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Abstract

A longstanding question in sensory neuroscience is what types of stimuli drive neurons to

fire. The characterization of effective stimuli has traditionally been based on a combination

of intuition, insights from previous studies, and luck. A new method termed XDream

(EXtending DeepDream with real-time evolution for activation maximization) combined a

generative neural network and a genetic algorithm in a closed loop to create strong stimuli

for neurons in the macaque visual cortex. Here we extensively and systematically evaluate

the performance of XDream. We use ConvNet units as in silico models of neurons, enabling

experiments that would be prohibitive with biological neurons. We evaluated how the

method compares to brute-force search, and how well the method generalizes to different

neurons and processing stages. We also explored design and parameter choices. XDream

can efficiently find preferred features for visual units without any prior knowledge about

them. XDream extrapolates to different layers, architectures, and developmental regimes,

performing better than brute-force search, and often better than exhaustive sampling of >1

million images. Furthermore, XDream is robust to choices of multiple image generators,

optimization algorithms, and hyperparameters, suggesting that its performance is locally

near-optimal. Lastly, we found no significant advantage to problem-specific parameter tun-

ing. These results establish expectations and provide practical recommendations for using

XDream to investigate neural coding in biological preparations. Overall, XDream is an effi-

cient, general, and robust algorithm for uncovering neuronal tuning preferences using a vast

and diverse stimulus space. XDream is implemented in Python, released under the MIT

License, and works on Linux, Windows, and MacOS.

This is a PLOS Computational Biology Software paper.
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Introduction

What stimuli excite a neuron, and how can we find them? Consider vision as a paradigmatic

example, the selection of stimuli to probe neural activity has shaped the understanding of how

visual neurons represent information. It is practically impossible to exhaustively evaluate neu-

ronal responses to images, due to the combinatorially large number of possible images.

Instead, investigators have traditionally selected stimuli guided by natural image statistics,

behavioral relevance, theoretical postulates about internal representations, intuitions from pre-

vious studies, and serendipitous findings. Stimuli selected in this way underlie our current

understandings of how circular center-surround receptive fields [1] give rise to orientation

tuning [2], then to encoding of more complex shapes such as curvatures [3, 4], and further to

selective responses to complex objects such as faces [5–7].

Despite the progress made in understanding visual cortex by testing limited sets of hand-cho-

sen stimuli, these experiments could be missing the true feature preferences of neurons. In other

words, there could be other images that drive visual neurons better than those found so far.

Such images could lead us to revisit our current descriptions of feature tuning in visual cortex.

A recently introduced method shows promise to begin bridging the gap. Named XDream

(eXtending DeepDream with real-time evolution for activation maximization), this method

combines a genetic algorithm and a deep generative neural network [8]—both inspired by pre-

vious work [9–12]—to evolve images that trigger high activation in neurons [13]. XDream can

generate strong stimuli for neurons in macaque inferior temporal (IT) and primary visual cor-

tex (V1).

The performance and design options of XDream have not been thoroughly evaluated, due to

the time-intensiveness of neuronal recordings and the difficulty to fully control experimental

variables. To overcome these challenges, here we test the performance of XDream using state-

of-the-art in silico models of visual neurons in lieu of real neurons, in the same spirit of [14].

Specifically, we use convolutional neural networks (ConvNets) pre-trained on visual recognition

tasks as an approximation to the computations performed along ventral visual cortex [15–17].

Using these models as a proxy for real neurons allows us to compare synthetic stimuli with a

large set of reference images, to evaluate XDream’s performance across processing stages, model

architectures, and training regimes, to empirically optimize algorithm design and parameter

choices in a systematic fashion, and to disentangle the effects of neuronal response stochasticity.

Although there is a rich literature in computer science on feature visualization [18–21], we

focus on the more biologically relevant scenario where there is no information about the archi-

tecture and weights of the target model, and where we only have access to a few, potentially

stochastic, activation values from the neurons. These conditions reflect those prevailing in

neuronal recordings and are fundamentally different from the assumptions made in computer

science studies.

