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Summary

Humans have the remarkable ability of prioritizing the sequence of eye-fixations to

survey a complex environment. This ability enables us to react rapidly to environmental

changes, and maximize the amount of useful information obtained from visual inputs,

despite the limited high-acuity processing capability and memory capacity in the brain.

Some objects automatically pop out in the environment and attract our visual atten-

tion in a bottom-up manner. Most classic computational models of the bottom-up visual

attention adopt the 2-stage visual attention paradigm for predicting a sequence of eye

fixations: computing saliency maps based on feature integration theory, and deciding

the order and location of these fixations from saliency maps based on winner-take-all

and inhibition of return principles. Both the processed information of the foveated

visual input (the what information) and the current fixation location (the where infor-

mation) have influences on selecting the next fixation location. The 2-stage visual at-

tention paradigm greatly simplifies the temporal dependencies across fixations with two

assumptions: first, visual inputs over all spatial locations are processed equally with-

out fovea effect; second, all previously visited locations are inhibited forever without

memory decay. Instead of explicitly defining the temporal dynamics in fixation se-

quences, the first body of work in this thesis describes several computational models

which foveate at different parts of the visual inputs and automatically learn to exploit

temporal dependencies across fixations in an end-to-end supervised manner from hu-

man eye movement data. In addition, we also present the first computational model to

anticipate dynamics of fixation sequence in the near future. The experimental results

suggest that the eye fixation prediction and anticipation performance of all our models

is comparable to or even better than state-of-the-art algorithms.

There is strong neurophysiological evidence supporting that visual attention is more
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than a feed-forward spatially filtering process. We next address the question of how vi-

sual attention modulates the visual processing pathway in a top-down manner. The

second body of work in this thesis is related to pioneering a biologically-inspired com-

putational visual search model that can locate targets without exhaustive sampling and

generalize to look for novel targets on static images with zero training on these target-

s. The model provides an approximation to the mechanisms integrating bottom-up and

top-down signals during visual search in natural scenes.

In sum, this thesis describes several computational implementations of integrated

bottom-up and top-down visual attention that learn to exploit the temporal dynamics

across fixations via supervised training, and modulate the visual processing pathway

in a top-down fashion via zero-shot learning. These models not only contribute to the

development of artificial intelligence in terms of state-of-the-art prediction of fixation

locations and anticipation in images, as well as egocentric and third-person videos, but

also provide insights into the mechanisms of human visual attention. The latter was

demonstrated by closely approximating the behavior of human eye movements in a

series of psychophysics experiments.
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Chapter 1

Introduction

Visual attention is a cognitive process of selectively concentrating on regions of the en-

vironment while ignoring the rest [1]. Fixation or gaze (where human is looking at),

as a perceptual variable, cues overt visual attention. Humans do not analyse an entire

scene at once. In order to rapidly react to environmental changes and maximize the

amount of information obtained from visual inputs with the constraints of limited com-

putational resources and memory capacity, prioritising fixation sequences is critical for

humans. Moreover, the entire scene representation, which is internally and consistently

built up in memory by integrating information at the different fixations over time, can

guide subsequent eye movements for decision making and reasoning [2].

We can classify visual attention into two distinct functions: the bottom-up atten-

tional mechanism where external stimuli attracts attention in a bottom-up manner due

to their inherent features, such as the visual contrast relative to the backgrounds; and

the top-down attentional mechanism driven by the desires and current goals, such as

searching for a cup of water when a person feels thirsty. A computational model of

visual attention address the descriptive process for how bottom-up and top-down atten-

tional guidance is computed. Subsequently, the computational model can be evaluated

by comparing with how the humans perform given the similar experimental stimuli.

Chapter 2 provides a brief account of a wide range of related works on visual attention

in the fields of neuroscience, psychology and artificial intelligence. It is to examine

germane research on visual attention and its connection with memory to bring insights

into developing biologically-plausible computational visual attention models.
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1.1 Bottom-up, Saliency-based Visual Attention Models

While there have been recent works devoted to understanding bottom-up visual atten-

tion, e.g. [3, 4, 5], the studies often adopt the 2-stage paradigm for predicting a sequence

of eye fixations: computing saliency maps based on feature integration theory [6], and

deciding the order and location of these fixations from saliency maps based on winner-

take-all [7] and inhibition of return principles [3]. In this paradigm, the processed in-

formation of the foveated visual inputs (the what information) at the past fixations has

been missing while predicting the next fixation location.

Moreover, these studies focus on saliency prediction on static images and it is not

clear how these works can generalize to predict gazes on video frames where there is

motion information between adjacent frames. Specifically, over normal videos, egocen-

tric videos captured from first-person perspectives in head-centered coordinate system,

involve head motion dynamics. The effect of head motion and foreground object mo-

tions on gaze dynamics is not fully understood.

Our work also extends the gaze prediction problem to go beyond current video

frames [8, 9] and presents the novel and important problem of gaze anticipation: pre-

dicting future gaze locations within a few seconds ahead. Unbeknown to how the future

looks like, gaze anticipation is a more challenging problem over gaze prediction.

There are many applications where gaze anticipation turns out to be useful in en-

abling the predictive computation. These include but not limited to interactive com-

mercialization [10], human-machine interaction [11], and alter system for constantly

monitoring drivers’ attention [12]. One particular example is in Virtual Reality (VR)

wearables. VR headsets have become increasingly popular nowadays. As one category

of egocentric devices, they often have to synthesize virtual realities in real time during

interaction from users at the cost of high computation power [13]. Gaze anticipation

plays important roles in facilitating these computation-hunger systems to plan ahead

and increase their buffer time [14]. Based on anticipated gaze locations within the next

few seconds, pre-rendering of the virtual scenes provides smoother presentations in vir-

tual reality and hence better user experience [13]. In interactive e-commerce design [10]

with gaze anticipation, remote information servers could also benefit in pre-fetching

contextual e-advertisements and prompting to the consumers without noticeable time
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delays.

The interplay of head motion, foreground object motions, as well as gaze motion-

s, intrigues us to develop computational bottom-up visual attention models capable of

interacting with various types of motions and capturing the temporal dynamics across

fixations. In computer vision research, there have recently been great strides using deep

learning for various computer vision tasks which achieves fascinating performances. In

the first part of the thesis, we have focused on developing deep learning based mod-

els which automatically learn to exploit temporal dependencies across fixations in an

end-to-end supervised manner trained on human eye movement data. Inspired by the

neurophysiological findings, we conducted several experiments involving subsystems

of visual attention including the fovea, the bottom-up ventral stream in the visual cortex

and the working memory. In addition to the significant boost in fixation prediction and

anticipation performances, we also analysed the features from the learnt attention mod-

els where some analysis suggest alignments with cognitive findings, such as the changes

of spatial bias during the scanpath prediction on static images in a free-viewing task and

the role of foveated visual inputs and motion information between adjacent frames in

fixation prediction and anticipation.

We summarize the contributions of each chapter in the first part of the thesis as

below:

In Chapter 3, we introduce a novel recurrent neural network, Deep Scanpath Neural

Network (DSNN), which integrates the information from all the past eye fixations to

predict the next fixation location. We evaluate DSNN in three challenging benchmark

datasets on static images. DSNN demonstrates an unprecedented scanpath prediction

accuracy, while it obtains a competitive predictive accuracy of the saliency map with

state-of-the-art models. Our analysis of the learnt model reveals that the recurrent con-

nections in DSNN are effective to improve the predictive visual scanpath accuracy, and

it also shows the emergence of a temporally changing spatial bias during the scanpath

prediction.

In Chapter 4, we propose a novel deep convolution neural network, Foveated Neural

Network (FNN), to predict gaze on current frames in egocentric videos. In the network,

we get inspirations from human visual system and introduce a fovea module respon-
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sible for sharp central vision. FNN analyzes and encodes the retina-like visual inputs

from the region of interest on the previous frame. The hidden representations of the

previous frame and the feature maps of the current frame are fused to guide the gaze

prediction on the current frame. As additional input to FNN, we introduce the dense

optical flow between these adjacent frames which represents motion information. In

the experiments, we demonstrate that FNN outperforms the state-of-the-art algorithms

in the publicly available egocentric video dataset. The analysis of FNN suggests that

both the hidden representations of the foveated visual input from the previous frame

and the motion information between adjacent frames contribute to the improved gaze

prediction performance in egocentric videos.

In Chapter 5, we extend the conventional gaze prediction problem to go beyond cur-

rent frames and introduce a new problem of gaze anticipation on future frames. To tack-

le this problem, we propose a generative adversarial network based model, named as

Deep Future Gaze (DFG), encompassing two pathways: DFG-P anticipates gaze prior

maps according to the task influences from input frames; DFG-G models both semantic

and motion information in future frame generation useful for gaze anticipation. DFG-G

consists of two networks: a generator and a discriminator. In the generator, a two-

stream spatial-temporal convolution architecture (3D-CNN) generates future frames by

explicitly untangling the foreground and background motions. The generator then at-

taches another 3D-CNN to anticipate gaze on these synthetic frames. The discriminator

provides additional feedbacks to the generator by distinguishing the synthetic frames

of the generator from the real frames. DFG significantly outperforms all competitive

baselines on the publicly available egocentric and third person video datasets. With-

out any fine-tuning, compared with state-of-the-art methods, DFG also achieves better

performance of gaze prediction on current frames in egocentric and third person videos.

1.2 Target-driven Visual Attention Models by Top-down Mod-

ulation

Visual search is a versatile paradigm for studying top-down visual attention. In the sec-

ond part of the thesis, we address the top-down visual attention problem in the context
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of visual search.

We encounter visual search challenges in our daily life, such as finding a friend in

a party crowd or searching for a car in a parking lot. There are four key properties that

visual search must fulfill: (1) selectivity (to distinguish the target from distractors in a

cluttered scene), (2) invariance (to localize the target despite changes in its appearance

or even in cases when the target appearance is only partially defined), (3) efficiency (to

localize the target as fast as possible, without exhaustive sampling), and (4) zero-shot

training (to generalize to finding novel targets despite minimal or zero prior exposure to

them).

