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Abstract

The connection between general intelligence and development was first
raised by Turing in the 1950s. Noting the incredible complexity of
engineering the adult mind, he proposed instead building a child machine
with a simple mind that develops into a complex adult one. The goal of
building an intelligent machine, then, is refocused around engineering the
neurological stages of development. It was later discovered that during
development the child’s brain undergoes pervasive network expansion,
increasing at least an order of magnitude in size, followed by activity
driven pruning - a process for which the computational role is still
unknown. In the parallel world of artificial intelligence research,
hand-designing deep neural networks involves architecture decisions which
are often guided by intuition and trial-and-error. Architectures typically
stay fixed during parameter learning, a stark contrast to the extreme
architecture modifications that take place during development in a child’s
brain. Furthermore, it is widely understood that there is a ’small network
design problem’ when hand-designing deep networks. Building a smaller
deep architecture that generalizes as well as a big one requires much more
effort as well as more complex layers and connections. Here we model
biological development using densely connected as well as convolutional
deep neural networks as a means to further our understanding of
neurological biological intelligence and computational artificial
intelligence. Empirical results suggest the computational role of synaptic
overgrowth and pruning in biology is as an unsupervised architecture
search process that finds exponentially smaller architectures that
generalize well. Resultant ’adult’ convolutional networks that develop this
way also show similarities to hand-designed networks.
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1 Background

1.1 Origins

Turing first mentioned his child machine as a means to understand

biological and artificial intelligence in his seminal 1950 paper, Computing

Machinery and Intelligence [35]. He wrestles with the notion of formally

defining intelligence, and notes that although we don’t have a definition

that every agrees on, we do have an example, the adult mind, which

everyone agrees is intelligent. Building an adult mind as a means to

create artificial intelligence he notes is difficult because of the sheer scale

and complexity of it. This motivates his proposal of instead programming

a simple child’s mind and the small set of rules which allow it to learn

and develop into an adult mind.

At the time this idea was constrained both by our lack of knowledge

of neurobiological development and the computing machinery of the time.

The biological revolutions of the following decades would later shed light on

the detailed neurobiological stages of development, and computing power,

aided most recently by the growth of GPU and parallel programming, would

also exponentially improve, finally making exploring the ideas behind the

Child Machine a possibility.

1.2 Development in Neurobiology

The architecture of biological neural networks is shaped by experience

during ’critical periods’ in early life. During critical periods the central

nervous system undergoes pervasive and rapid synaptic growth followed

by competitive, activity-driven pruning [13] [27] [38] [36] [4]. The result is

biological neural circuitry driving an intelligent agent. These neural

circuits are of interest to neuroscience because the computational role of
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this overgrowth and pruning is still poorly understood.

Empirical evidence shows that experience during the critical period

permanently affects the nature and performance of the adult neural

circuitry [3]. Exactly why the nervous system relies on bottom-up,

experience driven activity to develop rather than encoding the circuitry in

a top-down genetic way is not understood, but we have reason to believe

it is closely related to intelligence. In nature simpler organisms, such as

the praying mantis or fruit fly, don’t rely on experience driven activity to

define their neural circuitry. The larger the brain and the more complex

and adaptable the animal, the more it relies on experience during the

critical period [23]. This connection motivates the study of

neurobiological development as it relates to the study of biological and

artificial intelligence.

1.3 Computer Science Motivation

The tremendous effort involved in engineering performance driven

architecture designs has largely powered the recent rise of deep models for

visual classification [33] [32] [18] [30] [12] [39]. Yet despite these efforts,

largely guided by intuition and trial and error, the resultant networks are

often over parametrized [8] [15] and contain a significant amount of

redundancy in their final forms [2] [6]. These factors contribute to the

data inefficiency of these large models, a key factor separating them from

the intelligent vision systems we see in nature [19], and hampering

practical application of them in more constrained computing

environments. In many applications, hand designing better architectures

is the central goal. But as much of this work is currently intuition and

trial and error based, there is much room for further understanding of the

underlying principles of architecture design. Understanding how nature

creates its architectures could significantly advance this effort.
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The on-line modification of network architecture during training

differs notably from the current central paradigm in deep learning

research of expert architecture design followed by holding the architecture

constant while training. Interestingly, for a given goal on a dataset, there

are usually multiple large deep networks with significant amounts of

redundancy that can meet the goal, but significantly fewer small hand

designed architectures that can meet the goal [15]. Additionally, it is

widely known in computational neuroscience that biological networks are

incredibly more energy efficient than their artificial counterparts. Thus

understanding what makes small architectures generalize well is of great

value to artificial intelligence research.

