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Visual perception involves the rapid formation of a coarse image representation at the onset of visual processing,
which is iteratively refined by late computational processes. These early versus late time windows approximately
map onto feedforward and feedback processes, respectively. State-of-the-art convolutional neural networks, the
main engine behind recentmachine vision successes, are feedforward architectures. Their successes and limitations
provide critical information regarding which visual tasks can be solved by purely feedforward processes and which
require feedbackmechanisms.Weprovide an overview of recentwork in cognitive neuroscience andmachine vision
that highlights the possible role of feedback processes for both visual recognition and beyond. We conclude by
discussing important open questions for future research.
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Introduction

The anatomy of the primate visual system suggests
an intricate network of over 30 or so interconnected
visual areas, each one encompassing millions of
neurons within highly specialized circuitry.1 The
neural dynamics resulting from such a network
should theoretically be quite complex.2 However,
anatomical evidence suggests a clear hierarchical
organization between visual areas, resulting in a
feedforward versus feedback separation in terms
of the connectivity patterns.1,3,4 Such patterns of
connectivity, in turn, constrain visual processing
dynamics to be roughly composed of an early
“bottom-up phase” primarily carried by feedfor-
ward processes during the first 150 ms after visual
onset followed by a late “reentrant” phase carried
by feedback processes5 (but see also Ref. 6 for evi-
dence of early contributions of feedback on neural
responses).
A growing body of literature suggests that

bottom-up processing enables the visual system to

build an initial coarse visual representation before
more complex visual routines are implemented.
This base representation can be computed via an
initial feedforward sweep of activity through the
visual system and is sufficient for rapid categoriza-
tion tasks.7,8 Visual processing can be interrupted
after the initial bottom-up phase and, while this
interruption may prevent the visual input to reach
consciousness,5 the initial computations nonethe-
less allow the completion of certain visual tasks,
such as speeded visual recognition.9–11
At the neurophysiology level, it has been shown

that the early response of neurons in intermediate
and higher visual areas contains enough informa-
tion for decoding image category almost readily
from the onset of the visual response both during
passive12,13 and active14 presentations. Consistent
with this idea, a recent monkey electrophysiology
study has also shown that images that are behav-
iorally more difficult to classify by human observers
tend to take longer to be reliably decoded, possibly
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requiring additional feedback processes beyond
this initial response.15
Human observers make recognition mistakes

under these conditions, but these errors do not
appear to be randomly distributed across images
as would be expected from motor errors or guess-
ing. Instead, there appears to be a systematic pat-
tern of behavioral decisions—with some images
being consistently classified correctly or incorrectly
across human observers.7,16 This pattern of cor-
rect and incorrect answers suggests an underly-
ing visual strategy implemented in the bottom-up
phase, which appears to be largely shared between
human and nonhuman primates.14,17,18
Starting with Fukushima’s neocognitron,19 com-

putational models constrained by the anatomy and
physiology of the visual cortex (VC) (see Refs.
20–22 for reviews) account relatively well for this
pattern of behavioral responses.7 These network
models process information sequentially—through
a bottom-up cascade of filtering, rectification,
and normalization operations—providing compu-
tational evidence for the feedforward hypothesis.22
Interestingly, further developments of these early
computational models have led to modern deep
convolutional neural networks (DCNNs), which
have powered recent breakthroughs in computer
vision23 as well as many other domains. Although
these networkmodels are not constrained by exper-
imental data, they have nonetheless been shown to
provide an even better fit than earliermodels to both
behavioral18,24,25 and electrophysiological26,27 data
(but see Ref. 28). These network architectures now
achieve accuracy well beyond those of earlier com-
putational models of the VC and are on par with
or better than human accuracy during unspeeded
image categorization tasks for both object29 and
face30 recognition.
Despite these successes, it is also becoming

increasingly clear that current DCNNs remain out-
matched by the power and versatility of the pri-
mate brain (see Ref. 31 for a recent review). The
gap between humans and machine vision is partic-
ularly obvious when scrutinizing the results of cur-
rent automatic image captioning systems (Fig. 1).
Although such algorithms are reasonably good at
recognizing the presence of certain objects in the
scene, they often fail miserably at flexibly inter-
preting the fundamental gist of complex visual
scenes, human actions, social interactions, and

events depicted in images. To date, no known artifi-
cial system is capable of passing a visual Turing test
as defined in Ref. 32.
We attribute these limitations to the fact that

current systems only perform classification—in a
processing mode akin to preattentive bottom-up
processing. In image categorization or face identifi-
cation, for instance, a category label gets associated
with an image. In object detection and localization
as well as in instance segmentation, image regions
containing an object of interest get associated with
a bounding box or a segmentation mask and a cate-
gory label. In dense labeling tasks, such as semantic
image segmentation tasks, every pixel gets assigned
a category label. There is obviously much more
to scene understanding and visual cognition than
mere classification. Many visual analysis problems
require a level of abstraction that transcends object
recognition or naming (i.e., image classification).
For instance, humans can easily answer questions
about spatial relations (e.g., whether something is
above, to the right, etc., of another thing) or shape
relations (e.g., whether two or more shapes are the
same or different up to a transformation, including
rotation, etc.), even for unfamiliar shapes.33

