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1. Supplementary	Tables	
	

Random	 Pixel	 ResNet	 AlexNet	 VGG16	 VGG19	

0.17	 0.21	 0.21	 0.22	 0.21	 0.21	

	

Supplementary	Table	1:	Category	classification	performance	on	2000	images	from	

6	selected	categories	in	Experiment	1	using	various	models	based	on	“low-level”	

features:	pixels,	features	from	first	convolution	block	in	ResNet,	Alexnet,	VGG16,	and	

VGG19	models	(Methods).	Random	indicates	performance	obtained	by	selecting	one	

of	the	6	categories	at	random.	

		

	

	



2. Supplementary	Discussion	
	

Human	search	for	novel	objects.	All	the	objects	presented	in	Experiments	1-3	were	

novel	 for	 the	 IVSN	model.	 Although	 the	 human	 subjects	 had	never	 seen	 the	 exact	

same	 objects	 in	 Experiments	 1	 and	 2	 before,	 they	 had	 extensive	 prior	 experience	

with	similar	objects	from	the	same	categories.	Additionally,	all	human	subjects	had	

experience	with	 the	Waldo	 character	 in	 Experiment	 3.	 To	 assess	whether	 human	

subjects	are	able	to	search	for	objects	that	they	have	never	encountered	before,	we	

conducted	 an	 additional	 experiment	 using	 novel	 objects	 such	 as	 those	 in	

Supplementary	Figure	10A	(Methods).	The	structure	of	the	task	(Supplementary	

Figure	10B)	was	similar	to	the	one	in	Experiment	1	(Supplementary	Figure	1A),	

except	 that	 the	 category	 name	 was	 not	 included.	 In	 addition	 to	 trials	 with	 novel	

objects,	 other	 randomly	 interleaved	 trials	 included	 the	 same	 objects	 from	

Experiment	1	(known	objects)	for	direct	comparison.	To	ensure	a	fair	comparison,	

we	matched	the	difficulty	of	the	task	for	novel	objects	and	known	objects	by	making	

the	 distribution	 of	 target	 -	 distractor	 similarity	 for	 novel	 objects	 close	 to	 the	

corresponding	 distribution	 for	 known	 objects	 (Supplementary	 Figure	 10C).	

Humans	 were	 able	 to	 efficiently	 find	 novel	 objects,	 with	 a	 performance	 above	

chance	 (Supplementary	 Figure	 10D,	 novel	 objects:	 2.42±1.43	 fixations,	 p<10-15,	

t=13,	df=2361;	known	objects:	2.54±1.42	fixations,	p<10-15,	t=12,	df=3515).	Average	

performance	 for	 novel	 objects	was	 slightly	 above	 performance	 for	 known	 objects	

(p=0.004,	t=2.9,	df=5278,	two-tailed	t-test),	but	this	difference	was	small	and	might	

potentially	be	attributable	to	small	differences	in	task	difficulty	despite	our	attempts	

to	match	 the	 two.	We	 conclude	 that	 human	 subjects	 are	 capable	 of	 searching	 for	

novel	 objects	 that	 they	 have	never	 encountered	before.	 As	 expected	 based	 on	 the	

results	in	Experiment	1,	IVSN	was	also	able	to	efficiently	locate	the	known	and	novel	

objects	(Supplementary	Figure	10E).	

	

Performance	 on	 categories	 not	 present	 in	 ImageNet.	 The	 ventral	 visual	 cortex	

part	 of	 the	model	 (VGG16	 architecture)	was	 pre-trained	 on	 1000	 categories	 from	

the	 ImageNet	 dataset	 (Methods).	 Although	 all	 the	 images	 that	 we	 used	 in	



Experiments	1	and	2	were	different	from	those	in	ImageNet,	100	out	of	240	of	the	

target	 categories	 in	 Experiment	 2	were	 among	 the	 1000	 ImageNet	 categories.	 To	

evaluate	 whether	 the	 IVSN	 model	 can	 generalize	 to	 search	 for	 target	 object	

categories	 that	 it	 has	 never	 encountered	 before,	 we	 separately	 analyzed	 the	 140	

target	 objects	 from	 Experiment	 2	 belonging	 to	 categories	 that	 are	 not	 part	 of	

ImageNet	(Methods).	There	was	a	small	 improvement	 in	performance	for	the	100	

images	with	ImageNet	category	targets	versus	the	140	images	with	novel	category	

targets	but	this	difference	was	not	statistically	significant	(Supplementary	Figure	

5,	 p=0.25,	 two-tailed	 t-test,	 t=1.2,	 df=238).	 The	 IVSN	 model	 was	 still	 able	 to	

successfully	 and	 efficiently	 find	 the	 target	 even	 for	 categories	 with	 zero	 prior	

experience.	

	

Image-by-image	 comparisons.	The	 results	 presented	 thus	 far	 compared	 average	

performance	 between	 humans	 and	 models	 considering	 all	 images.	 We	 next	

examined	 consistency	 in	 the	 responses	 at	 the	 image-by-image	 level.	 For	 a	 given	

image,	IVSN	(e.g.,	Figures	3B,	4B,	5B)		and	subjects	(e.g.,	Figures	3C,	4C	and	5C)	go	

through	a	sequence	of	fixations	to	find	the	target.	We	considered	different	metrics	to	

compare	those	fixation	sequences	(Supplementary	Figure	6,	Methods).		