1.4 Related Works

Compressing artificial networks has a long history. Adding a cost to a

synapse such that it decays to zero if it is less important by some measure

such as the second order derivative [21] [11] [5] [10] as well as general

synapse pruning [25] have been explored in the early days of artificial

network design. There has been recent interest into pruning pre-trained

deep models to increase parameter efficiency and speed [42] [31] [22].

Other techniques such as trained quantization [9] and huffman coding can

further increase efficiency, and data-driven pruning performs better than

using hand crafted features [14].

One approach to finding more data-efficient and parameter-efficient

architectures is by taking a more hands-off approach through architecture

search, and letting the data define the architecture [45]. However, the

immediate major challenge with such techniques is the large

computational cost [20]. The lack of differentiability of this problem

motivates alternative approaches such as genetic algorithms, utilized to

good effect by [24] in 1989 on small networks. But scaled up to deeper
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models the computational complexity of evolutionary methods becomes

immense [28]. Another strategy is to make the discrete space

differentiable, which Shin et al showed can be used to increase efficiency

[29]. However, most recent methods define some form of an architect or

controller network which learns to build models for a given dataset [43]

[26] [44]. The computational challenge with these techniques is that they

often involve training many different models from scratch, in addition to

the controller, to learn the subtleties between architecture and

performance making them computationally arduous. This high

computational cost limits practical applications, and the black box nature

of these approaches limits their contributions to our understating of

architecture design.

2 Dense Network Model

2.1 General Process

In our first model we aim to model biology as closely and as simply as

possible, so we create a simple process that models synaptic expansion

and pruning and apply it to a multi-layer perception. The goal with the

dense network model is to identify whether the expansion and pruning of

a network exhibits architecture search properties.

In developing neurobiological hardware, architectural changes take

place concomitant with network training. The first phase is dominated by

random synaptic expansion of the network, defining an exploration phase

through architecture space, starting at a sparse random network and

ending at peak synaptic density. At peak synaptic density the

developmental process becomes dominated by the pruning of synapses,

and total synaptic density starts to fall. In the end, the model weights
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encode information to process the task as usual, but the network itself

also encodes information about the task because it was pruned in a

data-driven way. This developmental process can be modeled

stochastically by a simple ε-greedy process during training. We define an

initial architecture A0 and weights W0 for our network where A0 is a

randomly initialized sparse network, and W0 are randomly initialized. At

each training step i, in addition to updating weights, the architecture is

updated to Ai: either randomly expanding the network or pruning the

network by activity. The decision d on whether to grow or prune is

controlled by flipping a biased coin d ∼ Bern(εi) where Bern refers to

standard Bernoulli distribution sample, εi controls the bias at iteration i

and ε0 = 1.

Ai :=

RandExpand(Ai−1) d = 1

ActivityPrune(Ai−1,Wi−1) d = 0

Implementations of RandExpand(Ai−1) and

ActivityPrune(Ai−1,Wi−1) depend on the architecture space and type of

network, but we can define a general hyper parameter γ and enforce that

|RandExpand(Ai)| = |Ai| + γ and symmetrically

|ActivityPrune(Ai)| = |Ai| − γ, where |Ai| refers to architecture size. γ

then controls the max size our network is expected to reach during the

search as well as the coarseness/fineness of our adjustments to the

architecture between iterations. We also define a priori how many

iterations n we want the search/training to take place over, the initial size

of the randomly initialized architecture N . At each iteration

εi := εi−1 − 1/n ensuring that at iteration n, E[|An|] = |A0| where |A|

refers to the size of the network, measured in alive synapses, neurons, or

synaptic density depending on the application. Overall this defines a
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Figure 1: Schematic illustration of synaptic search model. In
traditional architectures, the number of trainable non-zero parameters
(synapses) are hard wired from the onset and the weights of those synapses
are allowed to change via training. In contrast, here the number of synapses
in the network and the synaptic weights both change simultaneously during
the training process so both parameter learning and architecture learning
take place.

training process such that initially total network size increases in a

randomized exploratory manor, then decreases in a greedy exploitation

manner. Because the process is stochastic, the transition is smooth,

especially for small γ and 1/n < γ.