Think about many of the visual reasoning tasks
that one must solve daily to plan actions, or to
manipulate objects, such as when finding out which
of two keys will fit into a particular lock or which
piece of a puzzle is the missing piece. According to
Ullman, visual cognitive tasks can be decomposed
into a sequence of simpler elementary operations,
including, for example, visual search, texture seg-
regation, and contour grouping.34 These elemen-
tary operations, or visual routines, can be dynam-
ically and flexibly assembled to solve a myriad of
complex, abstract, and open-ended visual reason-
ing tasks. Assigning a category label to a particular
image region is but one of the many visual routines
needed for scene understanding.
The limitations of current computational mod-

els underlie critical aspects of visual cognition that
are not accounted for by purely feedforward net-
works. Bottom-up processing may not be sufficient
for more general visual reasoning tasks, which may
necessitate bringing in feedback signals. Indeed,
neuroscience evidence suggests that feedback mod-
ulation of neural responses takes place after some
delay (see Refs. 6 and 35 for reviews; see also
Ref. 6). The challenge is to identify which neural
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Figure 1. Current image captioning efforts illustrate exciting progress and how far we still need to go. (A−C) Example of how
an image captioning system (Microsoft Cognitive Services) describes three pictures, using the Microsoft CaptionBot system
(https://www.captionbot.ai/). (A) “I think it’s a group of people standing in front of Leaning Tower of Pisa”; (B) “I think it’s a
person standing in front of Leaning Tower of Pisa”; and (C) “I think it’s a person standing in front of a building.” (D−I) Captions
automatically generated by @picdescbot, a bot that describes random pictures from Wikimedia Commons also using Microsoft
Cognitive Services (https://picdescbot.tumblr.com/about). Images posted on July 8, 2019, with the following captions (D−F): “A
group of people riding horses on a city street,” “a large body of water with a city in the background,” and “a small clock tower in
front of a house.” Images posted on July 7, 2019, with the following captions (G−I): “A cat lying on top of a mountain,” “a view of
a city at night,” and “a bird flying over a body of water.”
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computations are critical to visual understand-
ing beyond rapid visual categorization, in contrast
to aspects of biological computations that repre-
sent implementation details but are not critical to
account for cognitive functions. The goal of our
review is to bring together recent exciting and com-
plementary developments in computational cogni-
tive neuroscience, with behavioral and neurophys-
iological results as the first step toward a unifying
theory for how our visual system integrates bottom-
up sensory inputs with top-down mnemonic and
cognitive processes.

The role of recurrence in visual recognition

Computational flexibility
Some of the most successful vision systems in many
pattern recognition tasks consist of purely feed-
forward architectures where information flows in
a single bottom-up sweep from pixels to category
decisions. In stark contrast, biological architectures
are characterized by pervasive feedback (also called
recurrent) connectivity (Fig. 2A). A recurrent neu-
ral network (RNN) can be “unfolded” to create an
equivalent purely feedforward network that per-
forms the same computation by adding extra lay-
ers for each recurrent step (Fig. 2B). If we constrain
the number of weight parameters of the unfolded
network to be the same as the folded version, that
is, we impose weight sharing, the two networks will
carry the same computations. In other words, the
same computations can be carried by a single-layer
recurrent network requiring N recurrent computa-
tional steps and an (N + 1)–layer feedforward net-
work with identical weights across layers.
Interestingly, several successful approaches to

vision involve such feedforward architectures,
where the same weights are reused recursively sev-
eral times to increase the depth of visual processing.
Indeed, the first texture discrimination algorithms
were recursive,36 and related ideas have also been
applied to the recognition of dynamic texture.37
Similarly, a hierarchical extension of the classic
wavelet transform where the transform is applied
recursively (also known as the scattering transform)
has been shown to yield significant improvements
in texture categorization.38 Such recursive archi-
tectures can be implemented by RNNs within a
single fully recurrent layer of processing. More
recently, it has been shown that forcing recursivity
into state-of-the-art DCNNs led to networks that

Figure 2. Recurrent networks show greater parameter effi-
ciency and computational flexibility. (A) Schematic illustration
of a three-layer network showing bottom-up (red), horizontal
recurrent (blue), and top-down (green) connections. The top
layer sends signals to a decision process that evaluates how con-
fident the network is about the solution and decides whether to
emit a response or continue processing by sending top-down
signals that interact with the horizontal recurrent computa-
tions to enhance the solution. (B) Schematic illustration of an
11-layer network where each of the horizontal computations in
part A is unfolded to generate four steps of feedforward oper-
ations with weight sharing. (C−D) The network in (C) can be
flexibly utilized in a rapid bottom-upmode (C) or in a slow(er)
recurrent mode (D).

perform better on image categorization tasks with
fewer parameters.39,40

Given that it is possible to unfold recurrent
connections to create a deeper network with iden-
tical computational prowess, why bother with
recurrent connections? Recurrent networks offer
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several advantages for biological organisms over
purely feedforward architectures. First, recurrent
networks are potentially computationally more
efficient. The network in Figure 2A requires fewer
units, synapses, and overall shorter wiring length
than the one in Figure 2B. Limiting the number of
cells and synapses and the overall wire length is par-
ticularly critical for biological systems, which have
size and weight constraints; the brain is also the
most expensive organ from an energetic standpoint
and it must operate under a constrained budget.
In the engineering literature, there is also a grow-

ing realization that energy efficiency may be an
appealing reason to prefer smaller networks. A
recent study estimated that training a state-of-the-
art deep neural network for natural language pro-
cessing costs millions of dollars in cloud computing
service—with a carbon footprint equal to about five
times the emissions of a single car during its entire
lifetime (or about 300 NY−SF flights)41 (see also
Ref. 42).
Even ignoring energy and size constraints, a crit-

ical advantage of recurrent networks is that they are
computationally more flexible. The depth of process-
ing required to solve different types of tasks may
not be known ahead of time. While most computer
vision tasks require training a network to solve a
specific task (e.g., categorize images in ImageNet43),
the brain needs to solve a possibly endless and con-
stantly changing set of tasks. Unfolding a highly
recurrent network to create a deeper feedforward
network makes a commitment to a specific archi-
tecture and a given number of computational steps.
Imagine that after you tried different architectures
to label certain images, the dataset changes, but now
you are stuck with the architectural choices. By and
large, the adult brain’s architecture is fixed: it is pos-
sible to add a few neurons (neurogenesis), some
neurons die, and synapses come and go, but the
overall number of layers and number of units per
layer is to a first approximation essentially fixed.
Recurrent connections offer the flexibility to poten-
tially vary the depth of processing across tasks, with-
out the need to change the architecture for each
task.a

aA related way to achieve flexibility is through bypass
routes,44 which allow the architecture to skip some of the
processing stages,22 andwhichmay help alleviate the issue