We	started	by	considering	the	total	number	of	fixations	required	to	find	the	

target.	 First,	 we	 evaluated	 whether	 subjects	 would	 produce	 a	 consistent	 number	

fixations	for	the	exact	same	visual	search	problem	in	Experiment	1.	Unbeknown	to	

subjects,	some	of	 the	same	target	and	search	 images	were	repeated,	 intermixed	 in	

random	order,	to	evaluate	the	degree	of	within-subject	consistency.	The	correlation	

coefficient	 in	 the	number	of	 fixations	 required	 to	 find	 the	 target	between	 the	 first	

and	 repeated	 instance	 of	 the	 same	 images	 ranged	 from	 0.17	 to	 0.45	 (0.31±0.09,	

Supplementary	 Figure	 7D).	 There	 was	 significant	 variability	 in	 each	 subject’s	

number	of	fixations	under	identical	task	conditions.	This	definition	of	within-subject	

consistency	 assumes	 that	 subjects	 had	 no	 memory	 over	 trials;	 we	 verified	 the	

absence	 of	 strong	 memory	 effects,	 which	 would	 have	 been	 evident	 as	 increased	

values	 below	 the	 diagonal	 in	 Supplementary	 Figure	 7D1.	 There	 was	 almost	 no	

difference	 between	 the	 first	 and	 second	 instances	 of	 each	 image	 in	 overall	



performance	 (two-tailed	 t-tests:	 Exp1,	 p=0.96	 t=0.06	df=8357;	 Exp2,	 p=0.28	 t=1.1	

df=6011;	 Exp3,	 p=0.29	 t=1.1	 df=1454).	 Next,	 we	 compared	 whether	 different	

subjects	required	the	same	number	of	fixations	to	find	the	target.	The	correlation	in	

the	 number	 of	 fixations	 between	 subjects	 ranged	 from	 -0.03	 to	 0.38	 (0.21±0.09,	

Supplementary	 Figure	 7D2).	 Finally,	 we	 compared	 IVSN	 to	 humans	 and	 the	

correlation	 in	 the	 number	 of	 fixations	 ranged	 from	 -0.05	 to	 0.12	 (0.03±0.05,	

Supplementary	 Figure	 7D3).	 Thus,	 even	 when	 the	 overall	 performance	 of	 IVSN	

and	humans	were	similar	(Figure	3E),	there	were	many	images	that	were	easy	for	

humans	and	hard	 for	 the	model,	 and	vice	versa	 (e.g.,	Supplementary	Figure	7A).	

Subjects	were	 slightly	more	 consistent	with	 themselves	 than	with	 other	 subjects,	

and	the	between-subject	consistency	was	slightly	higher	than	the	consistency	with	

IVSN.	 These	 conclusions	 also	 extend	 to	 Experiments	 2	 and	 3	 (Supplementary	

Figure	7).		

	 The	number	of	fixations	provides	a	summary	of	the	efficacy	of	visual	search	

but	 does	 not	 capture	 the	 detailed	 spatiotemporal	 sequence	 of	 eye	 movements	

(Supplementary	Figure	6).	We	used	the	scanpath	similarity	score1,	to	compare	two	

fixation	 sequences.	 This	 metric,	 derived	 from	 comparisons	 of	 DNA	 sequences,	

captures	the	spatial	distance	between	saccades	in	two	sequences	and	their	temporal	

evolution.	The	 similarity	 score	 ranges	 from	0	 (maximally	different)	 to	1	 (identical	

sequences).	 We	 evaluated	 scanpath	 similarity	 scores	 within	 subjects,	 between	

subjects	 and	 between	 IVSN	 and	 subjects	 (Figure	 6).	 For	 a	 fixation	 sequence	 of	

length	x,	we	compared	the	first	x	fixations	for	all	images	that	had	at	least	x	fixations.	

Within-subject	comparisons	yielded	slightly	more	similar	sequences	than	between-

subject	 comparisons	 in	 all	 3	 experiments	 (p<10-9).	 The	 between-subject	 scanpath	

similarity	scores,	in	turn,	were	higher	than	the	IVSN-human	similarity	scores	for	all	

3	 experiments.	 The	 IVSN-human	 similarity	 scores	 were	 higher	 than	 the	 human-

chance	 similarity	 scores	 for	 all	 3	 experiments.	 Similar	 conclusions	 were	 reached	

when	comparing	all	sequences	irrespective	of	their	length	(Supplementary	Figure	

8),	 except	 that	 the	 average	 scanpath	 similarity	 score	 for	 IVSN-model	 comparisons	

was	not	statistically	significant	in	Experiment	3.	In	sum,	IVSN	captured	human	eye	



movement	behavior	at	the	image-by-image	level	in	terms	of	the	number	of	fixations	

and	the	spatiotemporal	pattern	of	fixations.		

	

Other	ventral	visual	cortex	architectures.	We	used	 the	VGG16	architecture	as	an	

approximation	to	ventral	visual	cortex	to	extract	visual	features	from	the	target	and	

search	 images	 in	 IVSN	(Figure	2).	There	are	multiple	alternative,	yet	conceptually	

similar,	 deep	 convolutional	 architectures	 including	 AlexNet2,	 ResNet3	 and	

FastRCNN4.	In	Supplementary	Figure	14,	we	report	results	obtained	by	replacing	

the	 VGG16	 visual	 cortex	 part	 of	 the	 model	 by	 one	 of	 those	 other	 alternative	

architectures	creating	IVSNAlexNet,	IVSNResNet,	and	IVSNFastRCNN	(Methods).	All	of	these	

models	 were	 above	 chance	 in	 all	 the	 experiments	 (p<0.006).	 Overall,	 the	

performance	of	these	alternative	architectures	was	similar	to	that	of	IVSN	but	some	

of	them	yielded	a	statistically	significant	difference	with	IVSN:	IVSNAlexnet:	p<0.01	in	

Experiment	1;	IVSNResNet:	p<10-7	in	Experiment	2	(Supplementary	Figure	14).		