Under these realistic constraints, we show that XDream still reliably and efficiently uncovers

preferred features of units with a wide range of response properties, generalizing to different pro-

cessing stages within a network, different network architectures, and different training datasets.

Furthermore, XDream performed equally well with a wide range of algorithmic and parameter

choices. Based on these results, we suggest parameters to use and results that can be expected

when using XDream to investigate neuronal tuning properties. Our findings suggest that

XDream is a general and robust method for investigating neuronal preferences in visual cortex.

Design and implementation

Overview. XDream combines an image generator (e.g., the generator in a generative

adversarial network), a target neuron (e.g., a unit in a ConvNet), and a non-gradient-based
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optimization algorithm (e.g., a genetic algorithm) in a closed loop. In each iteration, the opti-

mization algorithm proposes a set of codes, the image generator synthesizes the codes into

images, the images are evaluated by the target neuron to produce one scalar score per image,

and the scores are used by the optimization algorithm to propose a new set of codes (Fig 1).

Importantly, no optimization gradient is needed from the neuron.

The image generators and optimization algorithms are detailed below. The code is imple-

mented in Python 3 and runs on Linux, Windows, and MacOS, although the former two plat-

forms are required to use GPU acceleration. The main dependency is Caffe [22] (https://caffe.

berkeleyvision.org/) or PyTorch (https://pytorch.org/), which are required for neural network

computation. Other dependencies are standard Python packages and listed in requirements.

txt in the repository, including: numpy, h5py, opencv-python, scipy, and scikit-image.

Image generators

An image generator is a function that outputs an image given some representation of that

image (an image code) as input. We tested the family of DeePSiM generators developed in [8];

they are generative adversarial networks trained to invert each layer of AlexNet [23]. The pre-

trained models are available at https://lmb.informatik.uni-freiburg.de/people/dosovits/code.

html. We have converted the models into PyTorch for convenience for future research. Links

to the converted models are available in the code repository (see Code availability below). We

used the image generator inverting the fc6 layer by default except in S4 Fig, where we com-

pared different generators. An alternative version of the DeePSiM-fc6 generator was trained

on the Places-365 dataset using code from [8] and a pre-trained classifier [24].

Fig 1. Overview of the XDream method. a), XDream combines an image generator, a target neuron, and a non-gradient-based optimization

algorithm. b,c), An example experiment targeting CaffeNet layer fc8, unit 1. b), mean activation achieved over 500 generations, 20 images per

generation (10,000 total image presentations). c), Images obtained at a few example generations indicated by minor x-ticks in b). The activation to

each image is labeled above the image and indicated by the color of the margin. d), The top 5 images among 10,000 random images from ImageNet

(ILSVRC12 dataset,>1.4 M images). The number of random images is matched to the number of images presented during optimization. The top

image in all>1.4 M images is shown in Fig 2b.

https://doi.org/10.1371/journal.pcbi.1007973.g001
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Fitness function

The key metric XDream optimizes is a scalar value we refer to as fitness, which is associated

with each image. In the neuroscience context, a fitness function can be the stimulus-evoked

spike count for a neuron in visual cortex. In the current study, the fitness function is the activa-

tion of the target unit in a ConvNet.

Optimization algorithms

An optimization algorithm in the context of XDream is a function that iteratively proposes a

set of n image codes (real-valued vectors) or codes for short, ci, i = 1, . . ., n, and then uses their

corresponding fitness values yi, i = 1, . . ., n to propose a new set of codes expected to have

higher fitness. We used a genetic algorithm by default, but also considered two other algo-

rithms: finite-difference gradient descent (FDGD) and natural evolution strategies [25] (NES).

Implementation details for the optimization algorithms are available in S1 Text.

Computing environment

Neural network computations were performed on NVIDIA GPUs. Portions of this research

were conducted on the O2 High Performance Compute Cluster supported by the Research

Computing Group, at Harvard Medical School. See http://rc.hms.harvard.edu for more

information.