This computational flexibility to perform mul-
tiple and arbitrary recognition tasks carries addi-
tional benefits. Some tasks may be easier (i.e.,
require less processing depth) and can be solved
in a faster fashion—possibly through a single feed-
forward sweep of activity—while other tasks may
benefit from those additional computational steps
afforded by recurrent connections.45–47 An image
could rapidly traverse through the architecture in
Figure 2C to reach a decision stage. This deci-
sion stage (perhaps located in the prefrontal cortex
(PFC)) can evaluate whether it has enough informa-
tion to produce a response. If it does, then the prob-
lem is solved with just a rapid feedforward sweep.
If it does not, then the decision stage may provide
additional fast feedback signals through top-down
connections to lower areas or wait for slower intra-
areal horizontal feedback signals to provide addi-
tional elaboration and finally, produce a response.
This flexibility to use more or fewer compu-

tations, in real time and on demand, could at
least partly account for the well-known speed-
accuracy trade-offs in psychophysics experiments
and also for the fact that certain easy problems
might be solved in a rapid or speeded operation
mode (Fig. 2C), whereas other tasks may be solved
in a slower mode (Fig. 2D).48 Indeed, a related idea
referred to as adaptive computing is gaining trac-
tion in computer vision and natural language pro-
cessing and is being actively explored both with
feedforward49 and recurrent networks.50,51
An experimental technique that has been used

to impose rapid processing is backward masking.
Shortly after flashing a stimulus, a noisemask is pre-
sented. The interval between the onset of the stimu-
lus and the mask, generally referred to as stimulus
onset asynchrony typically, encompasses between
∼50 and ∼100 milliseconds. Under these condi-
tions, the mask purportedly interferes with and
interrupts the interactions between recurrent sig-
nals and the incoming inputs, thereby emphasiz-
ing bottom-up processing of the stimulus52–56 (but
see Ref. 57 for a counterargument). It has been
shown that, electrophysiologically, the initial sweep
of rapid visually selective signals along the ventral
VC (VVC) is unaffected by backward masking.14

of a fixed architecture to some extent (at the expense of
adding and training yet more connections).
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Figure 3. Recurrent networks help visual recognition. (A−B) Recognition performance in a five-way categorization task of par-
tially visible objects for humans (black), layer fc7 in the popular AlexNet neural network (red), AlexNet network embedded with
attractor-like horizontal recurrent connectivity in the fc7 layer without any training with occluded objects (blue) or with train-
ing (orange). Example objects from limited visibility to full visibility are shown in panel B. Chance performance = 20% (dashed
line). Modified from Ref. 48. (C) The fraction of neural response variance explained for neurons in macaque inferior temporal
cortex. For images that are difficult to recognize in a rapid feedforward mode, adding more layers to a feedforward network can
improve neural variance explained (deeper feedforward networks), but the same effect can be achieved bymultiple passes through
a shallower network with horizontal recurrent connections (deep recurrent). Modified from Ref. 15.

Consistent with the idea that backward masking
interrupts recurrent processing, recent work has
shown that the introduction of a rapid mask inter-
feres with the ability to perform visual recognition
tasks that require more processing time such as pat-
tern completion,48 as elaborated in the section enti-
tled “Generalization in visual recognition” (Fig. 3A
and 3B).
Consistent with this idea, Eberhardt et al. trained

classifiers on the outputs of individual layers derived
from several representative DCNNs for the cate-
gorization of animal versus nonanimal images and
found that the accuracy of the classifiers increased
as a function of the layers’ depth.24 Interestingly,
they found that the correlation between model
predictions derived from individual layers versus
human participants engaged in the same speeded
categorization task peaked at intermediate layers.
Because the accuracy of human observers increases
monotonically as a function of the response time
available to respond, these results suggest that
human observers may adjust the depth of visual
processing—not through static depth as done in
current DCNN architectures—but through time via
recurrent processes.
The separation of time scales into a rapid ini-

tial feedforward sweep followed by a late recur-
rent processing mode is of course only an approx-

imation. There is no clear-cut separation between
these two modes of operation, and cortical com-
putations are continuous, with varying degrees of
the preponderance between feedforward and recur-
rent computations.58 Yet, this approximate separa-
tion of temporal scales has been useful to conceptu-
alize and understand the sequence of computations
that ultimately lead to visual cognition.

Long-range spatial dependencies and
perceptual grouping
It has long been assumed that feedbackmechanisms
play a key role in perceptual grouping (see Refs.
6 and 59–62 for early proposals). Yet, the recent
successes of deep convolutional networks for con-
tour detection and image segmentation in seem-
ingly challenging visual tasks (e.g., Refs. 63 and 64)
have obfuscated the need for feedback.
To demonstrate the limitations of current feed-

forward networks for learning long-range spatial
dependencies, Linsley et al.65 described a simple
visual recognition challenge inspired by cognitive
psychology tasks (see Ref. 35 for review) called
the “Pathfinder,” which involves judging whether
there exists a path linking two markers in an
image (Fig. 4A). To control for intraclass variability
and task difficulty, they systematically varied the
length of individual contours in the stimulus set.

6 Ann. N.Y. Acad. Sci. xxxx (2020) 1–20 © 2020 New York Academy of Sciences.
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Figure 4. Sample visual reasoning tasks. (A) The Pathfinder challenge whether the task is to evaluate where the two larger white
dots are connected or not.65 (B) Synthetic visual reasoning test.92 Six examples where the task is to decide whether (left) a small
shape is inside (top) or outside (bottom) a larger one, (middle) whether two small shapes fall on the same side (top) or different
sides (bottom) of a larger object boundary and (right) whether two shapes are the same (top) or different (bottom). (C) Visual
question answering (VQA) on the CLEVR challenge97 to test aspects of visual reasoning, such as attribute identification, counting,
comparison, and logical operations. (D) Sample questions and answers with corresponding images from the VQA challenge.