	

Overt	 versus	 covert	 attention.	 The	 IVSN	 model	 is	 agnostic	 as	 to	 whether	 those	

attention	 changes	 are	 manifested	 through	 overt	 attention	 (moving	 the	 eyes)	 or	

covertly	(without	moving	the	eyes).	Covert	attention	changes	are	harder	to	quantify	

at	the	behavioral	level.	In	the	experiments	presented	here,	subjects	were	instructed	

to	 move	 their	 eyes	 to	 find	 the	 target	 as	 rapidly	 as	 possible.	 No	 feedback	 was	

provided	 during	 the	 experiment	 and	 no	 punishment	 was	 introduced	 for	 active	

exploration	 via	 eye	 movements.	 The	 objective	 was	 to	 encourage	 natural	 visual	

search	behavior,	and	avoid	alternative	strategies	such	as	fixating	on	the	center,	and	

covertly	shifting	attention	until	the	target	was	located.	The	average	eye	movement	

reaction	times	were	quite	fast	(Supplementary	Figure	2)	and	were	consistent	with	

previous	 work	 (e.g.,5).	 While	 we	 cannot	 exclude	 the	 possibility	 that	 there	 were	

covert	attention	shifts	in	between	saccades,	there	are	only	a	few	tens	of	milliseconds	

between	 the	 first	 saccade	 times	 (Figures	 3D,	 4D,	 5D)	 and	 the	 latencies	 that	

characterize	the	visually	selective	responses	along	the	ventral	visual	cortex	(e.g.,6),	

which	 does	 not	 leave	 much	 time	 for	 extensive	 processing	 or	 multiple	 attention	

shifts.		



	

Visual	 search	 in	 target	 identical	 trials.	 A	 large	 body	 of	 visual	 search	 studies	 has	

focused	 on	 finding	 identical	 matches	 to	 a	 target	 (e.g.,5,7,8).	 Visual	 search	 in	 the	

natural	 world,	 and	 most	 applications	 of	 visual	 search,	 rarely	 have	 the	 luxury	 of	

dealing	 with	 identical	 target	 search.	 As	 expected,	 performance	 in	 such	 target-

identical	 trials	 is	 better	 than	 in	 trials	 where	 the	 target	 changes	 shape,	 both	 for	

human	 subjects	 as	 well	 as	 for	 the	 IVSN	 model	 (Supplementary	 Figure	 3,	 S9C).	

Furthermore,	even	the	structure	and	instructions	in	the	task	can	have	an	impact	on	

the	results.	For	example,	subjects	showed	higher	performance	when	all	 the	target-

identical	 trials	were	blocked	(Supplementary	Figure	9D).	Enhanced	performance	

in	blocked	identical	trials	may	explain	why	the	overall	performance	in	Experiment	1	

was	slightly	lower	than	in	the	study	of	reference5.	Of	course,	there	are	no	blocks	of	

target-identical	trials	in	real	world	visual	search	and	therefore	the	mixed	conditions	

of	Experiments	1-3	better	reflect	natural	search	behavior.	These	results	emphasize	

the	need	to	use	randomized	trials	and	transformed	versions	of	the	target	object	to	

study	real	world	visual	search.		

	

Matching	 bottom-up	 and	 top-down	weights.	 The	 results	 show	 that	 the	 features	

learned	 in	 an	 independent	 object	 labeling	 task	 (training	 VGG16	 via	 back-

propagation	using	the	dataset	 in	ImageNet),	can	be	useful	not	only	 in	a	bottom-up	

fashion	for	visual	recognition,	but	also	in	a	top-down	fashion	to	guide	feature-based	

attention	changes	during	visual	search.	The	model	assumes	that	 the	same	bottom-

up	 features	are	used	 in	a	 top-down	 fashion	during	visual	 search,	 i.e.,	 that	 the	 top-

down	 weights	 perfectly	 match	 the	 bottom-up	 weights.	 There	 are	 biologically-

plausible	models	that	are	capable	of	generating	top-down	weights	that	follow	their	

bottom-up	 counterparts9.	 Yet,	 it	 remains	 unclear	 whether	 bottom-up	 synaptic	

weights	 are	 directly	 matched	 by	 top-down	 synaptic	 weights	 in	 cortex	 and	 this	

assumption	 will	 require	 further	 evaluation	 through	 behavioral	 and	 physiological	

experiments.	

	



Future	 directions	 for	 enhancements	 to	 the	 model.	 Even	 when	 IVSN	 may	

approximate	human	search	behavior,	 the	model	may	not	be	searching	 in	the	same	

way	that	humans	do.	There	are	several	important	components	of	visual	search	that	

were	simplified	in	the	current	model	but	play	an	important	role	in	real	world	visual	

search,	 and	 which	 may	 contribute	 to	 the	 enhanced	 between-subject	 consistency	

compared	to	model-subject	consistency.	

(i) Eccentricity	 dependence.	 Human	 visual	 acuity	 drops	 rapidly	 from	 the	

fovea	to	the	periphery	and	therefore	acuity	changes	with	each	saccade.	In	

contrast,	 the	model	 has	 perfect	 acuity	 through	 the	 entire	 image.	 Future	

instantiations	of	 the	model	 should	 incorporate	 eccentricity	dependence.	