Results

Random exploration of stimulus space is inefficient

A common approach for exploring neuronal selectivity is to use arbitrarily selected images,

often from a limited number of categories (for example in [7, 26]). Thus, we considered ran-

dom exploration as a baseline for comparison. We used the AlexNet architecture as the target

model [23] (implemented as CaffeNet; S1 Table) and sampled images from ImageNet [27]

(ILSVRC12 dataset, 1,431,167 images), a large dataset common in computer vision that also

contains the training set of CaffeNet. We randomly sampled n images either from all of Ima-

geNet or from 10 categories randomly selected from the 1,000 training categories in Ima-

geNet (n/10 images per category). For units in different layers of the network, we evaluated

the activation values in response to these images and calculated the relative activation,

defined as the ratio between the activations in the n random images and the maximum activa-

tion in all of ImageNet. By definition, the relative activation for the best image in ImageNet is

1, which is also an upper bound on the observed relative activation values when using ran-

dom sampling. Randomly selected images typically yielded relative activation values well

below 1 (S1 Fig). As expected, the maximum observed relative activation increased with n but

only did so slowly, with near-logarithmic growth. Moreover, for later layers (e.g., fc8), sam-

pling from only 10 categories yielded significantly worse results than sampling completely

randomly, which we hypothesize is because the small number of categories imposes a bottle-

neck on the diversity of high-level features represented. In neuroscience studies, category

selection is clearly not completely random: Investigators may have intuitions and prior

knowledge about the types of stimuli that are more likely to be effective. To the extent that

those intuitions are correct, they can enhance the search process. However, those intuitions

are seldom guided by systematic examination of stimulus space and could well miss impor-

tant types of stimuli.
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XDream can find strong stimuli for neurons

XDream has three key components: an image generator representing the search space; an

objective function given by the activation of the target unit guiding the search; and an optimi-

zation algorithm performing the search (Fig 1a). In each generation, the generator creates

images from their latent representations (codes), the target unit activation is evaluated for each

of the generated images, and the optimizer refines the codes based on the activation values. Ini-

tialized randomly (examples shown in Fig 1a), the algorithm is iterated for 10,000 total image

presentations, a relatively small and accessible number in a typical neuroscience experiment

[13]. Crucially, the algorithm does not use any prior knowledge about the architecture or

weights of the target model.

An example experiment with unit 1 in the output layer (layer fc8) of CaffeNet is shown in

Fig 1b and 1c. In 500 generations of 20 images each, the activation of the target unit increased

rapidly and saturated at approximately generation 300. Fig 1c shows example images at a few

generations (log-spaced to show a range of activations), illustrating the evolution of the images

from the initial noise pattern to the final image. In the following analyses, we concentrate on

the best image in the last generation, which we refer to as the optimized image. However, it is

worth noting that responses to all the 10,000 unique images during the evolution may illumi-

nate features of the neuron’s tuning (see Discussion).

How strong was the activation achieved by XDream-generated images? We compared the

optimized image to images from ImageNet. Unit 1 in layer fc8 was trained to be a “goldfish”

detector. Correspondingly, when we randomly sampled 10,000 images from ImageNet, the

best images are photos of goldfish (Fig 1d). The highest activation value observed in this ran-

dom sample was 30.67. The best image from ImageNet for this unit was a picture of a goldfish

and elicited an activation of 40.55 (Fig 2b). Consistent with S1 Fig, the best image found by

random sampling produced a much lower activation value than the best example in ImageNet.

In comparison, the optimized image generated by XDream elicited an activation of 72.42. In

other words, using a limited number of presentations, XDream generated images that elicited

higher activation than any natural image from ImageNet. We refer to such images with relative

activation > 1 as super stimuli.

XDream generalizes across layers, architectures, and training sets

The default generative network used in XDream was trained to invert the internal representa-

tions at layer fc6 of CaffeNet, which was in turn trained on ImageNet [8]. Could this generator

allow XDream to generalize to other network layers, architectures, and training sets? If

XDream is specific to certain layers and architectures, or specific to ImageNet-trained net-

works, this may limit its applicability to real neurons.

We first assessed whether XDream could extrapolate to other layers in CaffeNet by selecting

100 units respectively from the early, middle, late, and output layers of CaffeNet (Fig 2a).