Increasingly deeper networks were needed to solve
this task as the path length increased, which likely
reflects the need for receptive fields at the top to
contain the entire paths and hence the need for
increasingly deep architectures. By contrast, it was
found that imbuing neurons with the ability to
incorporate context through horizontal connec-
tions led to a single-layer highly recurrent neural
network that was able to perform on par or better
than all tested feedforward hierarchical baselines,
despite the fact that these feedforward networks
contained orders of magnitude more parameters.
This observation provides compelling evidence
that some visual tasks, such as contours tracing
tasks, are much better suited for recurrent neural
circuits. In a follow-up work, Kim et al.66 extended
the Pathfinder challenge, which stresses low-level
gestalt cues, to a task that they called “cluttered
ABC” (cABC), which emphasizes high-level object
cues for perceptual grouping. As in the Pathfinder
task, in the cABC task, markers are placed either
on two different shapes or the same shape. Here,
the shapes consist of highly overlapping capitalized
English alphabet characters and the task consists
of judging whether the two markers fall on the
same or different characters. As for the Pathfinder,
the authors found that increasing the intraclass

variability in cABC strained learning in networks
that rely solely on bottom-up processing. Fur-
thermore, a distinct type of feedback resolved the
difficulties associated with each challenge: horizon-
tal connections resolved this limitation on tasks,
such as Pathfinder, featuring gestalt cues by relying
on incremental spatial propagation of activities.
Top-down connections rescued learning on tasks,
such as cABC, featuring object cues by propagat-
ing coarse predictions about the expected pose of
the target object. These findings thus disassociate
the computational roles of bottom-up, horizon-
tal, and top-down connectivity, and demonstrate
how a recurrent network model featuring all these
interactions can more flexibly form perceptual
groups.
Beyond perceptual grouping, several other com-

puter vision tasks have been shown to benefit from a
similar inclusion of recurrent processing, including
image generation,67 object recognition,39,68–70 and
superresolution tasks.71

Generalization in visual recognition
To a first approximation, the number of free param-
eters of a learning algorithm, including neural net-
works, constrains the sample complexity of the
network,72 that is, the number of training samples

7Ann. N.Y. Acad. Sci. xxxx (2020) 1–20 © 2020 New York Academy of Sciences.
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needed to have some reasonable guarantee that the
algorithm will be able to generalize to novel exam-
ples that were not encountered before. A network
with fewer weightsmay bemore sample efficient and
hence require fewer samples to train although this
is not always observed in practice—a phenomenon
that is not fully understood (e.g., see Ref. 73).
State-of-the-art deep neural networks include

dozens to hundreds of layers of processing (often,
they even correspond to ensembles of dozens of
networks) corresponding to the equivalent of thou-
sands of processing layers. As a result, these net-
works contain tens of millions of free parameters.
In theory, these algorithms can effortlessly mem-
orize millions of training examples. Even entire
datasets as large as some of the largest ones currently
available, such as CIFAR74 or ImageNet,43 could be
memorized.
Onemeasure of a network’s capacity tomemorize

training samples is called the shattering dimension.
The shattering dimension is ameasure of the intrin-
sic degrees of freedom of a neural network. The
larger the capacity, the more training examples will
be needed for proper generalization from learned
to novel data. Initially, the shattering dimension
was computed for the perceptron by estimating the
number of entirely randompatterns that can be clas-
sified correctly. A related measure can be computed
for real images by shuffling the class labels associ-
ated with individual images so as to train the net-
work to learn random associations between indi-
vidual images and category labels. This idea was
used by Recht et al.75 who confirmed that mod-
ern deep network architectures could achieve near-
perfect training accuracy using random labels. Such
high training accuracy for classifying random labels
shows that, in principle, neural networks are capable
of memorizing millions of individual samples and
their class labels without necessarily learning any
abstract category information.
With fewer parameters to fit, an RNN may

require fewer samples for training76 (i.e., lower sam-
ple complexity). Indeed, Linsley et al.77 have shown
that it is possible to reduce the sample complexity of
a vision system for contour detection by introduc-
ing recurrent connections in state-of-the-art neural
networks.
Inherent to the discussion about sample com-

plexity and whether neural networks memorize all
their training data is the distinction between inter-

polation and extrapolation. This dichotomy roughly
corresponds to the in- versus out-of-distribution
test sample problem in machine learning: the
extent to which models can extrapolate to out-of-
distribution samples, as opposed to only interpolat-
ing to novel samples within the same distribution.
Cross-validation is a central tenet inmachine learn-
ing that guides model evaluation. Cross-validation
dictates the separation of training data from test
data, but it does not specify how different the train-
ing and test data need to be. If there is only a sin-
gle pixel that distinguishes a training image from a
test image, one could still state that there is cross-
validation, but the degree of extrapolation is obvi-
ously minimal.
Generally, when the test and training data are

very similar, an algorithm is tested for its abil-
ity to interpolate. For example, an algorithm may
be trained using images of a chair shown at 90
degrees in-plane rotation and a chair shown at
0 degrees in-plane rotation. The algorithm is after-
ward tested with an image of the same chair at
45 degrees in-plane rotation. A significantly more
impressive feat for a learning algorithm would be to
be able to identify a completely different chair, with
a different color and texture, in a completely differ-
ent background, under different illumination con-
ditions, shown from a different 3D angle, and so on.
Extrapolation refers to the ability to make adequate
responses with out-of-distribution samples.
One prominent feature of our own visual sys-

tem is its ability to extrapolate to unseen conditions,
including views of a novel object not seen during
training.78 Observers are also able to readily iden-
tify celebrities from photographs that are blurred
even up to leaving only about a hundred pixels or
photographs that have been stretched in unnatu-
ral never-seen-before conditions.79 Evidence that
modern DCNNs do not generalize in such con-
ditions includes the work by Geirhos et al.,80
who showed that these networks can classify noisy
images much better than humans, but they can-
not generalize to similar albeit different types of
noise. In a similar vein, Linsley et al. have shown
that the network architectures that exhibit “super-
human” accuracy for the segmentation of neu-
ral tissue from serial electron microscopy images
when trained and tested on different subsets of
the same volume do exhibit a large drop in accu-
racy when trained and tested on different volumes81

8 Ann. N.Y. Acad. Sci. xxxx (2020) 1–20 © 2020 New York Academy of Sciences.
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(for practical applications, the issue can be allevi-
ated using machine learning methods for “realign-
ing” datasets82). By comparison, they found that
RNNs endowed with horizontal and top-down con-
nections can generalize much better and use fewer
training examples.66,77