Due to the explosive number of combinations of the target variations and the vi-

sual scene complexity, visual search is a computationally difficult task. In most cases,

observers do not look for an identical match to the target at the pixel levels. Instead,

they intend to find the target varying in color, rotation, occlusion, scale, illumination,

and other transformations. Moreover, observers may be interested in looking for any

target object belonging to a generic category (e.g. finding any spoons, rather than a

specific one). Researchers have taken efforts in addressing the invariance problem in

visual recognition where object identification is robust to any transformations at pixel

levels (e.g. [15, 16, 17], among many others). The fundamental challenge in invariant

object recognition has led to the development of hierarchical computational models that

progressively build transformation-tolerant features selective for object identification.

Compared with the enormous body of work in bottom-up object recognition mod-

els, there have been fewer works devoted to the invariance problem in visual search.

Behavioral [18, 19, 20] and neurophysiological [21, 22, 23] visual search studies focus

on the identical target search. In those experiments, the appearance of the target object

has been very well defined in each trial. e.g. observers are asked to search for a vertical

green bar or an identical match to a picture of a chair. There have been other works

investigating the ability to search for rotated faces with respect to a canonical viewpoint

[24]; however, the ambiguity in the target appearance is minimal and it circumvents

the critical challenge in invariant visual search. In subsequent studies on hybrid visual

search, observers have to look for multiple objects but the appearances of these objects

are fixed [25]. In [26, 27], scientists have evaluated reaction times during visual search
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for generic categories as a function of the number of distractors, but it is not clear how

these findings could be generalized to invariant visual search in complex natural scenes.

Template matching methods demonstrate selectivity to distinguish a target from dis-

tractors; however, it performs poorly in invariant visual search since it fails to find

transformed targets robustly. In computer vision, object detection and image retrieval

approaches address object localization problem at the cost of extensively being trained

with the sought targets and exhaustively scanning the entire image via sliding windows

[28, 29, 30, 31]. Moreover, there is no evidence showing that these computer vision

approaches bear resemblance to the neurophysiological mechanism of visual search in

human brains. Instead of sequential scanning and class-specific supervised training in

heuristic algorithms, observers are capable of performing rapid search by moving their

eyes in a target-driven manner, even if the exact appearance of target is unknown or

there is merely single-trial exposure to the novel target.

Behavioral [18, 32, 33, 34] and neurophysiological [22, 23, 35, 36] studies suggest

that task goals, such as the sought target in a visual search paradigm, guides attention

allocation and eye movements when presented with a search image. Goal-dependent

modulation originating from frontal cortical structures [23, 37] projects onto visual cor-

tex structures in a top-down fashion [35, 38]. Several computational models have been

proposed to describe visual search behavior or the modulation of responses in visual

cortex [19, 20, 21, 33, 39, 40, 41, 42, 43]).

In Chapter 6, we propose a zero-shot deep architecture, Invariant Visual Search Net-

work (IVSN), which maps the discriminative power from object recognition models to

visual search. IVSN takes two inputs, a target object and a search image, and produces

a sequence of fixations. Distinct from heuristic template matching, IVSN can efficiently

find the target based on the overall attention map regardless of variations in the sought

target within the search image (including changes in scale, color, rotation, different

exemplars from the same category). As a performance benchmark, we quantitatively

measure human invariant visual search behaviors and introduce four increasingly more

complex tasks where we track eye movements while subjects search for a target. IVS-

N can selectively, invariantly and efficiently find target objects and its performance is

consistent with human’s performance both on average and at an image-by-image lev-
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el. Finally, experimental results also demonstrate that IVSN, like humans, succeeds in

efficiently finding the target in a challenging visual search problem for novel objects

without any prior training with the target or search image features.

Eye movements reflect rich information about the complex cognitive states of the

brain, including thought processes and goals [44, 45, 46, 47, 48, 49, 50, 51]. Addi-

tionally, with advanced eye-tracking technologies, it is now possible to monitor eye

movements at high spatial and temporal resolution while controlling the task and visual

environment. Therefore, eye movements provide a suitable arena to investigate how to

infer a person’s goals from their actions.

In Chapter 7, we apply our understanding about visual attention mechanisms and

address the challenging problem of inferring what the subject is looking for in the con-

text of a visual search task by decoding their error fixations. We define “error” fixations

as the non-target fixations before the target was found. Given these error fixations, the

goal is to decode what the target is. Several studies have shown that the error fixations

during visual search are not random: those fixations are more likely to be on objects

and locations that are similar to the target [52, 53, 54].

With the advancement of eye-tracking technology in wearable devices, computa-

tional models to infer the search target from human eye movements have several im-

portant application domains, such as health care, interactive user interfaces, and virtual

reality (VR). For example, gaining information of the sought object of interest would

be invaluable for VR processors to provide timely feedback to players. As another ex-

ample, compared with neural decoding methods based on electrode recordings inside

human brains, decoding intentions in physically-disabled patients from eye movements

is less invasive, has lower cost and significantly fewer potential complications.

To the best of our knowledge, there have been few attempts to build computation-

al models that use eye fixation information for inferring what the search target is on

complex natural images. To tackle this challenging problem, we proposed a zero-shot

deep network. The network applies knowledge from an object recognition task on a

target inference problem without any retraining. We designed two sets of visual search

experiments with object arrays and natural images, respectively, collected human eye

movement data, and evaluated the model on these two datasets given the human error
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fixations in the search tasks. The model could successfully decode what the target was

without any prior training on the inference task.

Note: Overall, the thesis is a bundle of my PhD works where most of them

have been published or the pre-print versions are accessible in my personal website

https://a0091624.wixsite.com/mengmi. Instead of reading the thesis, I

strongly advise readers to look at my publication list and refer to my personal

website for relevant paper downloads. In the beginning of each chapter, I have

also highlighted which paper the chapter is based on for your convenience.
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Chapter 2

Literature

This chapter provides a brief account of a wide range of related works on visual attention

(VA) in the fields of neuroscience, psychology and artificial intelligence. It is to examine

germane research on visual attention and its connection with memory to bring insights

into developing biologically-inspired computational visual attention models.

2.1 Neurobiological Inspirations

In this section, we study great amount of works in neuroscience related to cortical circuit

of visual attention. Since the interplay of memory and visual attention plays inevitable

roles in both bottom-up and top-down attention modulation, we also examine the rela-

tions between memory and visual attention in details in the latter half of this section.

2.1.1 Cortical Circuit of Visual Attention

This section serves as an overview of the cortical circuit for visual attention. We in-

troduce important brain regions responsible for VA. Figure 2.1 shows the network of

visual areas in the brain where visual attention modulation and execution or alike are

addressed. The circuit is organized topologically. Major references [55, 56, 57] con-

tribute to building this network. [58] presented the similar circuit for visual attention

without integration of memory. [59] showed the cortical areas involved in bottom-up

and top-down processing. Refer to [60] for a complete hierarchy of 32 visual cortical

areas.
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Figure 2.1: Overview of the cortical circuit for visual attention.

Brain has forebrain, midbrain and hindbrain. Forebrain includes thalamus, hip-

pocampus, and cerebrum. Cerebrum has four lobes: parietal, occipital, frontal and

temporal lobes. Hindbrain includes cerebellum, pon and medulla oblongata.

V1: primary visual area (occipital lobe). Spatial attention is identified in this visual

area as the retinotopic map in this area is precise. It is also a bottleneck for visual infor-

mation flow to the secondary visual brain areas [7, 61]. Previous works on contextual

interactions has shown how their characteristics coincide with the extent and specificity

of the long-range horizontal connections that are intrinsic to area V1 [62, 63, 64, 65].

For example, according to stimulus contrast and background foreground relationships,

V1 can dynamically adjust the size of the receptive field after the interaction between

excitatory and modulatory surround changes. The response of V1 is context dependent,

can be changed by altered visual experience and training, and then later substantially

modified by behavioral context and the state of attention. Evidence [66, 67] also shows

that attentional modulation of the early cortical levels at V1 determine spatial vision

thresholds e.g. contrast, orientation and spatial frequency. Over a wide range of stimu-

lus contrasts, the contrast discrimination threshold initial decreases and later increases

with increasing stimulus contrast. It also has dynamic nature of the sharp tuning of

responses to orientation and spatial frequency and the relative constancy of orientation

and spatial frequency tuning [68, 69]. Visual chunks are often locally segmented at V1.
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Later on, the top-down attention modulates the inter and intra object binding problem

and affects the global segmentation process in V1 [56] until the attended object is fully

segmented and found. V1 computes spatially and temporally in parallel local low level

features of objects within diverse retinotopic sub maps or modules [70, 71].

LPFC: lateral prefrontal cortex (frontal lobe). Dorsal LPFC activates when stored in-

formation is actively manipulated or transformed. In particular, the intraparietal sulcus

regions are the source of top-down signals interacting with motion-sensitive regions

with incoming sensory stimulation including multisensory control [72]. According to

[73, 57], FEF and LPFC flows to LIP for top-down control of attention.

MT/V5: middle temporal area (temporal lobe). Many studies have shown that MT is

responsible for motion processing [74, 75, 76]. MT responds selectively when subjects

are required to attend to moving stimuli [77, 78, 79, 80]. LIP flows to MT [81]. V5

together with MT are shown to be motion-sensitive [82, 83].

Prefrontal Cortex: Attentional control may be seen as a process of using task context

to guide bias competition by appropriate weight setting. Frontal system is important

in visual weight setting [84]. Prefrontal neurons can combine both inhibitory and fa-

cilitatory influences in contra-lateral space [85]. Recent works explored the particular

cognitive processes supported by the frontal lobe: plan formation [86], error manage-

ment [86], working memory [87] and goal selection [88].