Combined	with	 potential	 distance-dependent	 costs	 for	making	 saccades	

(Supplementary	Figure	11G-I),	such	eccentricity-dependent	acuity	may	

play	an	 important	role	 in	biasing	the	attention	map	and	hence	directing	

saccades.	

(ii) Target	 recognition.	 Once	 a	 saccade	 is	 made,	 it	 is	 important	 to	 decide	

whether	 the	 target	 is	 present	 or	 not.	 In	 the	 default	 IVSN,	 we	 did	 not	

model	this	recognition	component;	instead,	we	used	an	“oracle”	system	to	

decide	 whether	 the	 target	 was	 found	 (the	 same	 oracle	 was	 used	

throughout	 for	 the	 human	 data	 for	 fair	 comparison,	 except	 in	

Supplementary	 Figure	 12).	 As	 a	 proof-of-principle	 demonstration,	 we	

implemented	 a	 recognition	 step	 for	 each	 fixation	 in	 Supplementary	

Figure	11A-C.	This	IVSNrecognition	model	performed	well	in	Experiment	1,	

but	 slightly	 less	well	 in	 Experiments	 2	 and	 3	where	 there	 is	 significant	

clutter.	 There	 has	 been	 extensive	 work	 on	 invariant	 visual	 recognition	

systems	 that	 could	 be	 incorporated	 into	 IVSN	 to	 decide	 whether	 the	

target	is	present	or	not2,3,10,11.	It	should	be	noted	that	humans	also	make	

recognition	mistakes.	 Examples	 of	 such	mistakes	 are	 shown	 in	Figures	

4C	and	5C	where	subjects	moved	their	eyes	to	the	target	location,	yet	did	

not	 click	 the	 mouse	 to	 indicate	 that	 they	 had	 found	 the	 target,	

Supplementary	Figure	12).	It	is	conceivable	that	in	some	of	those	cases,	

subjects	 did	 consciously	 recognize	 the	 target	 but	 wanted	 to	 be	 certain	



and	 thus	 decided	 to	 further	 explore	 the	 image;	 this	 should	 not	 be	

described	 as	 a	 recognition	 failure	 but	 rather	 a	 decision-making	 failure.	

However,	 it	 is	more	 likely,	 particularly	 in	Experiment	3,	 that	 in	most	of	

those	cases	subjects	fixated	on	the	target,	yet	failed	to	recognize	it.		

(iii) Memory.	 The	 default	 IVSN	 model	 (and	 all	 null	 models)	 had	 infinite	

inhibition-of-return,	that	is,	they	never	went	back	to	the	same	location.	In	

contrast,	humans	revisit	the	same	location	even	if	the	target	is	not	there	

(e.g.,	Figure	4C,	5C,	3E,	4E,	5E,12,13).	We	implemented	a	memory	function	

in	 IVSNfIOR	 by	 fitting	 human	 behavioral	 data	 such	 that	 the	model	 could	

probabilistically	 go	 back	 to	 previous	 locations	 (Supplementary	 Figure	

11D-F).	 The	 combination	 of	 (ii)	 and	 (iii)	 is	 probably	 important	 and	

relevant.	 Under	 the	 oracle	 system	 (perfect	 recognition),	 there	 is	 no	

incentive	in	revisiting	previous	locations.		However,	when	considering	an	

imperfect	 recognition	machinery	 that	 can	make	mistakes,	 an	 imperfect	

memory	 may	 be	 useful	 to	 endow	 the	 model	 with	 the	 possibility	 of	

revisiting	a	given	location	where	the	target	may	have	been	present.	Even	

though	 the	 recognition	 machinery	 in	 the	 models	 considered	 here	 is	

deterministic,	the	exact	fixation	center	could	be	different	when	revisiting	

a	location	and	this	could	lead	to	correct	recognition.		

(iv) Learning.	There	is	no	training	in	the	models	presented	in	this	study.	The	

ventral	 visual	 cortex	 was	 extensively	 pre-trained	 for	 visual	 object	

recognition	but	that	training	was	not	part	of	 this	study.	 IVSN	capitalizes	

on	 those	 weights	 learned	 for	 visual	 recognition	 through	 a	 series	 of	

operations	imposed	to	do	visual	search.	Those	operations	could	be	learnt.	

The	 visual	 system	 could	 learn	 how	 to	 generate	 a	 sequence	 of	 fixations,	

including	 the	 interaction	of	 the	different	bottom-up,	 top-down,	memory	

and	recognition	components,	 the	winner-take-all	mechanism,	 inhibition-

of-return,	saccade	size	constraints,	decisions	about	whether	the	target	is	

present	 or	 not,	 etc..	 An	 elegant	 idea	 on	 how	 learning	 could	 be	

implemented	 was	 presented	 in	 ref.14	 where	 the	 authors	 proposed	 an	

architecture	that	can	learn	to	generate	eye	movements	via	reinforcement	



learning	with	 a	 system	 that	 is	 rewarded	when	 the	 target	 is	 found.	 The	

generation	 of	 the	 attention	 map	 in	 the	 IVSN	 model	 is	 end-to-end	

trainable.	 IVSN	 can	 be	 improved	 by	 training	 or	 fine-tuning	 via	

reinforcement	 learning	 for	 various	 search	 tasks	 depending	 on	 the	

applications.	

(v) Information	 from	previous	saccades.	 Previous	 saccades	 are	 incorporated	

through	 the	 inhibition-of-return	 mechanism	 (to	 avoid	 visiting	 previous	

locations)	and	through	the	saccade	distance	constraint	(precluding	from	

making	 very	 large	 saccades).	 Beyond	 these	 two	 elements,	 saccades	 are	

considered	 to	 be	 independent.	 However,	 a	 complete	 model	 should	

incorporate	 inter-dependences	 across	 saccades	 by	 using	 visual	

information	obtained	during	previous	fixations	to	guide	the	next	saccade.	