Solving harder recognition problems with
recurrence
There are many visual recognition problems that
seem to require additional processing time beyond
the mostly feedforward initial wave encompassing
∼150 ms described above. One prominent exam-
ple is the ability to make inferences from partial
information during recognition of heavily occluded
objects.83 During natural visual conditions, many
objects are partially visible either because they are
occluded by other objects in front of them or
because of poor illumination or because of unusual
viewing angles.Despite such challenging visual con-
ditions, primate visual recognition is quite robust
even when up to 90% of the object is occluded,
even in the absence of contextual cues, and even
when subjects have minimal prior experience with
the object in question.84

Behavioral, neurophysiological, and computa-
tional evidence suggest that purely bottom-up com-
putations are generally insufficient to perform pat-
tern completion of heavily occluded objects. At the
behavioral level, recognition of heavily occluded
objects takes longer than the recognition of the
whole object counterparts. Furthermore, pattern
completion performance is impaired by the intro-
duction of a backward mask. These reaction time
delays and sensitivity to masking are indicative
of the need for additional computations beyond
the feedforward sweep. These behavioral measure-
ments are consistent with the latencies reported in
neurophysiological recordings during pattern com-
pletion. The latency of neurophysiological signals
in areas V4 and the inferior temporal (IT) cortex
in response to heavily occluded objects is delayed
by about 50 ms with respect to the responses of
the same circuits to the fully visible objects.84,85
These behavioral and neurophysiological observa-
tions are further corroborated by computational
models: state-of-the-art bottom-up models strug-
gle during recognition of heavily occluded objects,
unless they are extensively trained with those spe-
cific occluded objects.86,87

The inadequacy of purely bottom-up signals for
pattern completion suggests that the ability to infer
the whole from the parts relies on additional hori-
zontal and/or top-down signals. Indeed, computa-
tional work has shown that the addition of recur-
rent computations to DCNNs can help solve the
problem of pattern completion.48,83 Additionally,
there is physiological evidence that strongly sug-
gests that top-down signals from the PFC onto the
VVC play an important role during the recogni-
tion of occluded objects.83,88 It is also known that
familiar object shapes have an influence on image
segmentation,34,89,90 and it is possible that the abil-
ity to complete patterns and make inferences from
partial information is enhanced by top-down effects
on image segmentation.
Occlusion is not the only situation in which

visual recognition requires additional computation.
Recognition of objects presented under different
viewpoints, at extreme scales, or under poor illumi-
nation, may require similar computational mecha-
nisms. Consistent with this idea, recent work has
shown that the extent to which a given image is
hard to recognize by state-of-the-art computational
models is also correlated with increased decoding
latencies in recordings from the IT cortex. Similar
to the work on object occlusion, incorporating hor-
izontal connections to bottom-up models can res-
cue their performance (Fig. 3C).15 Recurrent com-
putations are not only relevant for recognition, but
they can also help solve other problems. We men-
tioned earlier the challenges in image segmentation
in connectomics with purely feedforward architec-
tures. Linsley et al. have shown that RNNs general-
ize significantly better to novel volumes without the
need to align the various datasets.81

The role of recurrence beyond recognition

Visual reasoning
Visual cognition entails much more than object
recognition and categorization. Observers perform
extensive visual analyses in order to plan for their
actions ormanipulate objects, navigate in their envi-
ronments, drive, and so on. Such visual analyses can
be performed without explicit object recognition. A
nonexhaustive list of such visual reasoning taskswas
proposed in Ref. 34 by Ullman. For instance, Ull-
man lists tasks that involve visual judgments as to
whether a shape lies inside or outside of a closed
curve. Such a task appears to require sophisticated
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computations and those computations may be dis-
tinct from the ones involved in categorization; for
example, pigeons show an impressive capacity for
shape classification and recognition, yet they are
essentially unable to perform the inside/outside task
in a generalizable manner.91 Another example pro-
vided by Ullman involves judging the elongation of
ellipse-like figures, whether two black dots lie on
a common contour or whether one shape can be
moved to another specified location without col-
liding with any of the other shapes. Such tasks
appear artificial, but they are reminiscent of the
kinds of visual inference that observers need to solve
when “mak[ing] use of visual aids such as diagrams,
charts, sketches, and maps, because they draw on
the system’s natural capacity tomanipulate and ana-
lyze spatial information, and this ability can be used
to help our reasoning and decision processes.”
Someof these taskswere subsequently formalized

by Fleuret et al. in their Synthetic Visual Reason-
ing Task,92 a collection of 23 binary classification
problems in which opposing classes differ based
on whether or not images obey an abstract rule.
All stimuli depict simple, closed, black curves on
a white background. Positive and negative exam-
ples are shown in Figure 4B for three representa-
tive problems. Most importantly, the shapes used in
these images are unique without overlap between
the training and testing to prevent rote shape mem-
orization and force the learning of abstract rules.
The challenge broke the state of the art in computer
vision in 2011 right before the deep learning era.
Today, the challenge seems to remain significant for
modern DCNNs as shown by several groups.93–95
In particular, Kim et al.95 found a clear dichotomy

between visual reasoning tasks: while spatial rela-
tions appeared to be easily learnable by feedfor-
ward neural networks (DCNNs and their exten-
sions), same−different relations appear to pose a
particular strain on these networks (i.e., they require
deeper architectures and significantly more train-
ing examples to be learned). Ultimately, even with
one million samples available to train the networks
for each of the problems, learning same–different
visual relations posed a challenge for these archi-
tectures when stimulus variability made rote mem-
orization difficult (although see Ref. 96 for evidence
that a deeper residual network pretrained on Ima-
geNet could actually fair better). This result is all the
more striking as such similarity judgments consti-

tute a major component of IQ tests making them an
especially important problem to solve for computer
vision systems.
Interestingly, Kim et al. suggested that the abil-