XDream was able to find optimized images that are better than the best randomly selected

images across all layers (p< 10−16, false discovery rate (FDR) corrected for 28 tests in this sec-

tion). The optimized images were also significantly better than the best images in ImageNet

(p< 10−9, FDR corrected).

Next, we tested 100 units from each of 4 layers from 5 different network architectures:

ResNet-v2 152- and 269-layer variants [28], Inception-v3 [29], Inception-v4, and Inception-

ResNet-v2 [30]. These models were all trained on ImageNet. XDream was able to generate bet-

ter images than the best random images for the vast majority of units across all layers and

architectures (Fig 2a; p< 10−8 across layers) except the early layer of Inception-v3 (p = 0.2)

and of Inception-ResNet-v2 (p = 0.09). With the same exceptions, XDream generated super
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stimuli for all other tested layers (p = 0.01 for the early layer of Inception-v4, p = 2 × 10−4 for

the middle layer of Inception-ResNet-v2, and p< 10−9 for all other layers). Example optimized

images for units in different layers and architectures are shown in Fig 2b and S2 Fig. Further-

more, several generators trained on different layer representations performed equally well

across classifier layers (S4 Fig).

Finally, we tested the ability of XDream to optimize unit responses when the generator and

target networks are trained on different datasets. We tested PlacesCNN [31], a network with

the same architecture as CaffeNet but trained on a different dataset, PlacesCNN. PlacesCNN

also contains photographic images, but they mainly depict scenes rather than objects. Again,

XDream was able to find super stimuli across all layers in this network (Fig 2a, last four distri-

butions; p< 10−6 across layers), even when using a generative network trained on different

images. Conversely, when using a generator trained on the Places dataset, XDream still per-

formed similarly well in optimizing CaffeNet and PlacesCNN (S4 Fig).

Fig 2. XDream generalizes across layers, architectures, and training sets. a), Violin plot showing the distributions of relative activation

(activation of optimized stimulus relative to highest activation in>1.4 M ImageNet images) over 100 randomly selected units per layer. For each

target model, we investigated early, middle, late, and output layers (see S1 Table for the specific layers). The violin contours indicate kernel density

estimates of the distributions, white circles indicate the medians, thick bars indicate first and third quartiles, and whiskers indicate 1.5×
interquartile ranges. For comparison, grey boxes (interquartile ranges) and lines (medians) show the distribution of maximum relative activation

for 10,000 random ImageNet images. The horizontal dashed line corresponds to the best ImageNet image. b), Optimized (top row) and best

ImageNet (bottom row) images and activations for 10 example units across layers and architectures. For output units, corresponding category labels

are shown below the images.

https://doi.org/10.1371/journal.pcbi.1007973.g002
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These results show that XDream can efficiently create images that trigger high activa-

tions in a target unit without making assumptions about the type of images a unit may pre-

fer and without any knowledge of the target model architecture or connectivity, suggesting

that XDream may well be applicable to biological neurons. Furthermore, XDream general-

izes across layers in a ConvNet, while different layers roughly correspond to areas along

the ventral visual stream [17, 32, 33], suggesting that XDream may also generalize to

several ventral stream areas. Consistent with this observation, results from [13] indicated

that XDream can find optimized stimuli for V1 as well as inferior temporal cortex (IT)

neurons.

XDream is robust to different initial conditions

XDream starts the search from an initial generation of image codes. In Fig 2, we always initial-

ized the algorithm using the same set of 20 random image codes, 6 of which are shown in Fig

1a. Does the choice of initial conditions affect the results?

To address this question, we first tested how much the particular choice of random initial

codes matters. For each target unit, we repeated the experiment using 10 different random ini-

tializations and compared the optimized relative activation to that of the original random ini-

tialization. Different initial conditions produced slightly better or worse relative activation

values centered around a mean difference of 0, and the standard deviation of the fractional

change was lower than 10% (Fig 3a).