FEF: frontal eye field (frontal lobe). It is located within prefrontal cortex. FEF con-

tributes to transforming visual signals into saccade commands [89]. FEF is connected

with extrastriate visual areas in both the dorsal stream and the ventral stream [90], and

the projections between extrastriate visual cortex and FEF are topographically orga-

nized [91, 92]. The anatomical evidence also reveals a large degree of convergence of

afferent from multiple extrastriate visual areas in FEF, such as signals representing col-

or, form, depth, and direction of motion of objects in the image. The activation of FEF

visual neurons represents a salience map in which stimulus locations are selected on the

basis of visual conspicuousness, prior knowledge, and internal random variablity [93].

FEF requires saccade planning and execution. It represents the process of selecting

conspicuous targets.

V4: visual area V4 (occipital lobe). The central field representation of retinotopically

11



organized areas such as V4, TEO and MT, as well as areas that over-represent the cen-

tral field, project to the ventrolateral portion of FEF [94]. It produces short amplitude

saccade [95]. Evidence has been found that attention modulation happens at interme-

diate cortical levels such as V4 [96]. Invariance transformations are also found in V4

[97, 98, 99]. Top-down attention signal flows from V4 down to V2 and subsequently to

V1 [100].

IT: inferior temporal gyrus (temporal lobe). IT processes object features of moderate

complexity such as certain shape primitives [101]. The receptive field of IT neurons are

large and cover several degrees of visual angles [97]. Invariance transformations occur

in IT [97, 98, 99].

STS: superior temporal sulcus, the sulcus separating the superior temporal gyrus from

the middle temporal gyrus (temporal lobe). Diverse type-level representations are com-

puted within specialized modules such as shape primitives, colour constancy and so on.

And then this information flows back to V1[97, 98, 99].

Po and MSTd: dorsal aspect of the medial superior temporal area (temporal lobe). The

peripheral field areas such as Po and MSTd, project to the dorsal medial part of FEF.

This part of FEF produces larger amplitude saccades [92].

SC: superior colliculus (midbrain). Several lines of evidence suggest a similar function

of FEF happens in SC as well, i.e. it can form visual salience in the brain [102, 103].

Disruption to this region disables animals to select a salient stimuli [104]. Exogenous

control has two pathways, one of them is generated in SC, for instance, a bright object a-

mong dim objects [105]. However, there is another pathway originating from V1 which

generates brightness differences or abrupt onsets such as pop-out displays or vertical

line among horizontal lines. In the saccade system, FEF sends a signal to the low-level

motor structure like brain stem either directly or via SC. This results in an overt saccade

[106].

LIP: lateral intraparietal cortex (parietal lobe). It seems to contain saliency maps sen-

sitive to strong sensory inputs [107]. It has a center-surround structure [108, 93]. It has

shorter latency to a salient stimuli than the frontal cortex [109, 110]. From the signal

synchronization hypothesis, FEF induces high-frequency oscillations in LIP when a tar-

get is in the neuron’s receptive field [111]. According to [73, 57], LIP flows to LPFC
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and then to FEF for bottom-up control of attention.

PPC: posterior parietal cortex (parietal lobe). It belongs to the type-level ”where” path-

way. PPC contains representations of locations that can be considered to be stable across

eye movements [112]. However, where based control can presumably not be handled

exclusively by the higher level location modules of PPC but needs the frontal lobe where

areas that are connected with PPC [113]. With lesion in PPC, results show patients have

disturbance in shifting and disengaging attention [114, 115]. Posterior parietal cortex

(PPC) is vital for performing transformations between these different coordinate sys-

tems. Here, we review evidence for multiple pathways in the human brain, from PPC to

motor, premotor, and supplementary motor areas, as well as to structures in the medial

temporal lobe. These connections are important for transformations between egocentric

reference frames to facilitate sensory-guided action, or from egocentric to allocentric

reference frames to facilitate spatial navigation.[116]

Pulvinar in thalamus: It is supporting attentional control for achieving global segmen-

tation. Neurobiological experimental evidence that suggests a role of the pulvinar for

visual attention has indeed been collected [117, 105, 118]. Moreover, the pulvinar has

the required neuronal connections. Two of its parts, the lateral and inferior pulvinar, are

connected to V1 [119] and higher levels such as IT and PPC [120, 119]. Research also

finds it has connections to SC for initiation and compensation of saccades [121, 122]

and regulation of visual attention [117, 123].

2.1.2 Connection of Visual Attention with Memory

For decades, neuroscientists have focused on the studies of hippocampus and associated

MT in order to investigate into memory in primates by neurophysiological methods.

To assess memory, viewing behaviors is an effective approach. The growing trend in

studying biological systems in more natural settings [124] enables us to observe the

interplay between memory and looking behaviors under less controlled conditions.

On one hand, our memory gets influenced by human vision because the latent scene

representation in the memory is encoded via a discrete sequence of eye fixations. In

particular, the fovea on the retina of human eyes processes only parts of the scene within

two degrees of viewing angles in high fidelity with the rest blurred. By shifting eye
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fixation locations across time, visual information can be encoded and integrated in the

memory. Studies [125, 126] have found that fixation count has high correlations with

the picture memorability. Eye fixations, as indicator of visual attention, determine what

we are aware of in the image. Having more fixations on regions of the picture is highly

associated with stronger memory [127, 128, 129].

On the other hand, memory guides looking behaviors. In physiological experiments,

novelty preference in looking behaviors is often used as a means of assessing memory

[130, 131, 132]. The duration and the spatial distribution of eye fixations may imply

how well information is encoded in memory. For example, people tend to have shorting

viewing timings on a repeated image compared to novel ones since the information of

a repeated image has already been encoded in the memory [133, 134, 135, 136, 137]. It

is also reported that the spatial distribution of eye fixations is more concentrated when

observers have more confidence in identifying repeated images compared with those

ones that subjects feel uncertain about whether the image has been visited before [125].

There have also been evidences in neural activity in hippocampus and MT supporting

that memory guides and changes viewing behaviors. For example, theta band oscillatory

activity in hippocampus is closely linked with saccadic eye movements while monkeys

are performing memory tests [138]. More examples have shown that neural responses

in hippocampus and entorhinal cortex often get attenuated or enhanced when observers

are presented with repeated or novel images [139, 140, 141].

2.2 Saliency Prediction on Static Images

Feature-integration theory describes a process where combined low-level features, such

as color, contrast and intensity attract human’s attention. Most computational visual

attention models originate from this idea, including the most early work introduced by

Koch et al. [7] and Itti et al. [142]. Subsequent works have emerged which improve

the performance on predicting saliency maps [143, 144, 145, 146, 147, 148]. Harel et

al. [144] proposes a multi-scale structure based on low-level features. Later on, Ga-

bor features learnt from independent component analysis are introduced in Bruce [149]

which are useful for saliency prediction. Recently, randomly threshold feature maps in

Boolean Map Saliency (BMS) are introduced in Zhang [145]. However, all these meth-
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ods ignore the semantic information such as objects which turn out to be essential for

predicting saliency maps. Even though subsequent works have incorporated a few ob-

ject detectors in visual attention models, such as face and text detectors, these methods

are still restricted to a limited set of object categories [147, 148]. With the successful

demonstration of deep learning in object recognition, extracted semantic regions or ob-

jects from the scene by deep convolutional neural networks have significantly boosted

the saliency prediction accuracy [4, 5]. However, the temporal information from a se-

quence of eye fixations has been discarded which turns out to be valuable in studying

decision making in eye movements according to [150].

Although there are also early works studying the temporal dynamics of scanpath

characteristics [151], they only focus on shape silhouettes and it is unclear whether these

models could be generalized in natural images. Similar as [151], Renninger et al. [152]

exploits the visual cues in scanpath prediction. Subsequently, Sun et al. introduced

super-Gaussian component (SGC) based approach [153]. Liu et al. further improved

scanpath prediction accuracy by utilizing the semantic information and transition be-

tween fixations in the model [154] but all these semantic features are hand-crafted and

transitions between fixations are pre-defined. There have been recent works where com-

putational models learn to predict scanpaths from training examples of human fixation

sequences, such as [155] and [156]. In particular, Ming et al. train the model to learn a

visual exploration policy and assign a set of different weights for related semantic cues

at each stage of the visual scanpath [157]; however, memory is not incorporated in the

decision making process during eye movements.

Different from all these previous works, we show for the first time that deep neural

networks can make predictions beyond saliency maps, as these networks can also esti-

mate the sequence of eye-fixations across time by integrating the information from all

the past eye fixations to predict the next fixation location.

2.3 Gaze Prediction on Egocentric Videos

The previous section focuses on saliency prediction on static images and the motion

information across video frames has been discarded. There are a few works exploiting

the relations among gaze motions, head motions and foreground object motions on the
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video frames.

Ba et al. [158] proposed to predict gaze locations by analyzing the relations between

head orientation and gaze direction. Similarly, Yamada et al. [8] models motion corre-

lations with the assistance of motion sensor measurements. Borji et al. [159] integrates

motor actions and low-level features to predict fixation locations in a driving simulation

scenario. Other than egocentric videos, all these works require additional information

from external motion sensors. For those works solely relying on visual features ex-

tracted from egocentric videos, their models are only suitable for particular egocentric

activities and may not generalize well. For example, the most recent model proposed by

Yin et al. [9] has demonstrated high gaze prediction accuracy; however, hand detection

and pose recogntiion provide primary egocentric cues which are not always present in

all egocentric activities.

Computer vision researchers have also devoted efforts in studying gaze prediction

on third-person videos, such as [160, 161, 162, 163]. To model temporal dynamic-

s, most of these works propose different approaches, e.g. space-time whitening [161],

salient candidate selection across time [162], or video compression [160]. The recen-

t Long Short-Term Memory (LSTM) based work [163] learns the essential spatial-

temporal features via end-to-end training. However, all these works have not shown

whether the same models could be directly applied on gaze prediction problem in e-

gocentric videos. Moreover, different from all these methods which require multiple

frames, our model requires one single current frame.