ity of modern neural networks to solve basic visual
reasoning tasks might have been overlooked. They
considered a representative challenge used in the
visual question answering known as the Sort-of-
CLEVR challenge97 (Fig. 4C) and confirmed that
networks appear to learn visual relations when
trained and tested on the same sets of shapes (i.e.,
a fixed combination of shapes × color attributes).
However, when trained on all but one combination
of shape × color, the neural networks they evalu-
ated did not appear to generalize to the left-out con-
dition, suggesting that they simply memorize the
shapes presented during training and do not learn
the underlying abstract category rule. Furthermore,
Kim et al. showed that learning same−different
problems became trivial for a feedforward network
that is fed with perceptually grouped stimuli.
This demonstration and the comparative success

of biological vision in learning visual relations98–101
(including insects and even newborn ducklings)
suggests that feedback mechanisms, such as atten-
tion, working memory (WM), and perceptual
grouping, may be the key components underly-
ing human-level abstract visual reasoning. There
is substantial evidence that visual relation detec-
tion in primates depends on recurrent processing
that is lacking in standard DCNNs. Indeed, con-
verging evidence102–104 suggests that the process-
ing of spatial relations between pairs of objects
in a cluttered scene requires attention, even when
individual objects can be detected preattentively
(but see also Ref. 105). Another brain mechanism
implicated in our ability to process visual relations
is WM.106–108 In particular, imaging studies106,107
have highlighted the role of WM in prefrontal and
premotor cortices when participants solve Raven’s
progressive matrices that require both spatial and
same−different reasoning.

What is the computational role of attention
and WM in the detection of visual relations? One
assumption is that these twomechanisms allowflex-
ible representations of relations to be constructed
dynamically at runtime via a sequence of attention
shifts rather than statically by storing visual relation
templates in synaptic weights (as done in feedfor-
ward neural networks).104,109 Such representations
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built “on-the-fly” circumvent the combinatorial
explosion associated with the storage of templates
for all possible relations and objects,110 helping to
prevent the capacity overload that plagues DCNNs
and other feedforward neural networks.

Attention and search
Much of the recent progress in image categoriza-
tion has been driven by the inclusion of trainable
attention modules in state-of-the-art DCNN archi-
tectures. While biology is sometimes mentioned as
a source of inspiration,111–117 the attentional mech-
anisms that have been considered remain quite lim-
ited in comparison with the rich and diverse array
of processes used by the human visual system (see
Ref. 118 for a review).
One of the prominent types of tasks to study the

role of top-down attention in cortical processing is
visual search.119 In a typical scenario, a target object
is presented (e.g., Waldo), followed by a search
image, and the subject has to freely move their eyes
to locate the target. In this type of task, the sub-
ject needs to maintain a representation of the tar-
get object features inWM and use knowledge about
those features in a top-down fashion to guide active
sampling of the image via eye movements.120,121
Recent neurophysiological work has started to

provide insights into the neural circuitry involved
in visual search.122,123 Bichot and colleagues trained
monkeys to perform a visual search task while
recording activity from the PFC and the frontal eye
fields (FEFs). They found that neurons in the PFC
show a visually selective response upon presenta-
tion of the target cue, maintain that information
during the delay period, and convey that informa-
tion to the FEF to direct the next saccade. Further-
more, inactivation of the specific subregions within
the frontal cortex involved in visual search led to
a significant impairment in the monkey’s ability
to efficiently find the target.122 The selective atten-
tion signals from the PFC are fed back to modu-
late the responses along the ventral visual stream
(reviewed in Ref. 123). There is a reverse hierarchy
in the magnitude of such attentional effects, which
aremore prominent in higher visual areas andman-
ifest themselves in a clear but largely reduced fash-
ion in early visual areas.
Several computational models have been pro-

posed recently to capture how top-down signals
modulate processing of an image and guide eye

movements during visual search. Inspired by the
neurophysiology of visual search, Zhang and col-
leagues built a simple architecture consisting of a
DCNN, which aims to mimic the extraction of fea-
tures along the VVC, and a PFC-like module that
stores information about the sought target and pro-
vides top-down feature-based attentional modula-
tion onto the VC.124 Combining the bottom-up fea-
tures with top-down target modulation led to the
creation of an attention map that dictates the loca-
tion of the next saccade in awinner-take-all fashion.
Themodel was able to provide a reasonable approx-
imation to both the number and spatiotemporal
sequence of eye movements that humans executed
during visual search tasks spanning a wide range
of difficulty levels. Both humans and the model
were able to locate targets despite large transforma-
tions in the target features (i.e., invariantly to object
changes) and despite having had no prior experi-
ence with the target objects (i.e., in a zero-shot fash-
ion).
Related recent work by Adeli and Zelinsky pro-

vided a biologically inspired implementation of
biased competition theory, whereby the multiple
objects in a display compete with each other for
attention and a top-down signal is used to dis-
ambiguate and bias this competition in favor of
the sought target.125 Such feature-based modula-
tion is more efficient when applied at later stages
of the visual hierarchy,124,126 which is consistent
with physiological observations showing that both
spatial and feature-based attention is considerably
weaker in early visual cortical areas compared with
higher visual cortical areas.
It is instructive to compare these recent advances

in modeling visual search with parallel approaches
in the computer vision literature. Unlike in the
image categorization tasks described earlier, where
entire images are associated with a single class label,
object localization tasks may require the detec-
tion of one or multiple objects and the ability
to draw a bounding box around them. Region-
based approaches are popular DCNN extensions
that achieve state-of-the-art results for object detec-
tion and localization. The basic idea behind region-
based approaches is to first run a generic object
detector over the image, as in the region-based con-
volutional neural network (R-CNN),127 to bring
down the number of windows to be classified
(called the region proposals) to a reasonable

11Ann. N.Y. Acad. Sci. xxxx (2020) 1–20 © 2020 New York Academy of Sciences.