Similar activation values notwithstanding, the optimized images were different on a pixel

level (Fig 3b); they may comprise an “invariance manifold” that contains similar, but not iden-

tical, images eliciting comparable activation values. What might this invariance manifold look

like? To explore this question, in CaffeNet layers conv2, conv4, fc6, and fc8, we linearly inter-

polated between two separately optimized images (from different initializations) in the image

code space, and measured target unit activation in response to the interpolated images (Fig

3b). The interpolated images were much stronger stimuli compared to the majority of Ima-

geNet images. However, particularly in layers fc6 and fc8, the interpolation midpoint activated

the units less strongly than either endpoint, suggesting either that the sets of strong stimuli are

disjoint, or that the invariance manifolds may have non-convex geometry. Studies have

reported visual neurons that prefer seemingly unrelated stimuli. It remains an interesting open

question to identify whether there exists a feature representation space in which neuronal tun-

ing functions have “simple” geometry.

Next, we tested whether there are particularly good or bad ways of choosing the initial sti-

muli. We selected, separately for each target unit, the 20 ImageNet images that led to the high-

est, middle, and lowest activation values and used those images to form the initial population

(Fig 3d). To convert images into image codes comprising the initial population, we used either

the “opt” or the “ivt” algorithm (Methods). Initializing with better or worse natural images did

not improve the optimized images in the conv2 layer (p = 0.87 and 0.19 for “opt” and “ivt,”

respectively, FDR-corrected for 8 tests in this and the next sentence). In higher layers, initializ-

ing with the best natural images led to slightly higher relative activation values (Fig 3d; Table 1;

p< 5 × 10−3 for “opt” and p< 10−10 for “ivt” across layers). We speculate that the improve-

ment in higher layers is because units in deeper layers are progressively more selective, making

it more difficult to optimize their responses. Therefore, more optimal initializations are benefi-

cial. However, in an actual neurophysiology experiment, it is unlikely that the investigator

would know, a priori, such good stimuli as the best of 1.4 M images. Meanwhile, initializing

with the middle or worst natural stimuli were similar to initializing with random images

codes. Therefore, initializing randomly seems reasonable.
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To summarize, initializing the algorithm with different random conditions resulted in only

a small variation in the optimized image activation, and the optimized images were similar,

although not identical, at the pixel level. Initializing with prior knowledge has little to no effect

on the optimized image activation, unless the seed is comparable to the best image in * 1 M

images and only in later layers.

Fig 3. Comparison of different initializations. a,b,c), Effect of using different random initializations. a), Distributions of fractional change in

optimized activation if 10 different random initializations are used. b), Left, relative activation in response to images interpolated (in the code

space) between two optimized images from two different random initial conditions. Right, activation normalized to the endpoints (location 0 or

1), highlighting the change in activation away from the endpoints. c), Optimized images from different initializations for 3 example units in the

output layer (one unit per row). Activation values are shown above each image. d), Good versus bad initializations. For each target unit, its best,

middle, or worst 20 images from ImageNet were used as the initial generation. The images were converted to the image code space using either an

optimization method (“opt”) or an inversion method (“ivt”; Methods). Left to right within the opt and ivt groups are results from initialization

with the worst, middle, and best 20 images. Random initialization is shown for comparison. The open and solid violins show the distributions, in

the first and last generation respectively, of relative activation over 100 units in each layer.

https://doi.org/10.1371/journal.pcbi.1007973.g003
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Different optimization algorithms can be incorporated into XDream, but

the genetic algorithm consistently works well

An important component of XDream is the optimization algorithm. The results shown thus

far were based on using a genetic algorithm as the optimization algorithm, a choice inspired

by previous work [9–11]. Here, we compared the genetic algorithm to two additional algo-

rithms, a naïve finite-difference gradient descent algorithm (FDGD; Methods) and Natural

Evolution Strategies (NES; [25], Methods). NES has been used in a related problem [34].

FDGD and NES were significantly worse than the genetic algorithm in CaffeNet conv2

(p< 10−13, FDR corrected for 20 tests here and in the next section) and conv4 layers

(p< 10−3). Yet, both FDGD and NES were significantly better than the genetic algorithm in

CaffeNet fc6 (p< 10−16), fc8 (p< 10−16), and Inception-ResNet-v2 classifier layers (p< 10−12;

Fig 4a).