To go beyond gaze prediction problem, we introduce a new and important gaze

anticipation problem and propose a novel GAN-based model. To deal with the com-

plex motion dynamics, we untangle foreground and background motions in egocentric

videos with two-stream architecture. According to the experimental results, our model

is capable of capturing useful egocentric visual cues and modeling the temporal dynam-

ics for anticipated gaze locations after the training phase. Even without fine-tuning on

normal videos, our model can still be directly applied in gaze prediction problem and

surpass state-of-the-art algorithms.
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2.4 Target-driven Search Models

We summarize related computational models of visual search and we also compare the

invariant visual search task with other computer vision problems.

Human search behavior is often guided by the characteristics of the target [164,

165, 166, 20, 21, 167, 164, 22]. Cognitive Science work has mostly focused on low-

level properties of the target that can guide search (e.g., [54]). Several computational

models have been developed to describe modulation of responses during feature-based

attention or visual search [168, 169, 40, 39, 41, 42]. A recent model proposed by Miconi

et al. [19] incorporates ideas from Neuroscience in a proof-of-principle demonstration

of visual search for exact matches of an object. Another recent visual search model

utilizes both the search image and target classification labels to back-propagate and

infer the maximum of hidden unit activations and localize objects [170]. The ability of

these previous models to generalize and invariantly search for novel objects is limited.

Object detection and localization are “search” processes with pre-defined object

classes of interests, typically focusing on performance accuracy irrespective of compu-

tational efficiency. To localize objects, most approaches require a large amount of super-

vised data, such as bounding boxes or object segmentations. Multiple recent approaches

use deep neural networks for locating class-specific bounding boxes [28, 171, 172, 173].

Typically, sliding windows [171] or region proposals at uniformly sampled grids on im-

ages [28, 173, 172] are used. The purely feed-forward approach often involves propos-

ing regions at the uniformly sampled grids, performing feed-forward classification for

each proposed region and making decisions. These heuristic methods are computation-

ally inefficient (in terms of the number of “fixations” or proposed regions and require

extensive training). An analogous strategy is used in image retrieval tasks where a sim-

ilarity score is computed between a query and each candidate image [174, 175, 30, 31].

In contrast with these methods, humans can invariantly and efficiently locate target ob-

jects in a few fixations instead of scanning the whole search image grid by grid, even

with no prior training with the targets or search images. We propose a biologically

inspired model which performs invariant and efficient visual search tasks with zero

training examples and mimics human performance.
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2.5 Decoding Targets from Fixations

Although information about a target is available in the fixation behavior during visual

search, this does not imply that subjects are able to extract this information and use it

to infer a search target [52, 53, 54]. Whether humans can infer the target information

from other people’s fixation behavior or not remains controversial. Some researchers

have reported that it is possible to decode task information from eye movements [49,

176, 177, 178, 179, 180] while others have argued against otherwise [47, 181].

The focus in our study is on designing a computational model capable of inferring

what the subject’s target is. There are a few studies on decoding target information in

the context of visual search [182, 183, 180], but current methods are limited in using

elementary search statistics [180] and handcrafted features [182, 183]. Moreover, exist-

ing approaches have only been tested with pre-defined object classes with constrained

object set sizes. These computational models do not generalize to infer any target from

arbitrary classes. In contrast, our model is capable of inferring any target on complex

natural images.
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Chapter 3

Scanpath Network: Predicting

Sequences of Human Fixations on

Images

This chapter is based on the paper named “Deep Scanpath: Predicting Human Se-

quences of Eye-Fixations using Recurrent Neural Networks”1.

We define the fixation stages as the order in the sequence of fixations. The fixation

stage of a scanpath discards the duration of the fixation and the saccade, and only takes

into account the location and the order of the fixations. We use fixation stages rather

than time to describe the scanpath. The aim of this work is to analyse the temporal

sequence of fixations rather than the duration of the fixation. We use t ∈ N to index the

different fixation stages, and we define T as the total number of fixation stages in which

the scanpath is divided.

We formulate the scanpath prediction problem as an iterative process learnable by

our Deep Scanpath Neural Network (DSNN). At the fixation stage t, DSNN predicts the

fixation (xt, yt) given the image I and the fixation location (xt−1, yt−1) that has been

predicted at the fixation stage t− 1.

Note that humans subjects may have different visual scanpaths while looking at one

static image. In order to handle the inconsistency among human visual scanpaths, we

1Paper download link: https://docs.wixstatic.com/ugd/d2b381_
0ffd2ca5c2ef47cfb4705fec968d3644.pdf
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Figure 3.1: Architecture for Deep Scanpath Neural Net (DSNN)

align the fixations of the human subjects using the fixation stages. In other words, we

align the fixation stage of the visual scanpath of two human subjects using the order of

the fixation even though the fixations may happen at a different time.

Rather than directly predicting the fixation location, DSNN predicts a temporal

saliency map that captures the scanpath variability among humans, i.e. the probabilis-

tic map of the fixation locations across time. This temporal saliency map is used to

predict a representative fixation location at each stage by using the spatial coordinate

corresponding to the maximum of the temporal saliency map at stage t.

We define the standard 2D convolution operation as conv, the fully connected oper-

ation as fc and the linear rectifier function as relu in deep learning. We use 0-padding in

all convolutions in order to maintain the spatial resolution. Refer to [184] for the details

of these operations in deep learning.

3.1 Recurrent Neural Network Model

DSNN is built on the recurrent neural network (RNN) as shown in Figure 7.3. DSNN

comprises of two parts: GazeModule, and RecurrentModule. GazeModule is based on

the deep Convolutional Neural Network (CNN) architectures for object recognition as

it has been shown to be effective to predict saliency maps. The GazeModule also uses a

mechanism to mimic inhibition of return that discourages DSNN to explore the already

visited locations. The RecurrentModule is attached after GazeModule for adapting to
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the changes of dynamics during scanpath prediction. It is composed by a series of con-

volutional and fully connected layers, and two recurrent layers that encode the memory.

In the following, we introduce these two modules.

3.1.1 Gaze Module

As shown in previous works, e.g. [4], the semantic information in high layers of CNNs

trained for object recognition can effectively be used to predict saliency maps. Thus, we

use a pre-trained model on ImageNet for object recognition to generate multiple feature

maps with semantic content. In particular, we use the first 30 layers of VGG16 [185]

as an example. The output of the first 30 layers of VGG16 is denoted as F 0, and is

composed by K0 feature maps of size H0 ×W0 which correspond to different regions

of the image. F 0 is rich in describing the semantic information across the image, which

is essential for scanpath prediction.

F 1 is obtained by mixing the pool of feature maps F 0 using a conv operation. More-

over, in order to maintain a proper spatial resolution, we attach one up-sampling layer

before this conv to scale up the size of each feature map in F 0. Thus, after one up-

sampling layer and a conv layer, F 1 has K feature maps with each feature map of size

H ×W . The spatial dimensions of this feature map, H ×W , are much smaller than

the size of the original image. Yet, this is not a problem as one can still predict saliency

even on a low resolution image [4].

Inhibition of return is used to discourage DSNN to explore the already visited lo-

cations [186]. We implement inhibition of return by multiplying each feature map in

F 1 with a spatial map that encodes the previous fixation location. Let St be the spatial

prior map for the inhibition of return at time t, which is of size H ×W . St is defined as

function g dependent on the previous predicted fixation (xt−1, yt−1). Specifically, we

choose g to be an inverted gaussian mask centered at (xt−1, yt−1) with variance σ and

normalized to [0, 1]. The low intensity values on St near to (xt−1, yt−1) indicate the

low probability for DSNN to explore in that location. Let F 2
t be the feature maps after

applying the inhibition of return on F 1. F 2
t is defined as

F 2
t = F 1 ⊗ g(xt−1, yt−1) (3.1)
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where ⊗ represents element-wise product over each feature map of F 1, and hence, F 2
t

has the same dimensions as F 1. We can see by analyzing Eq. (3.1), that the H ×W

feature maps in F 1, which encode the semantic content among the image, are multiplied

by values close to 0 in the location of the previous fixation. As a result, the feature maps

of F 2
t encode less salient content in the previous fixation location.

3.1.2 Recurrent Module

The RecurrentModule is attached after GazeModule for modeling the dynamics of the

scanpath. RecurrentModule has two recurrent layers, recurrent convolution layer (RC)

and recurrent fully connect layer (RF). Let M1
t be the hidden state of RC at fixation

stage t, and let M2
t be the hidden state in RF at fixation stage t. Between the two

recurrent layers, there are other conv and fc layers that we introduce in the following.

First, F 2
t is the same size as F 1. The recurrent layer RC then integrates the past

feature maps stored in the memory, M1
t−1, with the feature maps F 2

t at fixation stage t.

Let F 3
t be the output of RC. M1

t−1 and F 3
t are of the same size as F 2

t . RC integrates the

feature map F 2
t with the memory M1

t−1 using the element-wise addition ⊕. Thus, we

define F 3
t as

F 3
t = relu(F 2

t ⊕M1
t−1). (3.2)

Instead of memorizing all the output feature maps F 3
t , we use conv to learn how to

selectively store these features in the memory M1
t . A small weight in the convolution

filter indicates that the corresponding feature map in F 3
t is easier to forget. Thus, the

memory M1
t at fixation stage t is updated as

M1
t = conv(F 3

t ). (3.3)

A conv operation is applied to F 3
t to obtain the feature map F 4

t , which is of size

H × W with the number of feature maps to be 1. We then use fc to transform the

feature information F 4
t into the latent representation of the following layer denoted as

F 5
t . This latent representation in F 5

t is a vector of length D where D = H ·W 2.

Similar to RC, RF uses an element-wise addition to integrate M2
t−1 with F 5

t , and

2(·) is the scalar multiplication
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obtains the output of RF, denoted as F 6
t . M2

t−1 and F 6
t have the same dimension as

F 5
t , i.e. D = H ·W . Thus, F 6

t is defined as

F 6
t = relu(F 5

t ⊕M2
t−1). (3.4)

Also, instead of storing F 6
t directly in the memory, we use fc to tune its latent represen-

tation, i.e.