2.2 MLP Algorithm

To apply the general process to a dense network or multi-layer perceptron,

we define a fixed set of layers 1, ...,m and units per layer L1, ..., Lm which

we do not change. Thus the architecture search takes place over subgraphs

of the graph defined by dense connections between units Li and Li+1, for

1 ≤ i < m. It is possible to consider a larger search space which allows the

number of layers to change or units per layer to change; for simplicity, we

do not include these possibilities here. To keep track of whether a synapse

between two neurons is ’alive’, for each weight matrix W1, ...,Wm−1 we

have a table D1, ..., Dm−1 of the same shape. Synapse Wi[j, k] is considered

alive and part of the graph (and thus allowed to change as usual) between

training iterations if Di[j, k] = 0. Synapse Wi[j, k] is considered dead and
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not part of the graph if Di[j, k] = 1 and Wi[j, k] = 0. For a given γ we also

need to define the process by which we add or remove synapses from the

network. We interpret γ as a percent of total synaptic density in this case.

To RandExpand the network we perform the following: for each Wi we

sample dγ ∗ (Li ∗ Li+1 + Li+1)e, (j, k) indices from Di where Di[j, k] = 1,

without replacement and set Di[j, k] = 0 so that during subsequent training

steps these weights can change. To ActivityPrune, for each layer we sort

the weights by their absolute value, set the smallest dγ ∗ (Li ∗ Li+1 + Li+1)e

weights to zero, and set their value in the corresponding D table to 1

so that they stay fixed at zero between training steps. Note that when

we seek to increase or decrease synaptic density by γ percent we do this

layer by layer, reducing the variance with respect to a situation where γ

percent were chosen simultaneously between layers. We randomly initialize

the network by picking a starting synaptic density N and for each weight

matrix set d(1−N) ∗ (Li ∗ Li+1 + Li+1)e weights at random to zero and

their corresponding values in D to 1. The rest of the alive weights are

randomly initialized.

2.3 Developmental Model

Figure two describes our model of the synaptic overgrowth and pruning

stages of development using a multi-layer perceptron / fully connected

network, trained on the MNIST handwritten digit classification task, with

m = 3 layers, 784 units in the input layer, 16 units in layer 2 and a final

classification layer with 10 units. Iterative model creation / deletion was

implemented with Tensorflow’s [1] Keras library [7]. For the dense model

experiments, the training loop was rewritten to ensure dead weights

stayed fixed at zero between iterations, and within each iteration one

gradient step was taken over a 2048 minibatch.

The process of synaptic growth and synaptic pruning is illustrated in
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Algorithm 1 Dense Critical Period Model

1: procedure SynapseSearch(γ, n,N,X, Y )
2: ε← 1
3: d← 1
4: γ ← γ/100 . We interpret Gamma as a percent
5: Initialize D1, ..., Dm−1

6: Initialize W1, ...,Wm−1

7: for i = 1, ..., dn+N/γe do
8: d← Bern(ε)
9: if d = 1 then
10: for l = 1, ..., n− 1 do
11: Randomly Change dγ ∗ (Li ∗ Li+1 + Li+1)e values in Dl

from 1 to 0
12: else
13: for l = 1, ..., n− 1 do
14: Sort alive synapses by |Wi[j, k]|
15: for The weakest dγ ∗ (Li ∗ Li+1 + Li+1)e synapses do
16: Wl[j, k]← 0
17: Dl[j, k]← 1

18: {W}m−1
1 ← TrainStep({W}m−1

1 , {D}m−1
1 , X, Y )

19: ε← max(0, ε− 1/n)

20: return {W}m−1
1 , {D}m−1

1

Figure 2a and performance is reported in Figure 2b, as a function of the

number gradient/training steps. For MNIST in particular, the results

indicate that a very small network (up to a synaptic density of 5̃%), can

achieve comparable accuracy to the full, densely connected network, even

though this network has 95 percent fewer parameters and therefore has

much higher efficiency.