XDream is robust to noise in neuronal responses

An important difference between model units and real neurons is the lack of noise in model

unit activations. Upon presenting the same image, a model unit returns a deterministic activa-

tion value. In contrast, in biological neurons, the same image can evoke different responses on

repeated presentations (even though trial-averaged responses may be highly consistent; see

[35]). To test whether XDream could still find super stimuli with noisy units, we implemented

a simple model of stochasticity in the units by using the true activation value to control the

rate of a homogeneous Poisson process, from which the “observed” activation value on a single

trial was drawn (Methods). Homogeneous Poisson processes have been used extensively to

model stochasticity in cortical neurons [36].

As expected, performance deteriorated when noise was added (Fig 4a, noisy condition).

However, XDream using the genetic algorithm was still able to find optimized stimuli better

than random exploration for most layers (p< 10−10 for all tested layers except p = 0.19 for Caf-

feNet fc8, FDR-corrected for 5 tests) and was also able to find super stimuli for some layers

(p< 10−5 for CaffeNet conv4 and fc6 layers; FDR-corrected for 5 tests).

Noise in the unit activations affected different optimization algorithms to different extents.

The genetic algorithm was at least as good as, and often superior to, both alternative optimiza-

tion algorithms when considering noisy units. The NES algorithm performed similarly to the

genetic algorithm in CaffeNet fc8 layer and Inception-ResNet-v2 classifier layer (p = 0.03 and

0.65, respectively), but was worse in the other 3 tested layers (p< 10−14). The FDGD algorithm

Table 1. Effect of using good vs. bad initialization.

Encoding alg. Measure Layer

conv2 conv4 fc6 fc8

opt slope 0.010 0.037 0.047 0.056

p-value 0.87 0.004 0.004 7 × 10−5

ivt slope 0.044 0.113 0.241 0.353

p-value 0.19 7 × 10−11 4 × 10−22 5 × 10−77

For each unit, the 20 worst, middle, and best images from ImageNet, as ranked by that unit, were used to initialize the genetic algorithm. The images were converted to

image codes using one of two encoding algorithms, “opt” or “ivt” (see Methods). The slope was calculated, by linear regression, for relative activation (median across 100

random units each layer) as a function of the initialization ({0,1,2} for {worst, middle, best}, respectively). Thus, the slope quantifies the improvement in relative

activation when a better initialization is used (worst!middle or middle! best).

https://doi.org/10.1371/journal.pcbi.1007973.t001
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was particularly sensitive to noise, performing worse than the genetic algorithm in all layers

tested (p< 10−6) and frequently failing to find good stimuli.

In the noisy conditions examined thus far, we assumed that in each presentation, model

units yielded approximately 20 spikes for a “good” stimulus (defined as the expected best

image in 2,500 random ImageNet images). This choice was motivated by what may be realisti-

cally expected when recording from biological neurons (e.g., firing rate of 100 spikes per sec-

ond to a good stimulus over a 200 ms observation window), but this number will be

dependent on individual neurons and specific experimental designs. This number matters

because, for a homogeneous Poisson process, its standard deviation-to-mean ratio is inversely

proportional to the square root of the rate parameter (average expected number of spikes), and

thus a higher firing rate means a higher signal-to-noise ratio. To characterize the performance

of XDream under different noise conditions, we varied the rate parameter as defined by the

expected max spike number and measured XDream performance on the different noise levels

(Fig 4b). The empirical level of noise was quantified with commonly used measures such as

trial-to-trial self-correlation, standard deviation-to-mean ratio, and signal-to-noise ratio

(SNR). As the amount of noise decreased, the performance of XDream gradually approached

Fig 4. Comparison of optimization algorithms and their robustness to noise. We compared 3 gradient-free optimization algorithms

(Methods): a genetic algorithm, finite-difference gradient descent (FDGD), and Natural Evolution Strategies (NES; [25]). Left and right half

of each violin, respectively, correspond to noiseless and noisy units. Dashed lines inside the violins indicate quartiles of the distribution.