This	is	particularly	relevant	in	combination	with	(i).	IVSN	has	access	to	a	

complete	high	 resolution	map	of	 the	entire	 image.	However,	 the	human	

visual	 system	 only	 has	 high-resolution	 information	 in	 the	 fovea.	 Each	

subsequent	fixation	provides	additional	high-resolution	information	at	a	

different	 location	 in	 the	 image	 and	 this	 information	 should	 be	

incorporated	to	better	guide	the	next	fixation.	

(vi) Cognitive	knowledge	about	 the	world.	 The	 images	 in	 Experiment	 3,	 and	

particularly	 those	 in	 Experiment	 1,	 violate	 basic	 components	 of	 real	

world	 images.	 In	 real	 world	 images	 (Experiment	 2),	 subjects	 may	

capitalize	 on	 high-level	 knowledge	 about	 scenes8,15	 including	

understanding	certain	statistical	correlations	in	object	positions	(e.g.,	it	is	

highly	 unlikely	 that	 the	 car	 keys	 would	 be	 glued	 to	 the	 ceiling),	 basic	

properties	of	 the	physical	world	(an	object	needs	support	and	therefore	

keys	 are	more	 likely	 to	be	 found	on	 top	a	desk	or	 the	 floor	 rather	 than	

floating	in	the	air),	correlations	in	object	sizes	(the	size	of	a	phone	in	the	

image	 may	 set	 an	 expectation	 for	 the	 size	 of	 the	 keys),	 etc.	 Such	

knowledge	can	place	significant	constraints	on	the	visual	search	problem,	

leading	to	adequately	skipping	search	over	large	parts	of	an	image.	None	

of	this	high-level	knowledge	is	incorporated	into	the	IVSN	model.	



	

Relationship	 to	 object	 detection	 and	 image	 retrieval	 in	 computer	 vision.	

Traditional template-matching computational algorithms do not perform well in invariant 

object recognition. In visual search tasks, template-matching shows selectivity to 

distinguish an identical target from distractors, but fails to robustly find transformed 

versions of the target. To circumvent this problem, investigators have developed object 

detection, object localization, and image retrieval approaches which can successfully and 

robustly localize objects, at the expense of having to extensively train those models with 

the sought targets and exhaustively scan the image through sliding windows4. To localize 

objects, recent work focuses on deep neural networks requiring a large amount of 

supervised data, such as bounding boxes or object segmentations4,16,17. Typically, these 

approaches either use a sliding window or propose regions of interest uniformly over a 

grid, performing feed-forward classification for each region and making decisions about 

the presence or absence of the target. An analogous strategy is used in image retrieval 

tasks where a similarity score is computed between a query and each candidate 

image18,19. These heuristic methods are computationally inefficient (in terms of the 

number of ``fixations" or proposed regions required to find the target), and require 

extensive class-specific training. 

	

	



Supplementary	Figure	1 Supplementary Figure 1. Overall
distribution of target locations,
human fixations and model
fixations. A, D, G. Distribution of
target locations for Experiment 1, 2
and 3, respectively. B, E, H.
Distribution of human subject
fixations for 15 subjects in each
experiment (n=31,202, 99,610 and
71,346 fixations for Experiments 1, 2
and 3, respectively). In panel H,
there is a slightly lower density of
fixations in a section in the upper left
quadrant; in 13/67 images, this
location had text instructions and
subjects were instructed to avoid
this area. C, F, I. Distribution of IVSN
fixations. The white spacing between
fixations in the model is due to the
way in which the large images were
cropped in order to feed smaller size
image segments into the model
(Methods).



Supplementary
Figure	2A-F Supplementary Figure 2.

Distribution of reaction
times and saccade sizes.
A, C, E. Distribution of
reaction times for the first 6
fixations, across 15 subjects,
for Experiments 1, 2 and 3,
respectively. Bin size = 50 ms.
In Experiments 2 and 3, there
were many trials with >6
fixations (Figure 4E, 5E). The
distribution for the first
fixation is the same as the
one shown in Figures 3D, 4D,
and 5D and is reproduced
here for completeness. The x-
axis was cut at 3 seconds.
B, D, F. Distribution of time
required to find the target,
across 15 subjects. Bin size =
50 ms. The vertical dashed
line denotes the median
(mean values are reported in
the text). There was a
significant difference in the
time required to find the
target among the 3
experiments (one-way
ANOVA, p<10-15, df=14217,
F=3015).



Supplementary Figure 2G-L. Distance to target for the last 6 fixations. Distribution of the distance (in degrees of visual angle) between the fixation
location and the target location for the last fixation (L-0), the fixation before last (L-1), etc. for humans (G-I) or the IVSN model (J-L). The vertical dashed
lines denote the average of each distribution. On average, each subsequent fixation brought human subjects closer to the target towards the end,
whereas the model was more likely to arrive at the target from a distant location. The arrows indicate the expected distance from a random location to
the target. In H, I, K, L, given the image dimensions Lw=40 degrees, Lh=32 degrees and d=sqrt(Lw2+Lh2), this chance distance is given by:

Supplementary
Figure	2G-L
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Supplementary	
Figure	S3