2.4 Architecture Search Properties

Key to the algorithm’s ability to find parameter-efficient solutions is the

architecture search process it carries out. To isolate and illustrate this

phenomenon, the algorithm was run on the MNIST dataset and the

architectures at 1,2,3,4,5,10,15, and 20 percent synaptic density were
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Figure 2: Dense network critical period model for a 784x16x10,
fully-connected MLP with n = 10000, γ = 0.016,N = 50 At each step,
synapses were either added (gray vertical bars) or removed (black vertical
bars) in a probabilistic fashion, leading to the synaptic density change
shown below. b. Classification test accuracy and efficiency as a function
of training steps. Chance = 10 percent (dashed line)

saved. The weights for these biologically plausible architectures were then

re-initialized, trained from scratch (Figure 3 b), and the final test

accuracy after 10000 gradient steps on a batch size of 2048 is plotted as

the green points in Figure 3c. We compared these biological architectures

to random architectures with the same number of free

parameters/synapses which were also trained from scratch (Figure 3a)

under the same conditions with final test accuracy plotted as the blue

dots (Figure 3b).
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Figure 3: The biological architecture found during the dense criti-
cal period shows higher performance than a random architecture.
a. A random architecture was generated such that the overall density of
connections was 5 percent. The network was trained from scratch until con-
vergence. b. Following the procedure schematically illustrated in Figure 1,
the number of synapses in the network grew and was then pruned up to a
synaptic density of 5 percent (arrow in Figure 3a), thus learning a biological
architecture. The weights in this network were then randomly initialized
and the network was re-trained. Shaded areas represent one standard de-
viation (n=10 iterations). c. The biological architecture showed higher
classification accuracy than random architectures for all synaptic densities
up to 20 percent (t-test, p < 0.01). The arrows point to the examples
shown in parts a and b.
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2.5 Transfer Learning Properties

Figure 4: Biological architectures can thrive through transfer
learning. Pictured is performance on the fashion-MNIST dataset [40].
In red, we considered a biological architecture that was grown and pruned
using the fashion-MNIST and in Green, grown and pruned with the MNIST
dataset. n=5 (pairwise t-test, for density = 1,20 p < 0.1, all others p <
0.005)

The efficiency of the biological architectures motivates the question of

how much information about the data is actually encoded in the

architecture, and how the brain could utilize this architecture level

encoding of information for other tasks through architecture-level transfer

learning. To study this effect of transfer learning through architecture we

consider a classification task similar to MNIST, fashion-MNIST, for

classification of 28x28 articles of clothing into 10 categories. Architectures

are searched for using our dense critical period model of developmental

training and then weights are re-initialized and the networks are retrained

as before in Figure 4, but this time they are trained on fashion-MNIST
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(Figure 6, green points) even though they were being trained on MNIST

during the dense critical period training. They are compared to biological

architectures found by dense critical period training on fashion-MNIST

(Figure 6, red points). Both architectures show a higher performance for

a given synaptic density than random architectures, and specifically the

green points show significantly higher performance than random. This

test shows how transfer-learning can take place on the architecture level,

and models how different but related experience during the critical period

can be used to learn new tasks later in life.

2.6 Data Efficiency

Figure 5: Minimal exposure to stimuli during development can
subsequently help with transfer learning. In the cyan dots, the net-
work was exposed to 15 percent fashion-MNIST during the dense critical
period training which led to a significant architectural improvements when
retrained on fashion-MNIST (pairwise t-test, p < 0.05)

An intriguing aspect of nervous system development is that during

critical periods in development even minimal exposure to new tasks and

information can lead to significant improvement in performance years
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later and, conversely, limited exposure to new tasks can lead to severe

impairment in subsequent ability to learn those tasks. For example,

rearing an animal in the dark [37], or not exposing the animal to specific

stimuli such as faces during those critical periods, significantly alters the

development of the visual system [3]. Here we directly tested this idea in

our model of development.

