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ABSTRACT

Being able to infer knowledge and take decisions in an environment of of which we possess only
partial information is a necessity for humans. Luckily it is a necessity that we can meet quite
naturally. This represents more of a challenge when speaking of artifically intelligent systems. A

practical example of this issue is the recognition of objects in occluded images. This is a task that humans
can perform very well, but computer vision systems struggle to perform. Recent neuroscientific evidence
has suggested that humans explicitely require recurrent feedback connectivity for this task. This has
prompted computer vision scientists to start experimenting with recurrent networks architectures as
well as new algorithms to train them. This report presents an approach to train networks such as to
improve their robustness to the recognition of occluded object images. This training strategy is then
evaluated for different network architectures. The result of the study was that the training algorithm
could improve robustness to occluded image recognition at the expense of a small decrease in performance
for the performance of unoccluded images. When the advantages of different types of architectures were
evaluated, it was found that recurrent connectivity didn’t lead to any significant improvements in
outcome of the training. In the contrary, it followed the findings from classical object recognition that
feedforward neural networks could perform as well their recurrent counterparts.
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1
INTRODUCTION

The broader goal of this thesis is to investigate how neural systems can stay robust to incomplete

information. Humans are naturally gifted at extracting knowledge and taking decisions based

on imperfect observations about the state of their environment. The evolutionary advantage of

developing this ability is hardly questionable, however it remains to be clearly understood how exactly our

brains can achieve this. Besides of being of great interest to improve our understanding of learning and

information processing in neurobiology, this question will awaken interest in any engineer attempting to

design more robust intelligent systems. In the context of this thesis, the focus will be kept on the second

perspective by concentrating on the study of artificial neural networks. The specific problem of interest

will be the recognition of objects in occluded images. This is a strategic choice for research on this topic,

because classical object recognition is a well researched territory, both in the brain as well as in artificial

systems. This is why it will be useful to review the current state of the field and introduce important

theoretical notions before expanding on the core of the thesis.

1.1 Visual object recognition in the brain of primates

The visual system belongs to the most frequently researched and best understood parts of the brain.

A natural preference for scientists to investigate the mechanisms of vision could be justified by the

predominance of visual input among all sensory senses in humans. Another rationale for the appeal

of studying the visual system is that vision is one of the easiest senses to manipulate in a controlled

experiment. By correlating the neural activity of various regions with the exposition of a subject to

different images, it is possible to functionally characterize the different parts of the visual system. A

pioneer of this approach was Haldan Hartline. He was the first to associate the concept of receptive field

with neurons in the 1930s after studying neural responses in the optic nerve to retinal illumination

[12, 13]. After that first milestone, some major successes by Stephen Kuffler [23] as well as Hubel and

Wiesel [17] followed in the 1950s and 1960s by characterizing the receptive fields of retinal ganglion cells

and of neurons in the primary visual cortex. These results revealed that neurons in lower visual areas

were specific to simple image characteristics such as shape, color and contrast. Later studies showed

that neurons in higher visual areas exhibited selective responses to more complex patterns such as faces

or hands [30]. One of the most extreme examples for this is the well popularized research of Quiroga et
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CHAPTER 1. INTRODUCTION

al. [32], who discovered neurons in the medial temporal lobe that were selective to images of distinct

individuals, e.g. Jennifer Aniston.

Once sufficient neurons of different regions had been characterized, the mapping of their receptive

fields uncovered a neural structure that sequentially extracted more and more complex features through

a bottom-up hierarchy [21]. This structure, also known as the ventral stream became associated to

the task of visual object recognition [8, 36] and was branded the ‘what’ pathway [43]. In this pathway,

receptive fields are smallest for neurons in the lowest regions of the hierarchy, such as retinal cells and

they increase in size for neurons in higher areas. This is further illustrated by the existence of neurons

that are selective to complex patterns, such as faces, no matter where the pattern is located in the field of

vision [42]. This property is more commonly referred to as the translational invariance of these neurons.

