Hop�eld network with-
out making any other changes to the feed-forward models can signi�cantly improve partial object
recognition, even for very low visibilies. The combination of AlexNet pool 5 and RNNh in partic-
ular performs above humans for this task involving novel objects.
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Figure 4.14: Performance of the AlexNet pool 5 after addition of a recurrent RNN5 model as a function
of image visibility. Performance is increased for very low visibility levels with respect to the alexnet pool
5 augmented with RNNh but drops below other models for lower deletion percentages. Error bars denote
s.e.m. (5 fold cross validation)
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Chapter 5

Discussion

5.1 Conclusions from the psychophysics experiment

5.1.1 Impact of novel objects on human performance

Humans have to recognize partial objects on a daily basis due to presence of occluders or poor
illumination for example. In a previous experiment[1] using familiar object categories (animals,
faces, fruits, chairs and vehicles), the visual system was found to be capable of completing patterns
and making inferences even when given only 10 to 20% of the object's pixel information. Similar
results were reproduced in our behavioral experiment involving novel objects (Figure 4.1). In our
case, performance is slightly higher as shown in Figure 5.1 but we cannot draw direct conclusions
from this comparison since very di�erent stimuli were used. Indeed, the observed di�erence could
be due to a number of factors: subjects implication, individual stimulus complexity, di�erence
across categories. But the most probable explanation is the di�erent nature of diagnostic features
which we hypothesize to be focused more on general shapes than �ner details in our experiment
because of how our arti�cial novel objects were created.
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Figure 5.1: Human Performance as a function of image visibility for behavioral experiments using
the same setup except for the stimuli. Our experiment using novel images (categories α ,β ,γ ,δ or ϵ) is
represented in blue while the experiment using familiar objects[1] (animals, faces, fruits, chairs or vehicles)
is shown in red. Performance was averaged across SOA conditions and only data from the unmasked
condition was used for the computations. Error bars denote s.e.m.
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However, it is interesting that human performance is still higher than chance for low image
visibilities even though subjects had only minimal categorization training with the whole objects
and no prior exposure to the occluded renderings. We can conclude from these results that either
humans learn to distinguish speci�c features of these new categories very quickly or it is not neces-
sary to have previous experience with occluded images of a speci�c category at all to reach robust
performance for occluded image categorization. In both cases, extensive exposure to occluded
objects from multiple categories might still be needed to build a large prior library, necessary to
reach the observed generalization of performance to the novel objects.

5.1.2 Minimizing prior exposure

A careful compromise had to be made in order to both minimize subject prior exposure to novel
objects but also reach good performance for whole object categorization in order to truly assess
generalization of an occluded recognition task rather than a simple whole object categorization
learning task. During training phase, only ten di�erent whole images were presented to the sub-
jects (2 from each category, all coming from di�erent families). Subjects were then asked to classify
at least 8 of them correctly for a minimum of 5 consecutive repetitions. The average of exposures
per image to pass this test was 8, which adds up to a total of 80 exposures. The standard devi-
ation was half of this value, showing high variation across subjects as illustrated in Figure 5.2.
However, each subject did eventually successfully generalize identi�ed category speci�c features
from those example to new unseen whole images. Indeed, 15% of images during the experiment
were presented in the whole condition, serving as a positive control. Performance for these fully
visible objects was above 90% in the unmasked condition as we previously exposed in Figure 4.1.
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Figure 5.2: Subject speci�c number of required trials to pass the training test. The training test
asked subjects to correctly classify 2 whole objects from each category (adding up to 10 di�erent images,
corresponding to 2% of the total number of whole images). The average number of image exposures
represented only 8% of the total number of stimuli presented during the actual experiment.
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5.1.3 Analysis of learning