Otherwise, format of the plot is as in Fig 2a. b), The performance of the genetic algorithm gradually improves with decreasing amounts of

noise within a neurophysiologically relevant range. Format of the plot is as in Fig 2a except that the violins are horizontal. On the right, 3

alternative scales for the y-axis are shown, for comparison with common ways of assessing noise.

https://doi.org/10.1371/journal.pcbi.1007973.g004
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its noiseless performance. Notably, even with a high level of noise (5 spikes for a good stimulus,

self-correlation of 0.08, and SNR of 2), XDream was able to find super stimuli for around half

of the target units in all but the deepest layer (fc8) tested.

Availability and future directions

The code for XDream can be obtained directly from https://github.com/willwx/XDream/.

In the computer science literature, activation maximization is a well-known approach for

visualizing features represented by units in a ConvNet [12, 21, 37–39]. However, the tech-

niques are only applicable to networks that provide optimization gradients. In other words,

perfect knowledge is assumed of the target network architecture and weights. Clearly, such

requirements are not met in current neuroscience experiments.

Recently, several other studies have focused on similar goals to the ones in XDream, but

with a different approach [32, 33, 40, 41]. In that approach, a ConvNet-based model is first

fitted to predict neuronal responses to a set of training images. Then, standard white-

box activation maximization techniques are applied to the ConvNet model. The relation

between this approach and XDream is similar to the relation between the so-called “substitute

model” approach and what, in comparison, we may call a “direct” approach, in research on

black-box adversarial attacks. A promising future direction is to combine the two approaches

to leverage their unique advantages: unlimited queries (after training) and efficient optimiza-

tion with substitute models; avoiding model extrapolation and transferability problems with

direct optimization.

The results presented here are based on maximizing activation values, whereas the results

shown in [13] are based on maximizing spike counts. Activation values and firing rates are

commonly-used proxies for internal representation in machine learning and neuroscience,

respectively. However, other putative neural codes can be studied, such as pooled activation

across multiple units, increase sparseness of the representation across units, match a pre-speci-

fied pattern of population firing, correlated firing, synchronized firing of nearby units, maxi-

mize power in a certain frequency band in local field potentials, etc. XDream is agnostic to the

underpinning of the objective function as long as it is image-specific, quantitatively defined,

and computable in real time. Thus, the same algorithm can be readily applied to investigate

different putative neural coding mechanisms.

Finally, it is worth remembering that the identification of an optimal stimulus, or even a

diverse set of them, still does not automatically lead to a full characterization of the function of

a neuron. Finding preferred stimuli, or “feature visualization” in computer science parlance,

has guided thinking about the function of individual neurons in both neuroscience and deep

learning [6, 21]. However, optimal stimuli reflect but do not disentangle critical issues like tun-

ing features, invariant features, and context dependence; these questions need to be distin-

guished by subsequent hypothesis-driven investigation [42–44]. A method to automatically

find preferred stimuli of neurons can suggest initial hypotheses about a poorly-understood

visual area, or motivate re-thinking about an extensively-studied region. Of note, during the

optimization process, XDream does test thousands of related images, covering the target unit’s

response levels both widely and densely (Fig 1c). Closer analyses of these images may reveal

richer information about the tuning surface of a neuron (e.g., invariances) than what is

reflected by the single best image.

In summary, XDream is able to discover preferred features of visual units without assuming

any knowledge about the structure or connectivity of the system under study. Thus, XDream

can be a powerful tool for elucidating the tuning properties of neurons in a variety of visual

areas in different species, even where there is no prior knowledge about the neuronal
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preferences. Furthermore, we speculate that the general framework of XDream can be

extended to other sensory domains, such as sounds, language, and music, as long as good gen-

erative networks can be built.