Besides of developing a model for visual object recognition in the brain of primates, the study of receptive

fields and of the ventral stream has lead to important insights for the development of computer vision

systems. It is a notably famous field for applying biologically inspired architectures to artificial neural

networks. Over the years this has considerably contributed to advancements that made computer vision

the blooming field that it is today. For more details on this topic, the next section will be devoted to

reviewing how the task of object recognition is tackled from the perspective of computer vision.

1.2 Object recognition in computers

Today, object recognition and computer vision are synonymous with artificial neural networks. This

all started with the design of a neural network model by Kunihiko Fukushima in the 1980s [6]. This

network model nicknamed the “neocognitron” was an attempt by Fukushima to emulate the visual

information processing of the ventral stream. For this he sequentially stacked, what are nowadays called

convolutional neural network layers (Figure 1.1). This model was especially elegant, because it was

efficient, while respecting the biological models of the time. First of all, it had hierarchical feedforward

architecture. Secondly, because convolutional layers implement a very local connectivity pattern between

layers, it meant that neurons in the upper layers would have receptive fields of increasing sizes compared

to neurons in lower layers. In addition, the use of convolutional layers solved the problem of translation

invariance, which was not only biologically relevant [42], but also generally desired for an object detection

network. Another benefit of the convolutional architecture was that neurons were not connected to all

the other neurons from neighboring layers, as is the case in densely connected networks. This downsized

connectivity and the weight sharing characteristic of convolutional networks produce a reduction in the

size of the weight search space, which simplifies the network optimization procedure. Although training

algorithms of the time were incompatible with deep multilayer networks, the neocognitron could achieve

good performances for very simple digit recognition tasks [7] by combining an unsupervised learning

algorithm for the internal layers [5] and basic perceptron supervised learning for the last layer [34].

Once this type of convolutional architectures was combined with supervised learning techniques based

on backpropagation [24], the field of computer vision could start to get serious about object recognition.

In the 1990s researchers began to successfully train systems that could recognize handwritten numbers

[25] and dataset of images depicting different classes of objects [4].

Taking a step back from this historical perspective, it can be summarized by the advance in object

recognition by designing a system that is translation invariant. Here the key features of the system were

the convolutional neural network architecture as well as the training method through backpropagation.

From this perspective, it makes sense that the next step would be to improve object recognition systems

2



1.2. OBJECT RECOGNITION IN COMPUTERS

FIGURE 1.1. Schematic diagram illustrating the interconnections between layers of the neocog-
nitron as well as the analogy between convolutional neural network layers and 2D
convolutional filters. Figure reproduced from [7].

by making them scale and rotation invariant. Indeed, humans are capable of recognizing objects in

images independently of their orientation and size as long as they remain reasonably visible. This

is true on a functional level, but was also demonstrated on the neural level through receptive fields

studies in the inferior temporal cortex [2, 18, 26]. It therefore made sense to target the design of rotation

and scale invariant object recognition systems. More generally, the goal could be defined as improving

robustness towards perceptual transformations. With this in mind, Perret and Oram [31] conjectured

that a hierarchical pooling mechanism over neurons that were selective to different transformed variants

of the same features would generate invariance to this transformation. A simplified example would be to

pool over neurons that are selective to different rotated version of a square to get a rotation invariant

representation of a square. Following this outline, Riesenhuber and Poggio pioneered a class of network

models dubbed HMAX [33], which implements this pooling mechanism with a max pool operation over a

window of neighboring neurons at different layers of the network.