Supplementary Figure 3. Invariance
in visual search.
A. Number of fixations required to
find the target in Experiment 1 as a
function of the distance between
the target as rendered in the It and Is
images. Distance = 0 corresponds to
identical targets (note cut in x-axis).
The horizontal dashed line indicates
the null chance model. Error bars
denote SEM.
B. Number of fixations required to
find the target in Experiment 1 as a
function of the difference between
the rotation of the target object in
the target image and in the search
image for humans (red) and the
IVSN model (blue). The vertical
dashed line indicates those trials
where the target was shown with
the same 2D rotation angle in the It
and Is images. The horizontal dashed
line indicates the null chance model.
C. Similar to A for Experiment 2.
There were no distance=0 trials in
this experiment.
D. Number of fixations required to
find the target in Experiment 2 as a
function of the area of the target in
the Is image. The dashed line shows
the size of the target object in the It
image. The horizontal dashed line
indicates the null chance model.
E. Similar to A for Experiment 3. The
null chance model required 58
fixations on average (beyond the y
scale).



Supplementary	Figure	4A

Supplementary Figure 4.
Performance comparison
with alternative models. The
format and conventions are
the same as those in Figures
3E, 4E, 5E in the main text.
Error bars denote SEM. See
text and Methods for a
description of each model.
The curves for “Human”,
IVSN, and Chance are
reproduced from Figures 3E,
4E and 5E for comparison
purposes. A. Experiment 1
(Object arrays).

All models except for IVSN
were statistically different
from humans (two-tailed t-

test):
TemplateMatching: p<10-9,
RanWeight: p<10-15
IttiKoch: p<10-15
SlideWin: p<10-15
Chance: p<10-15
IVSN: p=0.03

All models were statistically
different from IVSN (p<0.01,
two-tailed t-test, df>598).
TemplateMatching: p=0.01
RanWeight: p<10-5
IttiKoch: p<10-6
SlideWin: p<10-7

Chance: p<10-12



Supplementary	Figure	4B

Supplementary Figure 4.
Performance comparison
with alternative models.
B. Experiment 2 (Natural
images).

All models were statistically
different from humans (two-
tailed t- test):
TemplateMatching: p<10-15,
RanWeight: p<10-15
IttiKoch: p<10-15
SlideWin: p<10-15
Chance: p<10-15
IVSN: p<10-5

All models were statistically
different from IVSN (two-
tailed t-test):
TemplateMatching: p<10-10
RanWeight: p<10-5
IttiKoch: p<10-15
SlideWin: p<10-15

Chance: p<10-15



Supplementary	Figure	4C

Supplementary Figure 4.
Performance comparison
with alternative models.
C. Experiment 3 (Waldo
images).

All models were statistically
different from humans (two-
tailed t- test):
TemplateMatching: p<10-13,
RanWeight: p<10-8
IttiKoch: p<10-6
SlideWin: p<10-15
Chance: p<10-15
IVSN: p=0.001

All models were statistically
different from IVSN (two-
tailed t-test):
TemplateMatching: p=0.001
RanWeight: p<10-8
IttiKoch: p<0.01
SlideWin: p<10-8
Chance: p<10-15



Supplementary	Figure	5

Supplementary Figure 5.
Performance for ImageNet
categories and non-
ImageNet categories in
Experiment 2. Following the
format in Figure 4E,
cumulative performance as a
function of fixation number
for all images (blue, same
copied from Figure 4E), 100
images with target object
categories that were within
ImageNet (dark gray) and 140
that did not (light gray).
Although performance was
slightly higher for target
objects in ImageNet
categories, there was no
significant difference
between the number of
fixations required to find the
target for ImageNet or non-
ImageNet images (p=0.25,
two-tailed t-test, t=1.2,
df=238). Error bars denote
SEM.



Supplementary	Figure	 6

Supplementary Figure 6. Illustration of image-by-image consistency metrics in fixation patterns. This schematic shows a
comparison between a primary scan path (top, sequence = ACBDE) and alternative scan paths (middle) in a search image
consisting of 6 objects where the target is at location E. The numbers below each subplot show the difference in the number of
fixations and the scan path similarity score for each comparison with the primary scan path (Methods).



Supplementary	Figure	7A

Supplementary Figure 7.
Image-by-image comparison
of number of fixations
required to find the target.
A-C. Example trials where the
IVSN model found the target
faster than humans (A1, B1,
C1), when humans found the
target faster than the IVSN
model (A2, B2, C2), and trials
where humans and the IVSN
model were comparable (A3,
B3, C3) for Experiment 1 (A),
Experiment 2 (B), and
Experiment 3 (C). The left
column shows the target
image, columns 2 and 3 show
the sequence of fixations for
the IVSN model (column 2)
and one of the subjects
(column 3). The number of
fixations required to find the
target is shown above each
search Image.



Supplementary	Figure	7B

Supplementary Figure 7.
Image-by-image comparison
of number of fixations
required to find the target.
See previous panel for
legend.



Supplementary	Figure	7C

Supplementary Figure 7.
Image-by-image comparison
of number of fixations
required to find the target.
See previous panel for
legend.



Supplementary	Figure	7DEF
Supplementary Figure 7. Image-by-
image comparison of number of
fixations required to find the target.
D-F. Comparison in the number of
fixations required to find the target
averaged across subjects for each
experiment (columns), within subjects
(D1, E1, F1), between subjects (D2,
E2, F2) and between subjects and
IVSN model (D3, E3, F3). When
comparing S1 and S2 (e.g., two
subjects), entry (i,j) indicates the
proportion of images where S1
required i fixations and S2 required j
fixations (see scale bar on bottom
right). Presence of entries exclusively
along the diagonal would indicate that
the behavior of S1 and S2 is identical
on an image-by-image basis. Results
were averaged across subjects (see
Figures S7G-I for distribution for
individual subjects). Note that the size
of the matrices are different for each
experiment, reflecting the increasing
difficulty from Experiment 1 to 3. The
r values show the average of the
correlation coefficients computed in
Figures S7G-I in the subject-by-
subject comparisons. An * next to the
r value indicates that the distribution
of r values was different from zero
(two-tailed t-test, p<0.01). An *
comparing two matrices indicates that
the distributions of r values were
statistically different (two-tailed t-
test, p<0.01).