Since humans prior knowledge of stimuli was entirely limited to a minimal exposure learning phase,
we expect their performance to increase from early stimuli to later ones as a result of learning from
increased stimulus exposure. Performance di�erences cannot be accounted for di�erential image
visibilities because occlusion levels were randomized within the experiment as well as across sub-
jects. To analyze this e�ect, the dataset was split into quarters for each subject and performance
for di�erent visibility levels was assessed separately for the �rst and three last remaining quarters
as shown in Figure 5.3. Human performance was found to increase signi�cantly over the last three
quarters of the images they were presented with compared to the �rst quarter for image visibilities
inferior to 40% (p<10−3, Chi-squared test). Interestingly, there is also a signi�cant increase for
their performance on whole objects (p<10−6, righ tailed two-sample t-test). However, we cannot
discriminate motor learning from visual learning using the recorded data. Indeed, subjects had to
press speci�c keys on a gamepad to enter the category they chose, which requires some familiariza-
tion. But since the subjects had no time constraint to respond, we can hypothesize that learning
is mainly due to visual integration.

Learning was also found to take place especially between the �rst and second quarters of
the data while increase was between other quarters was smaller as shown by Figure ??. This
probably means that subject would most not improve signi�cantly more if exposed larger amount
of partial images. More extensive experience with whole objects however might still improve human
performance in a more drastic way. Therefore it could be interesting to repeat this experiment
with more training examples and exposures.
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Figure 5.3: Performance as a function of image vis-
ibility for the �rst quarter of the data each subject
was exposed to compare to the remaining portion of
the experiment.
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ject on successive quarters of the data

5.1.4 Isolating feed-forward responses

We demonstrate that backward masking signi�cantly impairs partial object categorization when
stimulus onset asynchronies (SOAs) below 100ms are used (Figures 4.2 and 4.3) while it only
impairs whole objects for SOAs below 25ms. As exposed earlier in the Materials and Methods
chapter, presenting a high-contrast spatial noise mask stimulus directly after an image presented
with a short SOA e�ciently interrupted any additional processing[61, 62, 63, 64, 65, 66]. In re-
cent studies[29], delayed visually selective responses to partially visible images were recorded in

47



the human ventral cortex compared to neural responses to continuous lines or whole images. We
argue that these delays are due to a di�erence in mathematical operation rather than weaker
neural inputs. It is indeed also possible that higher brain areas simply gets weaker signals from
neurons when exposed to occluded objects compared to their whole counterparts. This observa-
tion however needs to be speci�c to higher level neurons since no temporal delays between the
whole and occluded conditions where observed in early visual processing areas such as V1. Weaker
inputs can therefore not be due to low-level features such as di�erences in contrast, or sparser
pixel information but might be caused by higher level interpretations of the data which potentially
connects again with the recurrent connection explanation. The need of recurrent connections for
pattern completion is however strongly supported by observed correlation between neural latencies
and the e�ect of backward masking measured by a masking index. Another argument in favor of
recurrent connections is that recurrent computational models showed correlation between the dis-
tances from partial images to their whole category center and observed physiological latencies[1].
Finally, augmenting computational models with recurrent connections signi�cantly increased their
performance for partial object categorization tasks, suggesting that these computations are indeed
needed to mathematically interpret partial information. In the future, it would also be interesting
to �nd a protocol to e�eciently disambiguate horizontal connections from top-down e�ects. At-
tempts have been made in this direction by contrasting delay values of long ranging connections
compared to local ones[32].

5.1.5 Limitations of chosen stimuli

While the adjectives occluded and partial were used interchangeably throughout this thesis to
describe images with limited visibility, previous studies[1, 22] have reported that using an explicit
occluder actually increases performance for very low visibility levels. For our behavioral experi-
ment, deleted pixels where treated as "holes" through which the background can be seen. In real
life, objects parts are rarely deleted in this way. Therefore it would be more biologically relevant to
repeat our experiment using occluders to mask image information. Indeed, simply deleting informa-
tion might especially favor modal completion operations within the brain rather than amodal ones.

Finally, it is well known that psychophysics investigation results depend heavily on utilized
stimuli. The stimuli used in this experiment did not represent natural tasks which humans have
to perform everyday. The stimuli were composed of a unique object which was well isolated from
its background. It is however important to attempt to isolate di�erent e�ects and this requires to
initially use simple stimuli. More naturalistic images surrounded by contextual information can
then be used to understand the interaction between basic principles underlying the visual cortex
and in�uence from higher or di�erent brain areas.