It turns out that implementing ingenious network architecture is not the only way of achieving

invariance towards a transformation. According to the universal approximation theorem for neural

networks [16], standard multilayer feedforward neural networks are universal approximators. This

means that given a sufficient number of neurons there exists a set of weights that will approximate

any continuous function on a compact subset of Rn. In theory there should therefore be no functional

limitation to the power of standard neural network architectures. In practice, the challenge of finding

the right set of weights can be challenging. In the past, the main constraint was the computational

power necessary to train big networks in order to converge to a good set of weights. With the increase in

computation power, the limiting factor shifted towards the quality and quantity of data that was used to

train the neural networks. It was during this period that the Imagenet Large Scale Visual Recognition

Challenge [3] was launched as an annual competition. This was both in the response for the need of a

new generation of datasets to train more complex networks as well as to encourage computer vision

experts to beat a continuously growing dataset . The idea was that producing the most challenging
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FIGURE 1.2. Architecture of Alexnet consisting eight neural network layers, three max pooling
units and 62’378344 neurons. The first five layers are convolutional while the last three
are dense neuron layers. Figure reproduced from [7].

image recognition dataset possible would automatically promote the right environment to push the field

forward. The 2012 version of the database contained over one million images and 1000 image categories

[35]. That year’s competition was won by a landslide by AlexNet [22], which is a deep convolutional

feedforward neural network with three max pooling units (Figure 1.2). Thanks to its success in the

Imagenet challenge, Alexnet became a popular network for research purposes and quickly became a

common network to use as a benchmark for studies. Its performance in the Imagenet has long been

outdated by larger networks such as VGG16 [37], InceptionNet [38], ResNet [14] or Nasnet [46], but its

simplicity and efficiency continue to make it a great network to work with for theoretical purposes.

As the room for improvement in classical object recognition tasks becomes slimmer, the focus of the

field of computer vision has shifted towards topics such as object localization or image segmentation.

Some of the community has moved to video data, while others have looked at more challenging aspects

of object recognition as in occluded images. As will be presented later, it is conceivable that these two

subjects might have more in common than meets the eye at first sight. The discussion will however be

concentrated on occluded object recognition.

1.3 Occluded object recognition

After the great success of deep convolutional networks with classical object recognition, it seemed that

this aspect of vision could be well replicated by feedforward network architectures. When such models

were tested for robustness with respect to occlusion, it was found that the image recognition accuracy

was very sensitive and quickly degraded [9, 19]. This deficiency can be resolved in several ways. The

simplest is with data augmentation and adding occluded versions of the images to the training dataset

[28]. Computer vision engineers have also conceived more elaborate modular systems, which explicitly

combine different subsystems responsible for tasks such as segmentation, depth detection or other

complex image representations [1, 11, 29, 44].

Another approach was to draw ideas from biology. Indeed, results from human studies had indicated

that recognition of partially occluded images took more time than for unoccluded images [39]. Simple

object recognition tasks elicited a selective electrophysiological response in the ventral stream around

100ms after an image was shown. Since this roughly corresponded to the time necessary for an input

from the retina to arrive, it followed that this process should rely on a feedforward information processing
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1.4. NEURAL NETWORKS AND INCOMPLETE INFORMATION

cascade. When it was found that the same recognition selective response only arose around 200ms after

stimulus, the conclusion was that additional recurrent processing was involved to handle occlusion in the

brain. When computer vision scientists tried to train recurrent networks to perform object recognition of

occluded images [27], they observed improvements in performance compared to feedforward networks

[41]. The specific study by Tang et al. (2018) mentioned here is the main bedrock of this thesis. By playing

with the implementation of recurrent models for occluded object recognition, they reached into the

territory of training algorithms for recurrent neural networks and how these could improve robustness

to incomplete information.

1.4 Neural networks and incomplete information

In their study, Tang et al. [41] demonstrated different ways of training recurrent neural networks starting

from trained feedforward models. They could show that replacing the seventh neural network layer of

alexnet 1.2 with an all-to-all connected recurrent layer lead to a significant increase in performance

with occluded images. The main strength of the system was that the recurrent weights could be set by

considering the recurrent layer as a Hopfield network [15] and applying a Hebbian learning using only

the unoccluded images as input. This is a great feature from a neuroscientific perspective. Reproducing

the one-shot learning capabilities of the brain is still an unsolved problem and any new strategy pushing

towards this goal can be very valuable. In this case, the system did need many examples from the same