Feedback computations in the visual cortex Kreiman & Serre

number (from millions for a system scanning the
image across all positions and scales to a few thou-
sands). These windows are then classified by a
DCNN to yield a class label for each bounding
box (including an option to reject the bounding
box as containing none of the objects of inter-
est). The approach was improved in a series of
papers from the Fast R-CNN128 to the Faster R-
CNN129 and the region-based fully convolutional
networks (R-FCN)130 by sharing convolutional
layers between the region proposal stage and the
detection and localization stages—thus allowing the
training of a single efficient DCNN for the entire
system. Another notable architecture is YOLO (you
only look once),131 which can run with near state-
of-the-art accuracy but in real-time for typical
image resolutions used in computer vision datasets.
It is worth noting that modern architectures for

object localization are not concerned with biologi-
cal plausibility or computational efficiency. Despite
all the aforementioned improvements, searching
for a target object in the large image displays
would require a very large amount of computa-
tional resources. This cost is arguably an evolu-
tionary force behind the biological machinery used
to implement eye movements and eccentricity-
dependent sampling as done in Ref. 125. Consis-
tent with this idea, Eckstein et al.132 have shown
that, unlike current architectures for object localiza-
tion that scan for objects exhaustively across scales,
human search is largely guided by context. As a
result, human observers, unlike computer vision
systems, will often miss targets when their size
is inconsistent with the rest of the scene (even
when targets are made larger and more salient and
observers fixated the target).
Another remarkable distinction between com-

puter vision object detection algorithms and bio-
logically inspired models is that the former requires
extensive training with the sought targets. A state-
of-the-art algorithm for object detection, such as
YOLO, can only look for the types of objects that
it was trained on. Nothing more, nothing less. In
stark contrast, Zhang et al. show that their model
can rapidly find target objects after a single expo-
sure to them.124
Nonetheless, it has been shown that, while the

visual representations learned by DCNNs without
attention bear little overlap with those used by
humanobservers for visual recognition,133 attention

mechanisms help DCNNs learn visual representa-
tions that are more similar to those used by human
observers.134 In particular, Linsley et al. have shown
that it is possible to leverage crowdsourcing meth-
ods to identify image features that are diagnostic
for human recognition and to leverage that knowl-
edge to cue DCNNs to attend to these regions dur-
ing training for image categorization. As a result,
DCNNs learn visual representations that are sig-
nificantly more similar to those used by human
observers in addition toDCNNs that generalize bet-
ter to novel images (Fig. 5).

Learning and plasticity
At the core of modern deep learning is the need to
adjust the large number of tunable weight parame-
ters present in the network. For the most part, suc-
cesses in vision have relied on supervised learning
approaches whereby weights are adjusted via the
presentation of labeled examples so as to minimize
the classification error on the training data. One of
the most widely used algorithms for this type of
training is backpropagation.135 There has been a lot
of discussion in the field about the biological plau-
sibility of such backpropagation algorithms.136,137
There has been a recent spur of interest in the design
of more biologically plausible learning algorithms
for training neural networks.
An important criticism of the backpropagation

algorithm has been the need for “symmetric” con-
nectivity with feedback connections matching the
weights of their corresponding feedforward coun-
terparts (the weight transport problem). While the
extent of such symmetry—or lack thereof—in cor-
tical networks remains to be quantified, algorithms
have been described that provide simple and bio-
logically plausible learning mechanisms for feed-
back synaptic weights to adapt so as to match
feedforward ones.138 Moreover, recent work has
demonstrated that it may even be possible to per-
form adequate learning via backpropagation using
random feedback weights139—at least via match-
ing of the feedback and feedforward synaptic signs
without necessarily equating their magnitudes.140
Another important limitation concerns the mecha-
nisms of credit assignment during learning, includ-
ing the propagation of gradients, the timing of
credit allocations, and even the mere origin of such
credit signals. Here again, there has been signif-
icant progress toward algorithms that can assign
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Figure 5. Learning what and where to attend. The top row depicts representative images from the Microsoft Common Objects
in Context (COCO) dataset depicting object categories also present in ILSVRC12 (which was used for training the system). In
the middle row, each of these images is shown with the transparency set to the attention map it yielded in the attention network
by Linsley et al.167 trained with human supervision (see the text for details). Visible features were attended to by the model, and
transparent features were ignored. Animal parts like faces and tails are typically emphasized, whereas vehicle parts like windows
and windshields are not. Cotraining the attention network with human supervision yields better classification accuracy on Ima-
geNet, as well as learned feature representations that are more human-like. The system also generalizes from the ImageNet to
the Microsoft COCO dataset (shown here) despite significant changes in the objects’ scale. The bottom row shows the same visu-
alization using attention maps from the same architecture trained without human supervision, which has distributed and less
interpretable attention. Image credit: Drew Linsley. Adapted with permission.

and propagate credits in more biologically palatable
forms.137,141,142

Another widely successful approach to tuning
weights is via reinforcement learning.143 Rein-
forcement learning algorithms have demonstrated
seemingly magical performance in tasks, such
as learning how to play games like chess, Go, or
different types of video games, even beating world
champions.144 One can only dream about the
potential of reinforcement learning approaches
to learning vision, but there has not been much
progress on their implementation yet. Initial
work has already demonstrated the benefits of
combining reinforcement learning with RNNs
to play Atari R© games.145 Promising results have
also been obtained for visual tracking,146,147 face
recognition,148 action recognition,149,150 video
captioning,151 color enhancement,152 and object
detection.153,154
Another approach to learning structure in

the visual world, which does not use explicit
labeled examples or a teacher and provides direct
rewards/punishment for specific actions, is based
on the intuition that predicting what will happen
next may be an important principle of compu-
tation in the brain. This idea is at the core of

several theories, including the adaptive resonance
theory155,156 and closely related predictive coding
algorithms.157,158 Predictive coding algorithms
have recently regained momentum in the context
of deep network architectures.159–162 Common to
many of these models is the notion that feedback
signals provide a prediction of what will transpire
next while the feedforward signals convey an error,
or difference, between those predictions and the
incoming inputs.
Predictive signals carried by top-down connec-

tions can provide a powerful and highly efficient
mechanism to learn structure in the world because
they do not require the type of expensive and
abundant guidance from a teacher as in traditional
supervised learning methods. In fact, many of these
predictive algorithms have been trained using unla-
beled videos, of which there is no shortage of for
the computer science community, and it is particu-
larly easy to conceive that infants also have almost
unlimited access to this type of input during devel-
opment. In the computer science literature, using
prediction as a learning signal in video sequences
is generally grouped under the term self-supervised
learning, and there is intense work in trying to
use this type of approach to pretrain networks in
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order to drastically reduce the number of exam-
ples required in subsequent supervised learning
steps.163 It is particularly intriguing that predictive
networks trained with random natural videos (e.g.,
videos of cars navigating in a city) can automatically
develop units that resemble fundamental properties
of cortical computation and perception.164