5.1.6 Di�erences between image identi�cation and categorization

A recent study in the lab[1] used a similar behavioral experiment to ours but with familiar object
stimuli to contrat human performance for a categorization task compared to a separate identi�ca-
tion task. During the latter, subjects were �rst presented with the occluded image and subsequently
asked if the presented stimulus corresponded to a whole object displayed on the right or another
one displayed on the left. Stimuli were rotated randomly to prevent pixel matching behaviors. It
was observed that performance for objects presented with high visibility percentages was lower in
the identi�cation task than during categorization. Indeed the task was less trivial since sometimes
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subjects had to choose between images from the same categories (face versus face for example)
and therefore have to pay closer attention to details. On the other hand, performance at very
low visibility levels was increased in the case of the identi�cation task. Seeing whole counterparts
after image exposure can indeed help the user to identify the image if he did not do so successfully
before the choice screen appeared. In this case, the subject mainly memorizes low level features
and tries to �nd matching minimal information on the response screen. It could therefore be to
see if subject identi�cation performance also increases for low visibility levels when using novel
objects to see if mainly immediate or more long term memories are involved in this process.

5.2 Conclusions from the computational models classi�cation

performance

5.2.1 Impact of adding recurrent connections

Several bottom up computational architectures were tested on the same dataset of occluded novel
images as the one used for the behavioral experiment and they performed below human perfor-
mance on the partial image categorization task (Figure 4.5). While humans almost reach 60%
performance for image visibilities of only 5 ± 2.5%, our best feed-forward layer only reaches 38%.
However, we do not imply that it is mathematically impossible for models with purely feed-forward
architectures in general to be robust to very high object occlusion levels, even though the AlexNet
model we investigated is widely known for its low classi�cation error for whole object recognition
in the computer science �eld. As a matter of fact, an analysis of feature representations of the
implemented Alexnet model did indeed show easily separable clusters of whole objects, even dis-
tinguishing among families within the given categories (Figure 4.6). However, representations of
partial objects grouped together, far away from their whole counterparts. Although any recurrent
network can technically be unfolded into a feed forward architecture by adding a fully connected
layer for each recurrent time step, introducing recurrent connections as inspired by the brain can
be a more elegant alternative. Indeed, weight sharing over time drastically reduces the number
of required neural units and weights which need to be trained. These networks are thereby less
data-hungry meaning they can use smaller datasets to achieve good performance.

Because of the previously exposed motivations, we �ne-tuned sections of the pre-trained Alexnet
feature extractor by adding a recurrent layer either to the last convolutional or fully connected layer
respectively. This addition to the model's architecture resulted in computational models which in
some cases outperformed humans across all visibility levels in the novel image categorization task
(Figure 4.10). Although it is unclear how to link the recurrent neural network computational
time steps to physiological delays measured in milliseconds, overall performance of these networks
increased with each time step(Figure 4.11). This e�ect can also be observed by observing how
feature representations evolve dynamically (Figure 4.12 and 4.13). Indeed, feature representa-
tions of the partial objects progressively cluster with their whole counterparts. A previous study[1]
has also analyzed the e�ect of backward masking on these neural networks. The idea was to extract
features of a spatial noise mask using AlexNet up to its last layer before read-out. The resulting
features were then supplied to Hop�eld and RNN5 recurrent models during partial image feature
extraction at di�erent recurrent time steps. The introduction of this mask increasingly dropped
the model's performance with decreasing onset time, which was consistent with the e�ect observed
for humans. This investigation could be an interesting addition to our study.
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5.2.2 Some hints about HMAX sub-chance level performance

To explain the surprisingly low performance of the HMAX computational model, we plotted the
confusion matrix for the pixels and HMAX features performances as presented in Figure 5.5.
One would expect all image categories to be equally hard to classify if no bias were present in the
data. This is not the case here since the pixel-based classi�er decides that every image belongs
to the category β while when using the HMAX features all the images are classi�ed as category
δ . This implies that some low-level feature is most probably biasing these two classi�ers even if it
is weird that the error type is not the same. Contrast can be ruled out because all images were
throughly normalized. Image area with respect to background might explain this erratic behavior
amongst other possibilities. Further investigations would be needed to determine the exact cause
of this behavior.