M2
t = fc(F 6

t ). (3.5)

In the next section, we show that this fc in RF, in fact learns a changing spatial bias

across fixation stages.

Finally, the integrated latent representation F 6
t is decoded into F 7

t using fc. F 7
t is

again of dimension D = H ·W . Since this is equal to the spatial domain, F 7
t can be

used as the temporal saliency map before normalization. The spatial coordinate with the

maximum probability from the temporal saliency map, i.e. F 7
t , is taken as the predicted

fixation location (xt, yt) at fixation stage t. In the next iteration, i.e. fixation stage t+1,

DSNN feeds back (xt, yt) as input together with image I to predict the subsequent

fixation location (xt+1, yt+1). It is a sequential process. Hence, DSNN predicts the

scanpath by generating a sequence of fixations across time.

3.1.3 Training

We train our network using end-to-end back-propagation in a fully supervised manner,

i.e. all the parameters in our network are trained jointly.

We generate the ground truth data to learn the model by aligning all the fixations

from all human subjects with the fixation stages. The aligned eye fixations from all

human subjects produce a sparse fixation map, we put gaussian mask with variance σ

over these maps to generate temporal fixation maps.

Let Pt be the temporal fixation map (the ground truth) and Qt be the estimated

temporal saliency map by DSNN at fixation stage t. The goal of the learning is to

minimize a loss function between these two probability distributions across time. We

use Kullback-Leibler divergence (KLD) loss function which has been shown to be one

of the most effective loss functions for achieving the best saliency prediction [4]. In our
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case, we average it across the fixation stages, i.e. the loss function is

KLD(P,Q) =
∑
t

∑
i

Pt(i) log

[
Pt(i)

Qt(i)

]
(3.6)

where i refers to the ith pixel on the maps Pt and Qt.

We use stochastic gradient descent with learning rate fixed at 0.001 and batch size

1 to avoid being trapped in the local optimum. We stop the training at the turning point

where we achieve the best scanpath prediction performance in the validation set, before

there is over-fitting. Within each epoch, we randomize the sequence of inputs to the

network. We train the network in a single NVIDIA Titan GPU with 12 GB memory.

3.1.4 Parameters of the Model

DSNN can predict sequences of eye-fixations for any number of fixation stages T . In

our implementation and all the following experiments, we fix the number of stages to be

T = 6. This choice produces an approximate correspondence between a fixation stage

and the mean duration of an eye fixation (300ms), as the eye fixation recordings in the

datasets used in the experiments are of duration between 1.5 to 2.5 seconds per image

(i.e. 2s/6stages = 333ms/stage). This choice is also made in accordance with previous

works, e.g. [154, 157].

The parameters of the first 30 layers in GazeModule are preloaded from the first 30

layers in VGG16 [185]. These parameters are fine-tuned to scanpath prediction during

learning.

The input image size is 300 × 400 with RGB channels. All the input images are

normalized into [0, 1]. F 0 is denoted as the output from the 30th layer of VGG16, thus,

F 0 has 512 feature maps with each feature map of size 19× 25, i.e. we set H0×W0 =

19× 25 and the number of features K0 = 512. After one upsampling layer to scale up

the size of each feature map from F 0 and one conv layer to increase the pool of feature

maps F 0, F 1 has 1024 feature maps with each feature map of size 38 × 50. That is,

we set H ×W = 38× 50 and the number of features K = 1024 to maximize the rich

representations of features extracted from VGG16 while maintaining a proper spatial

resolution.

In the spatial prior maps for inhibition of return, and the temporal fixation maps,
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we empirically fix σ to be 5 with respect to the size of the temporal saliency map

38 × 50, which is of the same size as the feature maps extracted from VGG16 after

one upsampling layer and one conv layer. We set the width and the height of all the

conv filters to be 1 × 1 in the last conv layer in GazeModule as well as all the conv

layers in RecurrentModule. This is to assign a probability indicating how salient the

response for each coordinate on the feature maps is.

3.2 Experiments - Scanpath Prediction

In this section, we evaluate DSNN for scanpath prediction.

3.2.1 Datasets

All the datasets are collected from [187], which include CROWD500 [188], MIT1003 [187],

MIT2000 [187], FIGRIM2787 [189], KTH101 [190], LeMeur27 [191], VIU800 [192],

OSIE700 [146], NUSEF760 [193] and Toronto120 [194]. In these datasets, the number

of subjects per image vary from 7 to 104 depending on the datasets, and the subjects

look at the images under the free-viewing conditions.

We use 3 different testing sets: 501 randomly chosen images from MIT1003, and

350 randomly chosen images from OSIE700 and all images from NUSEF760. For

training, we use the training sets of all the aforementioned datasets, excluding all the

testing images. We have about 9000 images in total for training.

We learn two different models of DSNN. In order to check for any dataset bias,

the first model is tested in two testing sets, which are the ones from MIT1003 and

NUSEF760. The second model is tested in OSIE700. For validation sets, the first

model uses the test set of OSIE700, and the second model uses the 501 images randomly

selected from MIT1003.

3.2.2 Evaluation Metric

Sequence score (SS) is proposed by Borji et al. [195], and it has been used to evalu-

ate the accuracy of scanpath in the literature. We use the implementation by Jiang et

al. [157]. SS computation is summarized: a mean-shift clustering for all human fix-
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Figure 3.2: Quantitative Results on Scanpath Prediction on Static Images

ations is computed, and a unique character is assigned to each cluster center and cor-

responding fixations. The Needleman-Wunsch string match algorithm [196] is imple-

mented to evaluate the similarity between human scanpath and the predicted scanpath.

3.2.3 Comparative Methods

For evaluation purposes, we provide a few comparative methods as below:

-MeanHuman: is the mean SS among pairs of sequences of human scanpath for all

images.

-BestHuman: is obtained by taking the averaged SS of all the best subjects for all im-

ages. The best subject for each image is defined to have the maximum averaged SS

across all fixation stages among all human pairs. This is the “the gold standard” for

scanpath prediction.

-Winner-take-all from Saliency Maps: It generate scanpath from saliency maps with

inhibition of return [142, 143]. During testing, we include the following saliency mod-

els: Graph-based Visual Saliency (GBVS) [144], Saliency Using Natural Statistics

(SUN) [197], Adaptive Whitening Saliency (AWS) [198], Attention based on Infor-

mation Maximization (AIM) [149], Itti’s Model (Itti) [199], Image Signature Saliency

(ImSig) [200], and SALICON [4].

-Previous Scanpath Models: We also compare our results with the previous methods for

scanpath prediction: Least Squares Policy Iteration (LSPI) [157], Support Vector Ma-

chine (SVM) to combine the features at each fixation stage as in [157] 3, Hidden Markov

Model from Liu (LiuICCV) [154] and Super Gaussian Component (SGC) [153]. These

models have been reviewed in Chapter 2. We used the implementation of all these

3SS of LSPI, SVM are not provided on NUSEF760 dataset since we do not have annotated objects for
this dataset.
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models from [157].

-Previous Scanpath Models With Deep Features: For a fair comparision, we re-implement

previous models and augment them with the deep learning features. We use LSPI

(DeepLSPI) and SVM (DeepSVM) algorithms and extract the last convolution layer

of SALICON as feature inputs to these algorithms. For DeepLSPI and DeepSVM, the

number of superpixels is set to be 300. The rest of parameters remain the same as [157].

-Center Bias: To explore the effects of spatial biases, we create artificial fixation se-

quence with each fixation always in the center.

3.2.4 Results

We show the SS scores for the comparative analysis on MIT1003 in Figure 3.2(a),

OSIE700 in Figure 3.2(b) and NUSEF760 in Figure 3.2(c). DSNN generalizes well

across all three datasets. It outperforms state-of-the-art models, substantially reduc-

ing the gaps between machine and human. In particular, DSNN prediction surpasses

MeanHuman on NUSEF760 (note that this is not surprising as NUSEF760 includes

provocative and controversial images and the consistency of the eye fixations among

subjects might be low).

To quantify how much DSNN has improved the state-of-the-art results, we report

the mean difference between the SS score of DSNN and the second best algorithm, in

percentage with respect to DSNN, i.e.

A(SSr) =
1

T

T∑
t

SSDSNN
t − SSr

t

SSDSNN
t

, (3.7)

where SSDSNN is the SS score of DSNN, and SSr is the SS score for the second

best algorithm (LSPI on MIT1003, LSPI on OSIE700 and Center Bias on NUSEF760

respectively). They are 10.5% on MIT1003, 3.6% on OSIE700, 21.4% on NUSEF760.

We observe that using deep learning features boosts the performance of all algo-

rithms. This is because hand-crafted semantic features may not be sufficient to cover

the wide range of salient objects. It is also shown that the algorithms which model

the temporal information perform better than conventional saliency prediction methods

with inhibition of return. For example, we observe that SALICON, which is based on
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Figure 3.3: Example Scanpath and Example Saliency Maps predicted by our Deep
Scanpath Neural Net (DSNN) and other Comparative Methods

deep neural networks, takes advantage of abundant semantic features, it cannot perform

well for the first few fixations as it does not model the eye fixation temporal dynamics.

Finally, one example of our predicted scanpath (first two rows) is shown in Figure 3.3.

3.3 Experiments - Saliency Prediction

We have shown that DSNN surpasses state-of-the-art algorithms on scanpath prediction.

In order to show that DSNN in fact extends the predictive power of current state-of-the-

art saliency predictors, we now show that DSNN can recover the accuracy of the most

accurate saliency predictors in the literature. To convert the scanpath obtained with

DSNN to a saliency map, we simply average the predicted temporal saliency maps.

3.3.1 Evaluation Metrics

We use several common evaluation metrics. The fixation map is based on all human

subjects, and we evaluate across all images in the testing datasets.

-Area Under the Curve (AUC) [195]: It is the area under a curve of true positive versus

false positive rates under various discrimination threshold values on saliency maps.

-Shuffled-AUC (sAUC) [201]: It compensates the center bias problem of AUC. Instead

of uniformly sampling at random, it gets negative samples from other images.
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-Normalized Scanpath Saliency (NSS) [201]: It computes the normalized saliency at

fixation locations. It is sensitive to false positives and relative difference in saliency.