Concluding remarks and future directions

We have brought together recent complementary
developments in computational cognitive neuro-
science, with behavioral and neurophysiological
results, as a critical step toward a unifying theory for
howour visual system integrates bottom-up sensory
inputswith top-downmnemonic and cognitive pro-
cesses. In particular, we have highlighted the limita-
tions of state-of-the-art feedforward neural network
architectures to solve visual reasoning tasks beyond
image categorization. Recent computer vision work
toward the development of RNNs constitutes an ini-
tial first step toward addressing some of the above-
mentioned shortcomings.While our understanding
of feedback processes in the visual system remains
relatively limited, it is our hope that recent devel-
opments in computer vision may start to provide
computational-level hypotheses for linking feed-
back processes with visual functions.
A fundamental area of the investigation that

remains rather enigmatic is how to connect our
understanding of visual computations along the
VVC to high-level cognition. For example, while
examining a scene depicting kids playing in the
playground, we can interpret the location, actions,
what is behind what, how different people interact
with each other, we understand what those strange
structures in the playground are—even if they may
be heavily occluded and even if we have never seen
them before, we can easily infer why the swing is in
a given position, we can guess a kid’s intentions by
following their gaze, we can predict the trajectory of
a ball even from a static snapshot, and we can gen-
erally answer a near-infinite number of questions
about the scene in a flexible manner. This type of
general knowledge about the world can be vaguely
construed as “common sense,” reflecting the under-
standing that humans have about their environ-
ment. How this information is stored in the brain
and the mechanisms by which it provides top-down
modulation of bottom-up sensory processing in the
VC remains as enigmatic as ever and will probably

constitute an area of active research in the upcom-
ing years.
Perhaps one of the paradigmatic examples of

exciting progress, which at the same time illus-
trates how far we still have to go, is the problem
of image captioning. Consider the example image
in Figure 1A that we uploaded to one of the state-
of-the-art systems for image captioning (Microsoft
CaptionBot). The system correctly determined that
there is a group of people. Captioning systems tend
to be pretty good at detecting people, in part because
it is likely that a large fraction of the training data
contain people. The system astutely infers that the
people are standing, not a trivial feat. Perhaps, there
are lots of features that show that the picture is out-
doors and there is an imperfect but strong corre-
lation between outdoor pictures and people stand-
ing. Furthermore, the system correctly recognizes
the leaningTower of Pisa. There is probably an enor-
mous corpus of photographs with “Tower of Pisa”
labels for training and the vast majority of those
pictures are probably circumscribed to a relatively
small number of well-described angles, sizes, colors,
and so on. It is perhaps possible but not very com-
mon to find an image of the Tower of Pisa upside
down, with each level painted in a different color
and with a black background instead of the blue
sky (a quick search in Google images yields images
with some, but not all, of those features). Recog-
nizing major landmarks from conventional angles
is probably a relatively easy task. The system not
only achieves all of these recognition feats, but it
also produces a grammatically correct sentence. All
of these are quite remarkable achievements that go
well beyond where image captioning was a decade
ago.
Yet, that is as far as the algorithms go. Consider

the example in Figure 1B. Here again, the algorithm
correctly infers that there is a person, detects the
Tower of Pisa and even conjectures, probably cor-
rectly, that the person is standing. But the algorithm
misses some of the essential aspects of the image.
It fails to detect an ice cream cone, the hand hold-
ing the cone, and other background elements. The
system fails to notice that the cone is particularly
well aligned with the base of the Tower of Pisa, nor
does it appreciate that the Tower of Pisa appears to
be the ice cream. And the system does not under-
stand that the girl is holding the cone and stick-
ing her tongue to lick the ice cream. Frustratingly,
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scrambling the image yields a similar caption
(Fig. 1C), even though the scrambled version lacks
the critical gist of what is happening in the image.
In this case, the algorithm was not even able to
detect the scrambled Tower of Pisa. The captions
for Figure 1A and B are very similar, despite the
fact that those images evoke rather different reac-
tions in human observers. This example illustrates
some of the fundamental challenges ahead to bring
in feedback signals that can incorporate our com-
mon sense knowledge about the world in the inter-
pretation of a visual scene.
Heroic studies of the initial wave of processing

in the VC have led to successful computational-
neuroscience models and breakthrough technolo-
gies with real-world applications. Here, we have
argued that the next generation of computational
models will focus on the second wave of process-
ing incorporating feedback loops. Modeling short-
range interactions within the VC and long-range
interactions between the frontal areas and VC
promises an even wider and more radical transfor-
mation whereby common sense knowledge, prior
experience, language, and symbolic reasoning can
be systematically and rigorously integrated with
incoming visual signals to create richer models that
are capable of general intelligence in more complex
and generalizable tasks.
Humans can effortlessly construct an unbounded

set of structured descriptions about their visual
world.32 Mechanisms in the visual system, such
as perceptual grouping, attention, and WM, exem-
plify how the brain learns and handles combina-
torial structures in the visual environment with a
small amount of experience.165 However, exactly
how attentional and mnemonic mechanisms inter-
act with hierarchical feature representations in the
VC is not well understood. Given the vast superior-
ity of humans over modern computers in their abil-
ity to solve seemingly simple visual reasoning tasks,
we see the exploration of these cortical mechanisms
as a crucial step in our computational understand-
ing of visual reasoning.
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The goal of our review is to bring together recent exciting and complementary developments in
computational cognitive neuroscience, with behavioral and neurophysiological results as the first step
toward a unifying theory for how our visual system integrates bottom-up sensory inputs with top-down
mnemonic and cognitive processes.
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