(a) Pixel confusion matrix
shows a bias for category β

(b) HMAX confusion matrix
shows a bias for category δ

(c) Human confusion matrix
show well balanced error dis-
tributions.

Figure 5.5: Confusion matrices for the classi�er using raw pixels (a) and the HMAX model (b) as opposed
to human performance results (c). Confusion matrices give a better idea of the type of errors the classi�er
make and are a �rst step to analyze potential erratic behaviors. Ideally, the images introduce no bias and
errors should have a symmetric distribution across categories

To visualize the e�ect of this bias on the model representations, a t-SNE projection of the fea-
tures extracted by HMAX on two dimensions presented in �gure 5.6 provides us with additional
support about why all images are classi�ed as δ . While the representation of whole objects shows a
clear separation between categories, the occluded objects are clustered together and their position
is biased towards the whole δ group.

5.2.3 Observations about Alexnet features generalization and speci�city

With the novel object dataset, it was observed in Figure 4.5 that the Alexnet pool 5 model
performs better than the fc7 model. Although this result contrasts previous results using Alexnet
on datasets with more familiar objects[1], it can be explained by the fact that fully-connected
layers extract more class-speci�c features. Since Alexnet was trained on everyday objects from the
ImageNet database, it can be argued that the last convolutional layer (pool 5) generalizes better
to the novel objects than fc7[78, 79]. It is in fact advised to use the more generalizable layers
for transfer learning[80] which consists of using the extracted features of a pre-trained model and
train another network which will be speci�c to our dataset on top of it. This approach is very
popular in machine learning because it requires less time-intensive training and enables the usage
of small datasets. We can thus conclude the convolutional layers of Alexnet are powerful feature
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Whole

Partial

Image Condition

Image Category Figure 5.6: The representation of layer C2b
of the HMAX computational model is visu-
alized using the stochastic neighborhood em-
bedding (t-SNE) dimensionality reduction tech-
nique. While whole objects on which the SVM
was trained (open circles) can be easily sepa-
rated into distinct categories, the partial render-
ings seem to be more di�cult to classify. More-
over, the bias towards the δ category is very clear
from this plot since it is much closer to the par-
tial objects than any other category.

extractor tools which manage to successfully and independently identify discriminative features
even for arti�cially created novel objects that do not resemble the data it was trained with in any
way.

5.2.4 Importance of prior exposure to partial objects

As explained in the Materials and Methods chapter, the parameters of RNNh (Hop�eld net-
work) do not depend on the partial objects and all the weights are entirely determined the whole
object features extracted by the last layer before recurrent augmentation. Even though it has no
prior knowledge of occlusion, the combination of RNNh and fc7 sign�cantly outperforms the fc7
layer and the combination of RNNh with pool 5 even outperforms human results for all studied
visibility levels. Previous experience with object occlusion therefore does not seem necessary with
our stimuli. However, the images we used were very simple and arti�cially created using computa-
tional algorithms. These characteristics might make them easier to comprehend for computational
models than natural images whose classi�cation rules are less intuitive for a machine. Using novel
stimuli created from arti�cial evolutionary algorithms might counteract this potential facilitation.
It would also be interesting to repeat the performed behavioral experiments with more training
with whole and/or occluded images for humans to see if they would eventually match the RNNh
+ pool 5 model's performance.

Exposing the computational models to partial objects by training them to explicitly minimize
distance between whole and partial objects did only increase performance for very low visibility
levels compared to Hop�eld based models and human data (Figure 4.14). Although special care
was taken to reduce over�tting by early training stopping and putting aside unseen data for testing,
the model has to adjust a very large number of parameters. We cannot rule out that the model
might be merely memorizing very speci�c image features (potentially at the single pixel level)
because training that the model was shown to not generalize well when trained with only one
category. Another study[1] has explored the amount of prior knowledge needed by the this type of
recurrent algorithm by training it on only one category and testing it on all others. Performance
was found to stay at base feed-forward level before recurrent augmentation. This implies that
rich dictionaries of features are most likely needed for successful generalization which might also
explain human high performance with novel objects. Indeed humans are trained to recognize whole
and occluded objects since they were infants and have a very large pre-existing library of category
speci�c features. They might unconsciously draw links between identi�ed features of the novel
objects and the most similar features they already learned.
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5.3 General conclusion and further scienti�c questions to be