Given a normalized saliency map P , and a binary fixation map Q with N fixations

located at ith pixel (i is from 1 to N ), NSS is defined as

NSS(P,Q) =
1

N

∑
i

P (i)×Q(i). (3.8)

-Correlation Coefficient (CC) [202]: treats saliency map P and a binary fixation map

Q as random variables. It computes the linear relationship between them. This is useful

in the context of scanpath analysis where relative saliency values at different image

regions are concerned [203].

CC(P,Q) =
cov(P,Q)

cov(P, P )× cov(Q,Q)
(3.9)

where cov(·) is the covariance of two random variables

3.3.2 Comparative Methods

We compare the saliency map with the state-of-the-art saliency prediction algorithms as

introduced in Section 3.2.3. We use the source codes from the authors, and follow the

same parameter settings for saliency map prediction as [157]. Besides these saliency

prediction algorithms, we also include the center bias.

3.3.3 Results

Table 3.1 shows that the accuracy of the saliency map by DSNN is comparable with the

state-of-the-art models. Also, DSNN is best in AUC, NSS and CC, while it is almost

as good as SALICON in sAUC over the three datasets. One possible reason for lower

sAUC is that DSNN predicts temporal saliency maps which have strong center bias for

the first few fixations, but sAUC gives more credit to off-center information [203]. Two

example saliency maps predicted by our model and other comparative methods (last

two rows) are shown in Figure 3.3.
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MIT1003 Dataset OSIE700 Dataset NUSEF700 Dataset
Metrics AUC NSS CC sAUC AUC NSS CC sAUC AUC NSS CC sAUC
DSNN(ours) 0.82 1.90 0.46 0.69 0.83 1.92 0.40 0.74 0.73 1.42 0.45 0.58
SALICON [4] 0.80 1.51 0.36 0.72 0.83 1.90 0.40 0.78 0.71 1.0 0.31 0.6
CenterBias 0.78 1.05 0.27 0.55 0.72 0.80 0.17 0.52 0.73 0.88 0.29 0.49
GBVS [144] 0.77 1.21 0.29 0.64 0.80 1.34 0.28 0.70 0.70 0.83 0.27 0.55
AWS [198] 0.74 1.07 0.26 0.69 0.80 1.45 0.31 0.76 0.66 0.71 0.22 0.59
AIM [149] 0.72 0.86 0.21 0.65 0.79 1.08 0.23 0.72 0.65 0.56 0.18 0.56
SUN [197] 0.69 0.80 0.19 0.65 0.76 1.13 0.24 0.73 0.63 0.50 0.15 0.56
Itti [199] 0.63 0.55 0.13 0.59 0.67 0.74 0.15 0.63 0.58 0.30 0.09 0.53
ImSigLab [200] 0.55 0.55 0.13 0.54 0.62 0.7 0.16 0.60 0.56 0.36 0.11 0.53

Table 3.1: Quantitative Results in Saliency Prediction on Static Images by our Deep
Scanpath Neural Net (DSNN)

3.4 Analysis of Temporal Dependencies across Fixations

In this section, we provide an analysis of DSNN via the ablation tests and the visualiza-

tion of the hidden states in the recurrent module.

3.4.1 Ablation study

We report the performance in Table 5.5 after removing various components in DSNN

to study their effects in SS on scanpath prediction. DSNN is relearnt for each case in

the ablation study. These ablated models are: 1) R(ReFC): DSNN with the recurrent

fully connected layer (RF) removed; 2) R(ReConv): DSNN with the recurrent convo-

lution layer (RC) removed; 3) R(ReConv): DSNN with two recurrent layers replaced

with the convolution layer and the fully connected layer respectively. Also, we include

other variants based on the saliency map of SALICON with different spatial bias: 4)

SAL(1stCB): the predicted visual scanpath of SALICON with the first fixation in the

center; 5) SAL(SP): the spatial prior map pre-computed from human scanpaths at each

fixation stage. The predicted saliency map from SALICON multiplied with the spatial

prior map at each fixation stage, and then, inhibition of return is applied on these maps.

In Table 5.5, we show results for the test set from MIT1003. We also report the

relative performance compared to DSNN (Row 1 in Table 5.5) as defined in Eq. (5.6).

We find that removing any of the recurrent connections (R(ReFC), R(ReConv), and

R(AllRe) in Table 5.5) reduces the accuracy of DSNN. This demonstrates that recurrent

connections in DSNN are essential in learning the dynamics of the eye fixations.

The experiments with SALICON with different spatial bias (SAL(1stCB) and SAL(SP)
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FixationStep 1 2 3 4 5 6 A
DSNN(ours) 0.59 0.54 0.52 0.51 0.51 0.50 –
R(ReFC) 0.52 0.52 0.52 0.52 0.51 0.51 3%
R(ReConv) 0.53 0.51 0.51 0.50 0.49 0.48 5%
R(AllRe) 0.55 0.51 0.48 0.46 0.44 0.42 10%
SAL(1stCB) 0.52 0.49 0.48 0.47 0.47 0.47 9%
SAL(SP) 0.52 0.46 0.45 0.45 0.45 0.45 12%

Table 3.2: Ablation Study of our Deep Scanpath Neural Network (DSNN)

Figure 3.4: Visualization of the clustering of the latent representations in the hidden
state of the recurrent fully connected layer across fixation stages.

in Table 5.5), obtain lower accuracy than DSNN. This shows that DSNN learns repre-

sentations that are more useful than a spatial bias for deep learning features.

3.4.2 Visualization of Hidden States

In order to better understand the role of recurrent modules in DSNN, we provide a vi-

sualization method of the hidden state in RF by converting it to the spatial domain.

T-Distributed Stochastic Neighbor Embedding (t-SNE) [204] is used for dimension re-

duction and clustering. We visualize the latent representations of the hidden state in RF

over the first 6 fixation stages (t = 1, ..., 6) from 501 images in MIT1003, i.e. 3006

latent representations of the hidden state.

In Figure 3.4, we show the visualization result of the hidden states in RF. We use

a different color to denote the different stages t, i.e. dots with the same color are from
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different images at the same fixation stage. We observe that the hidden states at the first

and second fixation stages form cluster A and B respectively, while cluster C contains

the hidden states at the remaining 4 fixation stages. By analysing the pattern of these

hidden states, we find that there exists a strong center bias for the first fixation. The

latent representations in the hidden states shows higher activation to the surroundings

as the fixation stages increase. At the 6th fixation stage, the spatial prior becomes more

spread-out. This suggests that DSNN can emulate human visual scanpath behaviors by

focusing attention on the salient objects nearest to the center at initial stages, and moves

on to surrounding salient objects at later stages.
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Chapter 4

Foveated Network: Predicting

Human Gaze on Egocentric Videos

This chapter is based on the paper named “Foveated Neural Network: Gaze Prediction

on Egocentric Videos”1.

We first introduce an overview of our model, named as Foveated Neural Network

(FNN), followed by a detailed analysis of each module in FNN. We provide training

and implementation details in the end.

We formulate the gaze prediction problem on the current frame of egocentric videos

as: given the previous frame and the current frame, FNN outputs the saliency map for

the current frame. Hence, the spatial coordinate with the maximum probability on the

saliency map is the predicted gaze location.

We define an egocentric frame I of low resolution and high resolution using super-

script l and h respectively. The subscript denotes time t. A saliency map is defined

as a probability distribution of gaze locations; thus, the spatial coordinate of the max-

imum probability in the saliency map is the predicted gaze location f r. Similarly, we

use the estimated saliency map obtained from the low-resolution frame to propose ROI

centered at f c. We use superscript r as the refined gaze location (the output of FNN)

and superscript c as the center of the proposed region of interest (ROI).

1Paper download link: https://docs.wixstatic.com/ugd/d2b381_
4609966b34ba417e825db191d3059838.pdf
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Figure 4.1: Architecture of our model for Gaze Prediction on Current Frame.

4.1 Foveated Neural Network

The overview of FNN is presented in Figure 7.3. FNN divides into three modules: Pre-

process Module (PP), Fovea Module (F), and Re-alignment and Post-process Module

(RP).

In PP, based on the current frame I lt of low resolution and the optical flow OFt in

horizontal and vertical axis, FNN extracts the feature maps FPt useful for gaze pre-

diction and estimates the region of interest (ROI) on the current frame. The center of

ROI f ct (red dot) will be used in the next iteration (time t + 1). In F, given the high-

resolution frame Iht−1 and ROI on the previous frame centered at f ct−1, F simulates the

human fovea and outputs the feature maps extracted from the retina-like image patch-

es centered over ROI. They are of different resolution and cover different sizes of the

receptive field. The patch covering the large receptive field is of low resolution while

the one covering the small receptive field is of high resolution. In RP, the extracted fea-

ture maps from the patches FP1t−1, FP2t−1, and FP3t−1 are re-aligned based on the

center of ROI and concatenated with the feature maps FPt extracted from the current

frame. The combined feature maps are post-processed and output the refined saliency

map and hence, the predicted gaze location f rt on the current frame at time t (blue dot).

4.1.1 Fovea Module

Given an egocentric high-resolution frame Iht−1 and the center of ROI f ct−1 at time t−1,

ROI is attended in a foveated manner. In order to simulate the attentional processing in

the retina, we use the same approach as [150]. Instead of assessing the frame in high

resolution across all pixels, F extracts the retina-like representation focused on f ct−1,
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i.e. different image patches of limited bandwidths centered at f ct−1. In our case, we use

three bandwidths: H ×H , H
2 ×

H
2 and H

4 ×
H
4 ; however, not limited to three, F can be

generalized to more than three depending on the applications. When the receptive field

centered at f ct−1 exceeds the frame boundary, we use zero padding to fill in the empty

areas. These multiple resolution patches are then scaled to the same size H
4 ×

H
4 . This is

to simulate the fovea where the patch covering small receptive field (Patch1) is of high

resolution whereas the patch covering large receptive field (Patch3) is downsampled to

be of low resolution. Thus, it enables F to allocate the small amount of processing

power (the same number of parameters in 2D-ConvNetPatch) on the large area of the

frame in low resolution (Patch3) and vice versa.