Supplementary	Figure	7GHI
Supplementary Figure 7.
Image-by-image comparison
of number of fixations
required to find the target.
Using the same comparison
of the number of fixations
described for Figure S7DEF,
this figure shows the
distribution of the correlation
coefficients on a subject-by-
subject basis for Experiment 1
(G), Experiment 2 (H) and
Experiment 3 (I). The colors
denote the within-subject
comparisons (black), between
subject comparisons (dark
gray), and IVSN-subject
comparisons (light gray).



Supplementary Figure 8: Image-by-image consistency in the spatiotemporal pattern of fixation sequences
using entire fixation sequences. Scanpath similarity scores (see text and Methods for definition) comparing
the fixation sequences within subjects (dark gray), between-subjects (medium gray) and between the IVSN
model and subjects (light gray) for Experiment 1 (A), Experiment 2 (B), and Experiment 3 (C). The larger the
scanpath similarity score, the more similar the fixation sequences are. The dashed line indicates chance
performance, obtained by randomly permuting the images. Results shown here are averaged over subjects
and subject pairs. The “*” denote statistical significance (p<0.01, two-tailed t-test), comparing each result
against chance levels (vertical comparisons) and comparing within-subject versus between-subject scores and
between-subject versus IVSN-subject scores (horizontal comparisons). Error bars denote SEM.

Supplementary	Figure	8ABC



Supplementary	Figure	8DEF
Figure S8: Image-by-image consistency
in the spatiotemporal pattern of
fixation sequences. Scanpath similarity
score (see text and Methods for
definition) comparing the fixation
sequences within subjects (thick red),
between-subjects (thin red) and
between the IVSN model and subjects
(blue) for Experiment 1 (D), Experiment
2 (E), and Experiment 3 (F). The larger
the scanpath similarity score, the more
similar the fixation sequences are.

In contrast to parts S8A-B-C, here only
sequences up to a given length were
compared. The x-axis indicates the
length of sequences compared. For a
given fixation sequence length x, only
sequences of length ≥x were
considered and only the first x fixations
were considered. The dashed line
indicates the similarity between human
sequences and random sequences.
Error bars denote SEM, n=15 subjects.

The within-subject similarity score was
higher than the between-subject score
in all 3 experiments (p<10-9). The
between-subject similarity score was
higher than the IVSN-human score in all
3 experiments (p<10-15) and the IVSN-
human similarity scores were higher
than human-chance scores in all 3
experiments (p<10-15).



Supplementary Figure 9. Blocked identical trials yielded improved performance (Experiment 1). A. The target as rendered in the target image could be
identical (I) to the one in the search image or different (D). B. In the mixed condition, all trials were randomized (left). In the blocked condition, all the trials
within a block consisted of the target identical condition or the target different condition (right). C. In the target identical condition (thin lines), there was an
improvement in performance both for humans (red, p<10-7, two-tailed t-test, t=5.6, df=4173) and the IVSN model (blue, p<10-5, two-tailed t-test t=4.6,
df=298) compared to the target different condition (thick lines). D. During the experiments reported in the main text, trial order was randomized (Mixed, red).
We conducted a separate experiment where trials were blocked such that all Identical trials were together and all Different trials were together (Blocked,
black). Within the blocked trials, performance was higher in the Identical trials (p<10-21, two-tailed t-test, t=9.8, df=1398). In addition, performance in
Identical blocked trials was better than performance in Identical mixed trials (p<10-14, two-tailed t-test, t=7.9, df=2236). In contrast, there was no significant
difference between the Different blocked trials and the Different mixed trials (p=0.49, two-tailed t-test, t=0.69, df=3335). Error bars denote SEM.

Supplementary	Figure	9



Supplementary Figure 10. Humans can find novel objects.
A. Six example novel objects out of the 1860 novel objects from
98 categories.
B. Schematic of Experiment 4. The novel objects experiment
followed the structure of Experiment 1.
C. Difficulty match between known objects (those from
Experiment 1) and novel objects. The distribution of similarity
scores between targets and distractors for all trials was similar
for known objects and novel objects (Methods, p>0.6, t=-0.5,
df=1204).
D. Cumulative performance following the same format as Fig. 3E
for known objects (dashed line) and novel objects (dotted line).
Performance for both novel and known objects was above
chance (p<10-15 and p<10-15, respectively). There was a small,
but significant, difference in performance between novel and
known objects (average number of fixations: 2.42+/-1.43 and
2.54+/-1.42, respectively, p=0.004, t=2.9, df=5278, two-tailed t-
test). Error bars denote SEM.
E. IVSN model performance for known objects (dashed blue)
and novel objects (dotted blue). Human performance is copied
from part D for comparison. IVSN performance for both novel
and known objects was above chance (p<10-17 and p<10-12,
respectively).