Interestingly, when only 15 percent of the fashion-MNIST data is

added to the MNIST data during the dense critical period training, the

performance through transfer learning rises significantly. This implies

that the information encoded in the architecture is sensitive to the

nuances in the data, and that the network architectures are not simply

dominated by the structure of the most frequent classes. The relatively

large influence of a very small amount of data during the developmental

process on the networks capacity to learn the task post development

corroborates biological plausibility [16] [17].

2.7 Discussion

The process of exploration dominated by synaptic growth for dense

networks is marked by increasing performance, and the exploitation phase

dominated by synaptic pruning is marked by increasing efficiency. We

explore the data-driven architecture search properties of the dense critical

period model training. Empirically, we demonstrate that this model of

the critical period finds small network architectures that perform

significantly better than their random counterparts. Our results motivate

a biologically plausible strategy discovered by the nervous system through

evolution to be more data and computationally efficient by exploiting

architecture search properties while developing. To further analyze how

information is encoded in the architecture we demonstrate a novel method

for transfer learning on the architecture level, and show how it is sensitive
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to relatively small amounts of data during the search/pruning phase. This

demonstrates a biologically plausible method the central nervous system

could potentially exploit for more data-efficient learning of new tasks.

These results underscore the idea that the critical period during which

synaptic overgrowth and pruning takes place is a biological architecture

search driven by experience. The results also suggest that the process

is general does significantly outperform random architectures. However,

dense networks are likely not our best model for the brain and the MNIST

and fashion-MNIST tasks are significantly easier than those encountered by

people everyday. In the next section we expand these results by modelling

the critical period with much larger deep convolutional neural networks on

the more challenging CIFAR-10 image recognition task.

3 Convolutional Network Model

3.1 Setup

The base architecture is a modified version of Alexnet [18] adapted for the

CIFAR-10 image recognition problem [41]. The CIFAR-10 training set

consists of 50000 (32,32,3) dimensional images labelled as one of ten

classes with 100000 images in the validation set. It is significantly more

challenging than MNIST because high generalization accuracy requires

true object detection instead of simple pattern recognition, so is the most

common benchmark to test deep learning computer vision algorithms.

The standard architecture adapted for CIFAR-10 is 64 5x5 convolutions,

3x3 max pool, batch normalization, 256 5x5 convolutions, 3x3 max pool,

batch normalization, flatten, followed by three dense layers with 382, 194,

and 10 units with a softmax on the output. The convolutionl layers used

are ’double for loop’ convolutions from [34], which allow greater access to
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the convolutional operation compared to Tensorflow’s built in convolution

operation. All layers contain rectified linear nonlinearities and categorical

cross-entropy loss is used. Unless otherwise stated, the optimizer used is

standard stochastic gradient descent with a batch size of 128 and with a

learning rate schedule of 0.1 for 0 to 100, 0.01 for 100 to 200, and 0.001 for

200 to 250.

The following experiments were conducted on the GPU partition of the

Harvard Medical School Orchestra 2 (O2) super-cluster, always with 1 CPU

and GPU and between 5 - 16 gigabytes of memory. To train the network

once from scratch for 250 epochs takes between 5 and 10 hours depending

on the particular GPU. Jobs were either completed in interactive jupyter

notebook sessions or were submitted, typically overnight, as batch jobs to

the SLURM scheduler.

Figure 6: Alexnet style architecture for CIFAR-10 The base archi-
tecture used for the convolution experiments - an adaptation of the original
Imagenet Alexnet for the smaller CIFAR-10 dataset.

3.2 Pruning Kernels

In the dense networks experiments individual synapses were pruned

during the ActivityPrune steps and the absolute value of the weight is

used as a proxy for activity. In these experiments convolutional kernels

are pruned and the L2 norm is used as a proxy for activity. Figure 7
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compares randomly pruning kernels from the model versus pruning the

kernels with the least activity measured by the lowest L2 norm of the

weights in the kernel. As expected random pruning does roughly linear

damage to performance. Kernels are pruned from either the first or the

second convolutional layers, and whenever a kernel is pruned the

corresponding connections to the first of the three dense layers are also

removed/pruned. Other than this pruning in the first dense layer there is

no other pruning in the dense layers. This was chosen to isolate the effect

of architecture search of the distribution of kernels between layers one and

two. Figure 8 compares activity pruning without retraining to with

retraining 15 epochs per prune at a 0.001 learning rate. The logarithmic

shape suggests that a significant fraction of the convolution kernels can be

pruned away while doing minimal hard to the network, similar to pruning

individual synapses in a dense network with retraining.