As shown in [4], convolution layers of high levels in 2D convolution neural network

(2D-ConvNet) trained for object recognition are effective in predicting saliency. We use

the pre-trained 2D-ConvNet on ImageNet for feature extraction. The feature maps from

these multiple resolution patches are extracted using branches of 2D-ConvNetPatch.

The branches have the same architecture and share the same network parameters. The

outputs of F are feature maps denoted as FP1t−1, FP2t−1 and FP3t−1 respectively.

Each of their feature maps are of size H
16 ×

H
16 .

4.1.2 Pre-process Module

Before assessing to ROI of the current frame in high resolution, I lt (size H
2 ×

H
2 ) is per-

ceived in low resolution at time t. PP uses 2D-ConvNetPreprocess for encoding features

of I lt and 2D-ConvNetCoarse for proposing the ROI. As egocentric videos involve head

motions, we compute the dense optical flow OFt between I lt and I lt−1 from [205] and

use it to implicitly represent motions between adjacent frames. 2D-ConvNetPreprocess

takes five channels as inputs: RGB channels from I lt and OFt in horizontal and verti-

cal axis. We denote the output from 2D-ConvNetPreprocess as feature maps FPt with

each feature map of size H
16 ×

H
16 . FPt and FP1t−1, FP2t−1, FP3t−1 from F are of

the same size and they will be used for predicting gaze location on the current frame.

Based on FPt extracted from I lt , 2D-ConvNetCoarse proposes one ROI where the mod-

el may be interested in focusing attention on. The ROI is represented using the center

of ROI denoted as f ct . f ct is obtained by taking the spatial coordinate of the maximum
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1). scale 2). zero padding 3). shift

Fovea Module Re-alignment Process

Figure 4.2: Illustration of the realignment process in Re-alignment and Post-process
Module.

on the saliency map estimated from I lt in low resolution. It will be used in F in the next

iteration (time t+ 1) where FNN predicts the next gaze location on frame I lt+1.

4.1.3 Re-alignment and Post-process Module

After obtaining FP1t−1, FP2t−1 and FP3t−1, RP realigns these feature maps based

on f ct−1. The realignment process includes the following steps as shown in Figure 4.2:

1). scale FP1t−1, FP2t−1 and FP3t−1 to H
64 ×

H
64 , H

32 ×
H
32 and H

16 ×
H
16 respectively;

2). add in zero paddings to each of the four sides of each feature map by 3H
128 in FP1t−1

and H
64 in FP2t−1; 3). shift the concatenated feature maps back to f ct−1 with respect

to Iht−1. The realignment process is used for consolidating all the feature maps across

multiple resolution patches to the same spatial location with respect to Iht−1.

In 2D-ConvNetPost, we use one 2D convolution layer to fuse the consolidated in-

formation on the previous frame together with FPt from the current frame. The fused

information is post-processed by another two fully connected layers before generating

the final predicted saliency map of size H
16 ×

H
16 . The coordinate with the maximum

probability in the saliency map is the predicted gaze location f rt on I lt .

4.1.4 Training and Implementation Details

We train FNN in stochastic gradient descent with learning rate 0.01 and batch size 1.

The fixation map (the ground truth) is defined as the binary map with human gaze lo-

cations. As a common practice, we put an isotropic gaussian mask over the binary map
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and normalize it to be [0, 1]. Same as [4], we minimize Kullback-Leibler divergence

(KLD) loss between the predicted saliency map and the fixation map. All the weights

from 2D-ConvNet in FNN are pre-loaded using VGG-16 trained on ImageNet [185].

The parameter H is set to be 1200. All the numbers of feature channels for FP1t−1,

FP2t−1, FP3t−1 and FPt are 512. The input frames to FNN are normalized to [0, 1]

with mean and standard deviation. We implement the proposed algorithm in Torch.

4.2 Experiments - Gaze Prediction

We compare FNN with the state-of-the-art using standard evaluation metrics on one

publicly available dataset. In the following subsections, we introduce the evaluation

metrics and comparative methods. In the end of the section, we present the results and

the detailed analysis.

4.2.1 Datasets

We evaluate FNN using the publicly available egocentric dataset, GTEA [206]. It con-

tains 17 video sequences in total with each video lasting for 4 minutes on average. 14

human subjects are asked to prepare for meals in a kitchen at their own wishes while

wearing the eye-tracking devices. For fair comparison, we choose videos 1, 4, 6-22 as

training and validation sets while the rest are used for testing same as [9].

4.2.2 Evaluation Metrics

We used two standard evaluation metrics to measure the performance of gaze predic-

tion: Area Under the Curve (AUC) [195] and Average Angular Error (AAE) [9]. AUC

is commonly used in the saliency prediction literature. It measures the consistency be-

tween a predicted saliency map and a fixation map of human gazes.

AAE is used in the gaze tracking literature and measures the error between the

predicted and the human gaze locations in an angular distance. The smaller, the better.
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Figure 4.3: Exemplar results of gaze prediction on GTEA Dataset.

4.2.3 Comparative Methods

We compare our method with the state-of-the-art saliency prediction algorithms: Graph-

based Visual Saliency (GBVS) [144], Saliency Using Natural Statistics (SUN) [197],

Adaptive Whitening Saliency (AWS) [198], Attention based on Information Maximiza-

tion (AIM) [149], Itti’s Model (Itti) [199], Image Signature Saliency (ImSigLab) [200]

and SALICON [4]. In particular, SALICON is a 2D-ConvNet with the current frame

as the only input. We fine-tune SALICON on the training set and evaluate its predicted

saliency maps in the test set.

In addition, we include [9] as it directly addresses the gaze prediction problem on

egocentric videos by using Hidden-Markov model for the temporal dynamics.

4.2.4 Results

The results in AUC and AAE are presented in Figure 4.4. FNN outperforms the state-

of-the-art algorithms on gaze prediction on current frames in egocentric videos in both

AAE and AUC.

Compared with saliency prediction algorithms, FNN yields a significant boost in

gaze prediction performance. Though SALICON learns the semantic features useful

for gaze prediction, it fails to take temporal information into account. See the ablation
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Figure 4.4: Results on GTEA Dataset using Area Under the Curve (AUC) in (a) and
using Average Angular Error (AAE) in (b).

AAE AUC
SALICON (SAL) 16.5 0.76
SAL + 2 Fully Connected Layers (FC) 10.6 0.80
SAL + FC + OpticalFlow (OF) 8.33 0.88
SAL+ FC + OF + FoveaOnPreviousFrame 8.15 0.89

Table 4.1: Evaluation of Ablated Models and our Fovea Neural Network model on Gaze
Prediction.

study in Table 5.7 (Row 3) for more details.

Though Li’s work [9] uses the hidden markov model for temporal dynamics, FNN

performs better with an improvement of 2.4% ((8.33−8.18)/8.33 = 2.4%) in AAE due

to the enriched pool of semantic feature representations in the network and the fovea

module on the previous frame.

Some qualitative results are shown in Figure 4.3. Three exemplar egocentric video

segments are presented with one out of every seven frames. Row 1, 3, 5 show the

human gaze locations denoted by red dots (ground truth (GT)). Row 2, 4, 6 show the

corresponding predicted saliency maps (Predicted (Pre)).

To further explore the effect of individual components introduced in FNN, we con-

duct an ablation study and report the results in Table 5.7. We build up FNN based

on SALICON and we add in one component at a time. SALICON is a feedforward

2D-ConvNet with the last few fully connected layers removed. We added in 2 fully

connected layers in the end which boosts up the performance to a significant extent in

terms of AAE (Row 2). Compared with SALICON containing only convolution and

pooling operations within a local receptive field, we hypothesize that the added 2 ful-
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ly connected layers fuse all the information across space and increase the capacity of

saliency representations.

To study the effect of the foreground and background motions, we add in the dense

optical flow between the current frame and the previous frame as inputs to the network

(Row 3). The first convolution layer has two additional input channels. The results

improve by 2 in AAE and 0.08 in AUC. It suggests that the motion estimation between

adjacent frames is an important egocentric cue for gaze prediction.

We present the result of FNN (Row 4). Compared with the one in Row 3, we add in

the fovea module and fuse its feature maps with the one-stream network. Result shows

an improvement of 0.18 in AAE and 0.01 in AUC. It explains that the integration of the

foveated information on the previous frame is useful for predicting gaze on the current

frame.

According to [9], there exists a strong center bias for gaze distributions on current

frames in egocentric videos since the large gaze shift often gets compensated by the

head motions. Hence, we use sAUC to evaluate FNN and compare it with the center

bias. We create the artificial center as the predicted gaze location and we put an iso-

topical gaussian mask over the center for sAUC evaluation. We report sAUC results in

GTEA: FNN (0.65) and center bias (0.5). It confirms that FNN predicts gaze locations

more than center bias.
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Chapter 5

Future Gaze Network: Anticipating

Where People Will Look Next

This chapter is based on the paper named “Anticipating Where People Will Look Using

Adversarial Networks”1.

Our work presents the new and important problem of gaze anticipation: the pre-

diction of gaze in future frames of egocentric videos within a few seconds. Figure 5.1

illustrates the gaze anticipation problem: given the current frame, the task is to predict

the future gaze locations. Our proposed method solves this problem through synthesiz-

ing future frames (transparent ones) and predicting corresponding future gaze locations

(red circles).