addressed

In order to further understand the bene�ts of recurrent connections in the visual processing area
of the brain and eventually use this understanding to optimize existing models in computer vision,
we explored the role of prior experience with objects. Humans were found to robustly categorize
a set of arti�cially created novel stimuli without having any prior experience with these partial
objects. In addition, training with whole counterparts was also restricted to the minimal amount
necessary to fully account performance to the occlusion e�ect. Therefore, prior knowledge about
the object does not seem drastically deteriorate low visibility partial images. Whether this ability
can be attributed to extensive training with whole and occluded objects throughout the person's
live is a question that remains to be answered.

Some state-of-the art purely feed-forward networks were when exposed to the same dataset as
the one used for the behavioral experiments to investigate the role of experience and recurrencies
in computer vision. Although performance on classi�cation of whole object was at ceiling, they
were not robust to heavy image occlusion levels . When augmenting them with a Hop�eld based
recurrent network their performance approached or even outmatched human results even though
these networks never experienced occluded objects before. Training another class of recurrent net-
works (RNN5) explicitely on minimizing distance between whole and partial images gave higher
results only for very extremely low visibilities.

Additional performance increase would be expected by training the combination of feed-forward
and recurrent networks end-to-end with a small amount of partial objects instead of just �ne-tuning
a pre-existing model as we did. Maybe the model will discover a pattern completion mechanism
autonomously just like it was able to extract features from images without particular guidance.
The presence of recurrent computations could signi�cantly alleviate the size of the required dataset
to reach this desired property. Another investigation would be to create a more brain-inspired net-
work by adding less dense connections (not in an all-to-all fashion) between several layers of a feed
forward computational model.

Finally it would be interesting to extend our investigation to other mechanisms requiring re-
current connections within the visual cortex. Context awareness for example can signi�cantly
help object recognition but so can other cues such as understanding of textures, relative positions,
segmentation, movement and the source of illumination amongst others.

52



Appendix A: Examples of whole objects

chosen from the novel objects repository

Figure 7: Exemples of whole pre-processed objects from categories δ and ϵ. Six images were chosen
per family within these categories. Background was replaced by a neutral gray color and constrast was
normalized.
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Figure 8: Exemples of whole pre-processed objects from categories α , β and γ . Six images were chosen
per family within these categories. Background was replaced by a neutral gray color and constrast was
normalized.
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Appendix B: Only small correlation was

found with human data

Although high performance is also reached for the novel object dataset with the recurrent aug-
mented pool5 computational models, classi�cation responses did not have very high overall corre-
lation coe�cient with human responses as presented in Figure 9. Moreover, correlation was not
found to increase over time after the initial recurrent t=1. Correlation for augmented fc7 layer
did not show any signi�cant correlation for all timesteps. Individual object correlations between
humans and the computational model presented in Figure 10. Small correlations values despite
close performance between human and RNN networks means that the errors are not made on the
same objects. However, these results contrast previous observations using familiar objects[1] were
correlation was found to increase with recurrent timestep and increasing overall performance.

(a) Mean per-category correlation between the
RNNh + pool 5 model and human data

(b) Mean per-category correlation between the
RNN5 + pool 5 model and human data

Figure 9: Correlations in the response pattern between some recurrent networks implemented on top of
pool 5 and humans. The dashed line indicates the inter-human correlation and the shaded area represents
standard deviation (S.D.). Inter-human correlation was computed by correlating one half of the subjects
with the other half. Correlation coe�cients were computed for each time step and model separately for
each category to avoid domination of correlation by category di�erences. Regressions were then averaged
across categories. Error bars represent S.D.
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Figure 10: Correlation between RNN models and human performance at the individual object level for
di�erent recurrent time steps. The top �gure shows model RNNh+fc7, the middle one RNNh + pool
5 and the bottom one RNN5 + pool 5. Each dot represent an individual object. Colors denote object
categories.
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