class to learn, but at least the robustness to occlusion was not a result of adding occluded images to the

training data. A second central aspect of learning that was touched upon by Tang et al. was the idea

of transfer learning. The question was if by training the model with occluded images of certain classes,

the robustness of the model towards occlusion could be improved for the recognition of objects of other

classes not seen during training. They tested this approach on their dataset of 325 images each belonging

to one out of five classes and found that indeed some transfer learning did occur. However due to their

small dataset, the results remained fragile for practical purposes. This therefore opened the window to

build a new project that aimed at applying the same transfer learning approach to a bigger dataset and

investigate, if the transfer learning property would endure.

The roadmap was to start with a feedforward model that had been pretrained for object recognition

with unoccluded images and add recurrent connections. Then the recurrent connections would be trained

with the occluded images of a set of object classes. The specific method of training would be to extract the

neuron activations of the feedforward network. Finally the network performance would be evaluated with

occluded images from classes not used during training. The premise was simple and the outcome hopeful.

However most of the results could not be completed by the end of the schedule. The only part finished

was an experiment that trained different network architectures with an augmented dataset containing

occluded and unoccluded versions of the training images. This experiment was meant as a benchmark and

used the output of the readout layer as training target for supervised learning instead of the activations

of the hidden units. As no transfer learning was expected in this setup the performance was evaluated

on occluded images of objects of the same class as the images used to train the networks. Since only the

results from this experiment will be presented and explained in the methods and results sections, this

report will be restricted to a discussion about how data augmentation can improve robustness of object

recognition to occlusion. A few different network architectures have been investigated and their different

performances will therefore be compared.
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2
MATERIAL AND METHODS

2.1 Dataset

The Imagenet dataset was chosen [35], because it had an appropriate size and difficulty, but also because

many object recognition models are available that were pretrained with Imagnet. The ILVSRC2013

version of the training dataset was chosen, because it doesn’t contain images with objects of different

classes in the same image. This is a convenient feature for the purpose of isolating the performance with

respect to the occlusion parameter and reducing uncontrolled sources of classification noise. The testing

dataset was taken from the ILVSRC2012 version, because it is one of the few ones were the test labels

have been released. It contains labeled images belonging to one of 1000 different classes.

All images were processed to size 227x227 and occluded with a bubble style. An example image of 0%,

25%, 50% and 80% occlusion can be seen in Figure 2.1. As can be observed, the occlusion of the object

was only measured in terms of the entire image. This lead to some objects being effectively completely

occluded, despite their label of partial occlusion. Such a case can be observed in the 80% occlusion

example of Figure 2.1

Fully visible 25% occlusion 50% occlusion 80% occlusion

FIGURE 2.1. Example image of the goldfish class from the processed ILVSRC2013 training set.
From left to right, there is an example of each: a fully visible, 25% occluded, 50% occluded
and 80% occluded image with a bubble style.
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2.2 Network architectures

For the neural networks, the choice for basic feedforward architecture was made in favor of Alexnet [22].

Besides of one original network pretrained on Imagenet [10] and used as a control, five other models

were created (see Table 2.1). Two variants maintained exactly the same network architecture as the

control, but were retrained. Fwdnet8 and Fwdnet78 had identical weights except for the 8th layer or the

7th and 8th layer respectively. These trainable weights were the only ones modified during subsequent

training. Similarly, Recnet8 was identical to Alexnet up to the 7th layer and only replaced the 8th

feedforward layer with a recurrent all-to-all connected layer with the same number of neurons. Recnet78

was equivalent with the only difference being that both the 7th and 8th layers were replaced by their

recurrent counterparts. In the case of the final network Recnet7 only the 7th layer was replaced by a

recurrent layer and the 8th layer stayed feedforward, but would also be part of the set of weights to be

trained during optimization. A visual overview of these networks is rendered in Table 2.1.