Supporting information

S1 Fig. Expected maximum relative activation in response to random natural images. We

measured the max relative activation expected in two random sampling schemes. “Random”

refers to picking a given number of images randomly from the ImageNet dataset (blue). “10

categories” refers to first randomly picking 10 categories out of the 1000 ImageNet categories

and then picking randomly from those categories (gray). We considered 4 layers from the Caf-

feNet architecture. Lines indicate the median relative activation (activation divided by the

highest activation for all ImageNet images). Shading indicates the 25th- to 75th-percentiles

among 100 random units per layer.

(TIF)

S2 Fig. Optimized and best ImageNet images for other example neurons across architec-

tures and layers. Two neurons were randomly selected per layer per architecture (S1 Table).

Format is the same as in Fig 2.

(TIF)

S3 Fig. The image generator can approximate arbitrary images, and XDream can find

these images using only scalar distance as a loss function. This figure reproduces Supple-

mentary Figure 1 in [13]. The generative network is challenged to synthesize arbitrary target

images (row 1) using one of two encoding methods, “opt” (row 2) and “ivt” (row 3; Methods).

In addition, XDream can discover the target image efficiently (within 10,000 test image pre-

sentations) by using the genetic algorithm to minimize the mean squared difference between

the target image and any test image as a loss function, either in pixel space (row 4) or in Caffe-

Net pool5 representation space (row 5).

(TIF)

S4 Fig. Comparison of image generators. a) We tested each of the family of image generators

from [8] as the image generator in XDream, together with a generator directly representing

images as pixels. Format of the plot is the same as in Fig 2a. b), The same generator architec-

ture (DeePSiM-fc6) was trained on ImageNet and Places365, respectively, and tested on classi-

fiers trained on either dataset. Each half of a violin corresponds to one generator, and dashed

lines inside the violins indicate quartiles of the distribution; otherwise, format of the plot is the

same as in Fig 2a.

(TIF)

S5 Fig. Comparison of hyperparameters in the genetic algorithm. In each plot, one hyper-

parameter was varied while the others were held constant at default values indicated by the

open circles. Dots indicate the mean of relative activation across 40 target neurons, 10 neurons

each in 4 layers specified in S4 Table. Blue and orange lines indicate noiseless and noisy target

units, respectively. Light colored lines indicate the mean across the 10 units within each archi-

tecture and layer. Light gray shading indicates the linear portion of a symmetrical log plot,

which is used in order to show zero values.

(TIF)

S6 Fig. Testing XDream on a toy model that mimics the extra-classical effect of surround

suppression. We took two feature channels (first column, rows 2 & 3) from the conv1 layer of

AlexNet and tiled each spatially with positive and negative weights to create a central, circular
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excitatory region and a concentric suppressive ring, analogous to an excitatory classical recep-

tive field (RF) and a suppressive extraclassical RF (first row). By maximizing responses of the

constructed units, XDream created stimuli that are spatially confined and agreed with the

varying RF sizes (rows 2 & 3). We also created a unit that preferred a horizontal pattern in the

center and a vertical pattern in the surround; XDream was able to uncover this preference pat-

tern as well (row 4).

(TIF)

S1 Table. Target networks and layers. For each network, 4 layers from what is roughly the

early, middle, late stages of processing, together with the output layer before softmax, were

selected as targets. PlacesCNN has the same architecture as CaffeNet but is trained on the

Places-205 dataset [31]. CaffeNet is as implemented in https://github.com/BVLC/caffe/tree/

master/models/bvlc_reference_caffenet, PlacesCNN as in [31], and the remaining as in https://

github.com/GeekLiB/caffe-model.

(PDF)

S2 Table. Optimized hyperparameter values for the genetic algorithm. Hyperparameters

used in the experiments in this paper, obtained as described in Methods separately for each

generative network and for noiseless and noisy targets.

(PDF)

S3 Table. Optimized hyperparameter values for the FDGD and NES algorithms. Hyper-

parameters used in the experiments in this paper, obtained as described in Methods separately

for the noiseless and noisy case. The generative network was always deepsim-fc6.

(PDF)

S4 Table. Inferior temporal cortex-like layers. From each layer, 10 units were randomly

selected and used in hyperparameter evaluation.

(PDF)

S1 Text. Methods and additional experiments & discussion.

(PDF)
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