The novel objects were collected from the following sources:
1. Horst, J. S., & Hout, M. C. The Novel Object and Unusual
Name (NOUN) Database: A collection of novel images for use in
experimental research. Behavior Research Methods, 2016.
Retrieved from: http://michaelhout.com/?page_id=759.
2. Michael Tarr’s web site for Freebles, Greebles, Yadgits,
YUFOs: http://wiki.cnbc.cmu.edu/Novel_Objects
3. Alien 3D models:
https://www.turbosquid.com/Search/Index.cfm?keyword=alien
&max_price=0&min_price=0

Supplementary	Figure	10



Supplementary Figure 11. Object
recognition, memory and saccade sizes. A-C.
The results presented in the main text use an
“oracle” to determine whether the target is
present at a given location or not (Methods).
Here we introduce a recognition mechanism
into the model (IVSNrecognition) to determine
whether the target is present at a given
location or whether the model should
continue search. These figures match Figures
3E, 4E and 5E (the red, blue and black
dashed lines are copied from those figures
for comparison purposes) and introduces the
dashed blue line model (IVSNrecognition). Error
bars denote SEM.

The performance of the IVSNrecognition model
was different from humans in Experiment 2
(two-tailed t-test):
Experiment 1: p=0.04
Experiment 2: p<10-5
Experiment 3: p=0.02

The performance of the IVSNrecognition model
was significantly better than chance (two-
tailed t-test):
Experiment 1: p<10-15
Experiment 2: p<10-13
Experiment 3: p<10-15

Supplementary
Figure	11A-C



Supplementary Figure 11. Object
recognition, memory and saccade sizes. D-F.
The model presented in the main text
assumes infinite inhibition of return. Here we
introduce finite inhibition of return into the
model (Methods, IVSNfIOR. These figures
match Figures 3E, 4E and 5E (the red, blue
and black dashed lines are copied from
those figures for comparison purposes) and
introduces the thin blue line model
(IVSNfIOR).

The performance of the IVSNfIOR model was
not different from humans (two-tailed t-
test):
Experiment 1: p=0.87
Experiment 2: p=0.027
Experiment 3: p=0.29

The performance of the IVSNfior model was
significantly better than chance (two-tailed t-
test):
Experiment 1: p<10-15
Experiment 2: p<10-15
Experiment 3: p<10-15

Supplementary	
Figure	11D-F



Supplementary Figure 11. Object
recognition, memory and saccade sizes. G-I.
Distribution of saccade sizes for Experiments
1, 2 and 3, respectively, for humans (red),
the IVSN model (thick blue), and the IVSN
model constrained by saccade distance
(IVSNsize, thin blue). The vertical dashed lines
show the median values. In all experiments,
there was a significant difference between
humans and the IVSN model (p<10-15, two-
tailed t-test, t>23).

J-L. Performance of the IVSNsize model. The
format is the same as that in Figures 3E, 4E
and 5E and the red, thick blue, and black
dashed lines are copied from those figures
for comparison purposes.

The performance of the IVSNsize model was
significantly different from humans (two-
tailed t-test):
Experiment 1: p=0.004
Expeirment 2: p<10-12
Experiment 3: p=0.002

The performance of the IVSNsize model was
significantly different from chance (two-
tailed t-test):
Experiment 1: p<10-11
Expeirment 2: p<10-14
Experiment 3: p<10-15

Supplementary	Figure	11G-L



Supplementary Figure 12. Humans may fixate
on the target but fail to recognize it.
A-B. Probability of fixating on the target and
failing to recognize it (not clicking on the
target location with the mouse and continuing
visual search) for each of the 15 subjects. The
dashed line shows the average across
subjects; the shaded area is one SD.
C-D. To directly compare the model and
humans, the results presented throughout the
text use an oracle to determine whether the
target was found or not (except for
IVSNrecognition in Figure S11A-C). If a fixation
landed on the target, the target was deemed
to be found. In Experiments 2 and 3 -- but not
in Experiment 1 -- subjects were asked to
indicate the target location with the mouse.
Here we compare performance using the
oracle version (Humans, thick red line, copied
from Figures 4E and 5E) versus performance
determined by the time when subjects click
the mouse (Humans without oracle, thin red
line) for Experiment 2 (A) and Experiment 3
(B). Human performance without the oracle
was also above chance in both cases (p<10-15
and p<10-15 in C, D). Human performance with
the oracle was different from that without the
oracle in Experiment 2 (p<10-15, t=11,
df=6156), but not in Experiment 3 (p=0.62,
t=0.49, df=1375). Error bars denote SEM.

Supplementary	Figure	12



Supplementary Figure 13. Alternative IVSN
models with top-down modulation at
different levels of the hierarchy. The plots
follow the format of Figures 3E, 4E and 5E
and the blue line is copied from those figures
for comparison purposes. The curves with
different shades of gray show models where
top-down modulation is applied at different
levels of the ventral stream hierarchy. Error
bars denote SEM.

The performance of all models was
statistically different from chance (two-tailed
t-test, p<0.01), except IVSN5à4 in Experiment
1 (two-tailed t-test, p=0.39).

Supplementary	
Figure	13



Supplementary Figure 14. Variations on the
model with different ventral visual cortex
modules show similar performance. The
format and conventions for this figure follow
those in Fig. 3E. The IVSN model
performance and chance levels are copied
from Figs. 3E, 4E and 5E for comparison
purposes. The other colors denote different
models where the ventral visual cortex
module in Fig. 2B was replaced by the
AlexNet architecture (green), the ResNet
architecture (light blue) or the FastRCNN
architecture (orange). See Methods for
references to these different architectures.
The rest of the model remained the same.
Error bars denote SEM.

The performance of all models was
statistically different from chance (two-tailed
t-test, p<0.0006).

Supplementary	
Figure	14
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