Network Layers 1-5 Layer 6 Layer 7 Layer 8

Alexnet
Dense Layer of
4096 neurons

Dense Layer of
1000 neurons

Fwdnet8
Dense Layer of
4096 neurons

Dense Layer of
1000 neurons

Fwdnet78
Dense Layer of
4096 neurons

Dense Layer of
1000 neurons

Recnet8
Dense Layer of
4096 neurons

Recurrent Layer of
1000 neurons

Recnet78
Recurrent Layer
of 4096 neurons

Recurrent Layer of
1000 neurons

Recnet7

5 convolutional
layers

Dense Layer of
4096 neurons

Recurrent Layer
of 4096 neurons

Dense Layer of
1000 neurons

TABLE 2.1. Overview of the network designs used layer by layer depending on the network.
Layers colored in blue were not trained and maintained the original weights of the
pretrained Alexnet model [10]. The weights of the layers colored in yellow were all
trainable.

2.3 Training with augmented data

All five variants of Alexnet were trained using the same dataset consisting of occluded and unoccluded

images from Imagenet. Not the entire training set was used and only the images belonging to 400 out

of the 1000 possible classes were used. This was because these results were originally planed to be

benchmarks for the models trained to achieve transfer learning by only using a fraction of the available

data.

Individual network training was performed using the Adam stochastic optimization method [20].

Training aimed at minimizing the l2 distance between the activation pattern of the readout layer of the

trained network with the activation pattern from the readout layer of the pretrained Alexnet model in

response to the same images, occluded or not. The set of weights trainable for each network correspond

to the ones marked in yellow in Table 2.1. Recnet8 and Recnet78 were both trained to go through three

recurrent loop time steps. Two different variations of Recnet7 were trained, one with 2 time steps and

8



2.4. EVALUATION OF THE MODELS

one with 5 time steps of recurrence. They will respectively be referred to as Recnet7.2 and Recnet 7.5

from this point.

2.4 Evaluation of the models

The performance of the models was evaluated on the Imagenet test set, which had never been seen by

Alexnet nor any of the five other networks during training. In order to compute a performance comparable

with the one of pretrained Alexnet, it was necessary to restrict the model testing to images that belonged

to one of the 400 classes used for training. Two performance metrics were computed. The first was the

accuracy of prediction, meaning the number of correct classifications over the total number of tested

images. The second was the Top-5 Accuracy, which corresponds to the fraction of times that the network

had the correct label among its five top picks. These performance measures were computed for a wide

range of occlusion of the images. Finally, a last metric important to evaluate the optimization process

was the loss at the end of training.

Using these measures, the performances between the networks were evaluated and compared between

networks.

9
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3
RESULTS

The results will be presented by splitting the experiment into two subjects. The first step will be

to focus on the role of the training paradigm with the augmented dataset. This will be done by

comparing exclusively the feedforward models that had the exact same architecture, but were

trained differently . The second part will be devoted to the analysis of the potential of recurrent layers to

improve the performance of this type of object recognition networks.

3.1 Training with an augmented dataset

In order to isolate the training component on the performance, the networks that have the same

architecture will be compared. These are the pretrained Alexnet model, the network of which only

the last layer was retrained (Fwdnet8) and the network of which both the 7th and the 8th layer were

retrained (Fwdnet78). Their respective performances depending on the amount occlusion subjected

to the images they had to classify are depicted in Figure 3.1. The first observation that can be made

is that both the accuracy and the top-5 performance lead to qualitatively similar plots. The second

obvious observation is that all performances decrease with increasing occlusion (respectively decreasing

visibility). It can also be noted that the retrained networks perform better than the pretrained Alexnet

control on occluded images, but suffer a slight decrease in performance for unoccluded images with

100% visibility. Finally, it is interesting to notice that although their performances is relatively similar,

Fwdnet78 is slightly better at recognizing occluded images than Fwdnet8, but the contrary is true for

unoccluded images. In all cases the stable performance seems to be in the region of 90% visibility, in

which all networks perform very similarly.