Figure 7: Activity based pruning vs random pruning Mini Alexnet
trained on CIFAR-10, then accuracy is plotted as kernels are pruned away
either randomly or by minimum activity. Random pruning does roughly
linear damage but activity pruning gives a more concave curve.
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Figure 8: Activity based pruning with and without retraining Ac-
tivity pruning with 15 epoch retraining at 0.001 learning rate between
prunes significantly helps preserve performance.

3.3 Developmental Model

The convolutional model of the critical period has a number of key

differences from the dense network model. First, instead of adding a

network expansion step we instead start with a large network with 64

kernels in layer 1 and 256 in layer 2, for simplicity. We assume that in the

expansion phase the random network growth leads to a generically large

connected network. Once the large network is trained for 250 epochs we

enter the pruning phase which repeats the process of removing the 10

least active kernels and training for an additional 15 epochs. This process

is what creates the step pattern in figure 9. We prune multiple kernels at

a time to reduce the computation time, as the prune steps have a large

computational overhead. The GPU memory is cleared, the pruning

algorithm takes place on the CPU, then a new model and weights needs

to be sent to the GPU. In our model of the critical period we stop

pruning once we start seeing validation accuracy drops. The key insight is

the exponential decrease in the size of the model, which can be seen in

the straight decreasing ’architecture size’ line versus the right y axis
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which is on a log scale.

Figure 9: Convolutional critical period model Model of the critical
period using Alexnet. The first 250 epochs are ’standard training’ of a
big model with 64 and 256 kernels in layers one and two. At 250 epochs
we repeat prune the 10 least active kernels and train for an additional 15
epochs with a 0.001 learning rate. The model size decreases exponentially
as kernels are removed.
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3.4 Architecture Search Properties

Figure 10: Full pruning of CIFAR-10 critical period To test the
architecture search properties of the convolutional critical period model,
we prune the network to close to chance accuracy. The process is the
same as in figure 9 but we continue to prune instead of stopping early
to preserve accuracy. Architectures with 300, 200, 100, 30, and 20 total
kernels are saved for use in figure 11.

Similar to the dense network experiments, we would like to examine

the architecture search properties of this procedure. We let the process

prune the network to close to chance accuracy, and save the architectures

with 300,200,100,30 and 20 kernels. The weights of these networks are then

reinitialized and trained from scratch and plotted in figure 11 verses random

architectures of the same size. E.g. if the 300 size CIFAR architecture

has 50 kernels in layer one and 250 in layer two, the random architecture

randomly splits 300 kernels between layer one and two. The specific part

of the architecture the model searches for is the ratio of kernels in layer one

to layer two.
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Figure 11: The convolutional critical period architectures have
higher performance than random ones random architectures were
sampled and trained three times for each size, and the final performance
shown is the average of the three final performances. Similar to the dense
model, we can see the pruning process has a positive search effect on archi-
tecture which is most pronounced at small architecture sizes. The difference
in absolute validation accuracy is not as large as in the dense experiments,
because the process of using kernels is significantly less fine grained that
pruning individual synapses.

The above results show the architecture search ability of the pruning

process, but what if it is simply selecting architectures that are arbitrarily

good at memorization instead of generalizeable learning? To test this we

introduce another critical period with a network trained on pure noise

inputs and outputs (Figure 12). The learning rate for epochs 0-20 is

constant at 0.01, which drops to 0.001 after epoch 20. When this network

is pruned down the parts which are least useful for memorizing pure noise

are pruned away, maximizing the networks pure memorization ability for

data with no hierarchical patterns or features. The random inputs are

mean and standard deviation normalized, the same as the CIFAR inputs.
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Figure 12: Full pruning of CIFAR-10 critical period and noise crit-
ical period

Figure 13: The noise critical period architectures are better than
random ones, but do not perform as well as CIFAR-10 critical
period ones The architectures exposed to noise during the critical period
close the gap for large architecture sizes 200 and above, but still under
perform for the smallest architectures. This shows the architecture search
ability of the model is not simply finding the model which is best at mem-
orizing structure-less inputs to outputs. The structure of the data matters
to the architectures searched.