3.2 The role of recurrent connections

For an analysis of the role of recurrence, the most basic comparison to make is between networks that

have been trained in the same way and are identical, but for the recurrence of their connections. This

contrast is visualized in Figure 3.2. In both plots the two networks show a very similar performance

curve. However, in both cases the recurrent network has a very slight edge on the feedforward one.
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FIGURE 3.1. Performance comparison between the different feedforward networks with same
architecture. On the left the Top-1 Accuracy is plotted and on the right the Top-5 Accuracy.
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FIGURE 3.2. Comparison of the testing accuracy between feedforward networks and their
recurrent counterparts. Left: comparison of Fwdnet8 and Recnet8. Right: comparison of
Fwdnet78 and Recnet78 (see Table 2.1 for more details on their respective architectures).

The only exception being for the performances on unoccluded images of Fwdnet8 and Recnet8, where

Fwdnet8 is slightly better.

In order to catch the differences between the different recurrent variants of the network, their

respective performance curves are depicted in Figure 3.3. There, one can notice that similarly to the

retrained feedforward networks (see Figure 3.1), they all became more robust to occlusion but paid a

slight price in classification performance of unoccluded objects. The second main result that can be drawn

from this figure is that all recurrent models perform very similarly with the exception of Recnet8, which

if very slightly worse than the other three. These three others are almost indistinguishable however.
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FIGURE 3.3. Comparison in performances of the different recurrent networks and of pretrained
Alexnet. On the left the Top-1 Accuracy is plotted and on the right the Top-5 Accuracy.

Lastly, it can again be noted that the accuracy and the Top-5 performance are qualitatively extremely

similar.

Finally, as an attempt to better evaluate how training differed, between the models and the role that

this might have had on the observed outcome, the training loss was plotted beside of the performance

of the networks on images around 40% visibility (see Figure 3.4. This specific amount of occlusion was

chosen, because it was in the region in which the networks differed most in performance. The figure

shows that all networks couldn’t fit the augmented data equally well. It can be observed that the general

tendency is for recurrent networks to better fit the data than feedforward ones. Secondly, the plot also

shows that networks that had two layers retrained could reach lower training losses than the model in

which a single layer was retrained. Now comparing the left red plot with the right blue one, it becomes

immediatly obvious that networks that had smaller training loss could reach better performances in that

particular visibility region.
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4
DISCUSSION

The discussion of the results will be done according to the same structure as the presentation of

the results. It will therefore start with a discussion of the role of the training on performance,

before heading into discussions about recurrence and finally come full circle to combine both

of these components in the context of this study. Overall, the training paradigm achieved what would

be expected from it. Thanks to the data augmentation the retrained models could try to accomodate

knowledge about how to classify occluded images into their weights. This therefore lead to improvements

in performance on images with imperfect visibility in comparison to the pretrained Alexnet model that

had never been subjected to explicitly occluded images. This holds for the observation in both Figures 3.1

and 3.3. In both cases, the increase in robustness to incomplete images lead to a tradeoff in performance

for unoccluded images. This could be interpreted as the networks getting forced by the training to rely

less on patterns that are not robust to occlusion and therefore reducing false classifications in occluded

images. Doing so would however have lead to the observed decrease in performance on unoccluded

objects. The second main observation from Figure 3.1 was that Fwdnet78 was more affected by the

training in the sense that its performance on occluded objects increased more and its performance on

unoccluded objects decreased less than Fwdnet8’s did. This can be explained by the bigger search space

available to Fwdnet78 compared to Fwdnet8 during training. Indeed since the entire weight search

space of Fwdnet8 was included in Fwdnet78’s, it could be expected that if the training performed well,

Fwdnet78 should be able to move further away from the weight configuration of the pretrained Alexnet

model than Recnet8. This would imply that, if it was useful for the increase of overall performance to

decrease slightly the performance on unoccluded objects, this is something Recnet78 would be better

capable to do than Recnet8. Since this would make sense, as was described in the argument about giving

up features that were not robust to occlusion (here features are meant as neural activity patterns in

layer 6 or 7), this explanation appears to hold so far.

Now moving to discuss the behaviour of the recurrent model variants. The fact that they all performed

very similarly prevents any strong hypothesis aside of the idea that both the number of recurrent iterative

time steps used for training and the location of recurrent layers are not significant factors. This would be

true but for the difference between all recurrent networks and Recnet8, which seems to be slightly out

of the performance range of the other three recurrent networks. However the advantage of a recurrent

layer 7 is highly questionable given strong similarity in performance between Fwdnet78 and Recnet78
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(see Figure 3.2). The best explanation therefore seems to be that the single most important advantage

for performance enhancement in this setup was the trainability of layer 7. This is not very surprising in

itself, since as explained above, more trainable layers imply a bigger search space to converge to the best

possible object recognition system. However, recurrent connections in addition of feedforward ones would

also imply a bigger search space, yet these seem not to be very relevant. One explanation for this strange

observation could be that the recurrent layers offer a too big search space, which allows the models to

overfit and therefore lose any advantage that they might have from their bigger computational search

spaces. This is where looking back at the training evaluation can be useful and indeed; the observation

from Figure 3.4 that smaller training losses still correlated with improvement in testing performance

do not permit any conclusion towards an overfitting hyptohesis. Untill new results are produced, it

seems that the conclusion should be that recurrent layers didn’t contribute a significant advantage to

occlusion robustness at least with this training paradigm. This nonetheless takes nothing from the

training strategy itself, which as assumed produces improvements in object recognition performance in

occluded images.
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5
FUTURE WORK

Due to the small amount of completed experiments included in this report, there is no shortage

material that can be mentioned in this section. The first experiments that should be effectuated

next are evidently the ones that couldn’t completed. This includes the actual transfer learning

study on networks such as Alexnet with one or several feedforward layers replaced with recurrent ones.

Besides of the variant of using a fraction of the 1000 Imagenet classes for training and the other fraction

for evaluating performance, another planed experiment was to train the network with a set of images

that had as little similarity as possible to the Imagenet classes. Doing this could partially exclude the

component of transfer learning due to the high similarity between some Imagenet classes such as dog

breeds. A rich set of images all different to Imagenet is hard to come by, but a possibility was to use the

openly available pokemon image dataset [45]. It is a set of 4879 images with 800 different pokemons all

depicted in a variety of styles (see Figure 5.1). It is questionable weather such a dataset would sufficiently

well sample the image space to adequatly train the recurrent layers without overfitting, but it would be a

very satisfying result, if found successful.

Aside of varying the data used, it could have been interesting to investigate in more depth how

multiple recurrent layers could best be trained in this framework simultaneously. Assuming the goal

would be to add recurrent connections to each layer of the feedforward network it is questionable how

well the proposed training strategy would scale. Since it was designed only for a single layer, one could

FIGURE 5.1. Examples out of the One-Shot-Pokemon Images dataset [45] illustrating the
difference in styles and texture within a single class out of the 819 different classes.
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imagine extrapolating the training of multiple consequent recurrent layers by backpropagating the error

of the activations to the deepest layer. Another possibility would be to train layers individually with the

classical method, but sequentially one after the other. For example by starting from the lower layers

close to the input and optimizing the higher layers using the input processed by the optimized recurrent

layers below. Finally, it would be useful to control, if the increase in robustness towards occlusion and the

transfer learning property were characterstic to recurrent networks. As a control, it would be possible

to use the same training methodology, but by either keeping single feedforward layer or by inserting

multiple feedforward layers instead. The need for such a control is also enhanced by the preliminary

results that were presented here, since they demonstrated that replacing a feedforward layer with a

recurrent one didn’t invariably lead to a significant improvement of the system. This observation could

however be further tested, by taking deeper feedforward networks as basis to add recurrent connections.

A second path of study would also be to push the study of this report and produce more variants of

Alexnet in lower layers in order to perhapse find effects that couldn’t be noticed in the uppermost layers.
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