When we examine the architectures learned in the noise and CIFAR-10
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critical periods (figure 14), we can see the CIFAR-10 critical period selects

more kernels in the second layer, whereas the noise critical period learns

an architecture with more kernels in the first layer. It is common practice

in hand designing architectures to have more kernels in the later layers

because this is where higher order features that are richly found in natural

images are computed upon. The noise inputs and outputs lack these rich

image statistics so for the purpose of memorizing specific inputs to outputs

it is more useful to have kernels in the first layer.

Figure 14: Exposure to natural images during the critical period
leads to architectures with more density in the later layers Ex-
posure to hierarchical features (edges to lines to shapes, etc.) during the
critical period leads to networks with more kernels later in the network
which are needed to compute on these higher order features. The noise
critical period has no need to operate on higher order features so keeps all
its kernels in the first layer

Figure 10 suggests that during the critical period the architecture is

optimized around image statistics. With richer image statistics that include

edges, lines, shapes, etc. the architecture learned has more kernels in the
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part of the network which deals with higher order image statistics. But

this begs the question how the labels of the images affect the architecture.

To answer this question a third critical period is modelled but where the

label for each CIFAR-10 image is assigned randomly. Thus the correlation

between the inputs and outputs becomes zero like the noise case and the

task reduces to simply memorizing which number to assign to each input,

but the inputs are still natural images with rich image statistics.

Figure 15: Full pruning of CIFAR-10 critical period, noise critical
period, and unsupervised CIFAR-10 critical period Each image in
the train set is assigned a random label. The network this trains on this
data, learning to memorize inputs. The pruning process selects the small
architectures that generalize well for memorizing natural images

Surprisingly, the architectures from the unsupervised CIFAR-10 critical

period generalize just as well or as the architectures from the supervised

CIFAR-10 critical period (figure 16). The nature of the randomized label

task forces the network to memorize each image because the output label

is uncorrelated with the input. If the label is correlated with the input (as

it is in the supervised case) then the network can avoid memorizing each

image by learning the natural mapping. We hypothesize that to memorize

each image in the unsupervised case, the most efficient way to do this is to

learn the natural image statistics. Thus the network the pruning process
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Figure 16: The unsupervised critical period does just as well as the
supervised critical period Surprisingly, when the architectures from the
unsupervised critical period are retrained on normal CIFAR-10 they gener-
alize just as well as architectures exposed to the full supervised CIFAR-10
during the critical period.

finds has many kernels in the second convolutional layer to fully exploit

the rich image statistics of natural images as can be seen in figure one. In

fact, the unsupervised architecture is almost the same as the supervised

case for every size except 30, where it outperforms the supervised CIFAR

architecture by having almost double the kernels in the second layer as the

first. This result helps explain why a child’s brain can learn an efficient

architecture during the critical period without labelled object data. Simply

remembering what one sees without doing object detection is enough for

an exponentially small generalizeable architecture to develop during the

critical period.

27



Figure 17: The unsupervised critical period network has a similar
or better architecture than the supervised critical period network
Having double or more kernels as layers deepen is a common hand-designed
architecture choice

3.5 Discussion

The data suggest that the critical period evolved as an unsupervised

architecture search process which finds exponentially small architectures

that generalize well. The findings explain why visual development (unlike

language development) is independent of specific parent supervision

and/or labelled object data. The final architectures from the supervised

CIFAR-10 critical period and unsupervised CIFAR-10 critical period

resemble hand designed architectures in that they distribute more kernels

to the later layers to take advantage of the image statistics that arise in
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the network at these later levels. The exponential compression in the

architecture size also helps explain the efficiency of biological networks

compared to artificial ones. Practically, this procedure could be used to

find small architectures for tasks where only a small amount of labelled

data is available. A large generic architecture could memorize random

labels for large databases of unsupervised data, and the resultant small

efficient architecture would be selected such that it fits the statistics of

the data well. This architecture could then be used to learn from the

limited supervised data.

29



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-

fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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