Gaze, as a perceptual variable, cues attention. Attention can be categorized into two

distinct functions: the bottom-up attentional guidance driven by external stimuli due to

their inherent features relative to the backgrounds, such as the visual contrast; and the

top down attention mechanism according to the current goals and purposeful plans, such

as the navigation task towards the driver’s desired destination location. Inspired by these

attention mechanisms, we tackle gaze anticipation problem in two streams. Given the

current frame, our proposed model, Deep Future Gaze (DFG), generates future frames

using generative adversarial network (GAN) through a competition between a generator

and a discriminator, and then predicts the gaze locations on these frames as bottom-up

approach (DFG-G). Meanwhile, DFG anticipates the gaze prior maps as task influences

1Paper download link: https://docs.wixstatic.com/ugd/d2b381_
86633109b089467e87abbf4fafaa14f3.pdf
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Figure 5.1: Problem illustration: gaze anticipation on future frames within a few sec-
onds on egocentric videos.

(DFG-P) that mediates the bottom-up temporal saliency maps from the generator in

DFG-G. Based on the latent representation extracted from the input frame before the

generator, we use another 3D-CNN to predict spatial priors for gaze locations. This

is the direct approach where DFG-P makes reasonings about the episodic steps in the

task according to the semantic information extracted from the current frame without

the intermediate future frame generation step. These goal-driven spatial priors bias the

bottom-up saliency prediction leading to higher anticipation accuracy.

Evaluations of DFG on public egocentric datasets show that DFG boosts the per-

formance of gaze anticipation to a considerable extent surpassing all the competitive

baselines. In addition to egocentric videos in the cooking tasks, DFG demonstrates its

capacity of generalizing to the object search task on Object Search Task Dataset (OS-

T) [207]. Although DFG is not specifically trained for conventional gaze prediction

problem on current frames, our GAN-based framework also significantly advances the

state-of-the-arts for this problem. Moreover, we extend beyond egocentric videos and

introduce the novel gaze anticipation problem on third person videos where the back-

ground is often static. In this case, DFG also achieves the best performance among

all the baselines. Our rigorous analysis in the experiment section validates that our

architecture can be generalized to diverse foreground and background motions. We ad-

d experimental investigations about our architecture design by exploring the potential

factors influencing gaze anticipation performance and comparing the ablation results

on both egocentric and third person videos. At last, we integrated our anticipated gaze

locations with the existing activity recognition network. The reported results verify that

anticipated gaze helps egocentric activity recognition.

42



Real/Fake?

Temporal Saliency 
Prediction Module

Discriminator

Generator

2D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

𝐹

𝑀

𝐵

𝐼𝑡

𝑅𝑡,𝑡+𝑁

𝐺(ℎ, 𝑤𝐺)

Future Frame Generation Module

Gaze Spatial Prior 
Prediction Module

3D ConvNet

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒
𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛

DFG-P pathway

DFG-G pathway

ℎ2

Figure 5.2: Architecture of our proposed Deep Future Gaze (DFG) model.

5.1 Generative Adversarial Network Model

In this section, we first introduce an overview of our proposed model, Deep Future Gaze

(DFG), and then give the detailed analysis of its architecture as shown in Figure 7.3. We

provide the training and implementation details in the end.

Given the current frame as the input, we aim to output a sequence of anticipat-

ed gaze locations in the next few seconds. To address this challenging problem, we

propose an integrated framework consisting of two pathways: task-specific pathway

DFG-P and bottom-up pathway DFG-G. In DFG-G, it consists of two modules: gen-

erative adversarial networks (GAN)-based Future Frame Generation and Temporal

Saliency Prediction. In Future Frame Generation, it has two networks: Generator

and Discriminator.

Generator generates future frames. In Generator in Future Frame Generation

Module in DFG-G, latent representation of the current frame It is extracted by 2D

ConvNet. To explicitly untangle foreground and background, it then branches into two

streams: one for learning the representation for the foreground and the mask; one for

learning the representation of the background. These 3 streams are combined to gen-

erate future frames (blue boundaries). As a competitor to Generator, Discriminator

uses a 3D ConvNet to distinguish the generated frames from real frames Rt,t+N (black

boundaries) by classifying its inputs to real or fake. Temporal Saliency Prediction
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predicts their corresponding temporal saliency maps, i.e., spatial probabilistic maps of

gaze locations across time.

DFG-G is regarded as the bottom-up pathway where the attention is driven by ex-

ternal stimuli (the generated future frames). Complementary to DFG-G, we add in

DFG-P to estimate the priors of gaze locations without the intermediate future frame

generation step. It makes inference about the gaze distribution in the task at hand based

on the latent representation of the input frame It. In the end, the task-specific attention

mechanism from DFG-P mediates the bottom-up attention in DFG-G. The temporal

saliency maps predicted from DFG-G get biased by the gaze spatial priors via element-

wise summation. The spatial coordinates with the maximum probability (red dots) are

output as the anticipated gaze locations.

5.1.1 The Generator Network

In Future Frame Generation, the goal of Generator is to produce a sequence of N

subsequent frames It+1,t+N from a latent representation h(It) of the current frame It.

Hence, It+1,t+N can be used for predicting N temporal saliency maps St+1,t+N in

Temporal Saliency Prediction. Here the latent representation h(It) is learned from

a 2D-CNN. In order to identify the foreground motions (hands and objects) out of the

complex background motion due to the head movements, we propose a two-stream

generator architecture. To avoid the error in the frame generation accumulating from

one frame to another, Generator is designed to generate a sequence of N future frames

at once instead of a system where the generated frame It+1 is fed back as the input to

generate the subsequent frame It+2. The number of predicted frames N is application

dependent. We select 32 frames or about 2.5 seconds as we believe such duration is

adequate for practical applications. The complete analysis regarding the performance

of our model versus number of output frames is presented in Section 5.10.

We use 3D-CNN in two streams for learning motion representations. Meanwhile,

fractionally strided convolution layers (upsampling layers) are added after the convolu-

tion to preserve proper spatial and temporal resolution for the output frame sequence.
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The equation for generating the sequence of N predicted frames It+1,t+N is

It+1,t+N =F (h(It))�M(h(It))

+ (1−M(h(It)))�B(h(It)),

(5.1)

where � is the elementwise-multiplication operation, F (·) represents the foreground

generation model and B(·) represents the background generation model. M(·) is a

spatial-temporal mask untangling foreground and background motion where its pixel

value ranges from [0, 1]. In particular, 1 indicates foreground and 0 indicates back-

ground. Both F (·) and B(·) generate a sequence of N predicted RGB-colored frames,

each frame with dimension 3×W ×H where W and H are the width and the height of

the predicted frame respectively. Foregrounds and backgrounds of predicted frames get

merged by masksM(·) of dimensionN×1×W×H replicated across 3 color channels

to produce It+1,t+N . The foreground, background and mask models are parameterized

by 3D-CNN. The foreground model and the mask model share the same weights until

the last layer which has two branches, one for foreground generation for N frames with

3 color channels and one for the mask generation for N frames with single channels.

The background generation model employs another separate 3D-CNN.

We note that, in egocentric videos, there often exists a clear distinction between

foreground and background motions. While foreground objects tend to move together

more coherently among themselves, they tend to distinguish from background objects

due to motion relativity. For example, when the subject is transferring the food in hands

from one place to another, foreground objects, such as arms and manipulated objects,

tend to be always in the center of the egocentric frames while the background objects

are moving in the opposite direction of head movements in the egocentric frames. The

coherence within foreground and background motions themselves and the clear bound-

ary between these motions make DFG learn to distangle the foreground objects from

the background automatically during frame generation even though there is no specific

training loss to explicitly supervise the network to distinguish these two.

As the rich information including the learnt egocentric motion dynamics on the gen-

erated future frames is useful for visual attention in egocentric videos, we adopt these

features for gaze anticipation. Thus, Generator is followed by Temporal Saliency
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Prediction to generate temporal saliency maps of dimension N × 1×W ×H .

5.1.2 The Discriminator Network

Generating N frames implies the need of a large number of pixels. This is an extremely

difficult task when only a single frame is given. To enhance the quality of generated

frames, DFG employs Discriminator as a competitor to Generator, by providing the

additional feedbacks to Generator [208].

Discriminator aims to distinguish the synthetic examples from the real ones. There

are two criteria for the synthetic frames to be “real”: first, the semantics from the scene

are coherent across space (e.g. no table surface inside the refrigerator); second, the

motions from both the foreground and the background are consistent across time (e.g.

hand movements have to be smooth). Thus, Discriminator follows the same architec-

ture as the foreground generation model other than replacing all the upsampling layers

with the convolution layers and this architecture has also been shown to be effective in

[208]. The output is a binary label indicating whether the input frame is fake or real.

5.1.3 DFG Gaze Spatial Prior Pathway (DFG-P)

As a complementary of DFG-G pathway, DFG-P estimates the gaze spatial priors based

on the latent representation h(It) of the current frame It in Generator. The semantic

information in h(It) underlying the task information contributes to the inference about

the distribution of gaze locations in the next few seconds. To ensure the gaze movements

to be coherent across spatial and temporal domains, we use a 3D-CNN in DFG-P to

estimate the prior maps for gaze locations of dimension N × 1 × W × H . At the

training stage, the 3D-CNN encodes the spatial distributions of gaze locations and their

motion trajectories corresponding to the episodic steps in the task at hand.

In the end, the gaze prior maps from DFG-P mediate the temporal saliency maps

from Temporal Saliency Prediction module. The bias from the task information is

fused with the stimuli-driven bottom-up attention mechanism via an element-wise sum-

mation operation. We normalize the spatial prior maps and the temporal saliency maps

to be within range [0, 1] before element-wise summation. Concerned with the large

variance of gradient changes in element-wise multiplication, we use element-wise sum-
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mation instead to adaptively tune the effect of the task-specific bias on the bottom-up

saliency. The results after element-wise summation are normalized again and the high-

est activation points on these probabilistic maps are the most probable anticipated gaze

locations.

We should be cautious that, there is no top-down modulation in DFG. DFG-P,

which carries task-specific information, is still a feed-forward 3D-CNN. Complemen-

tary to realistic visual features that guides gaze anticipation in DFG-G, DFG-P relaxes

constraints on visual features and learns task-specific gaze priors or any abstract repre-

sentations of the task useful for gaze anticipation. For example, in “spreading jam on

bread” task, given the current frame showing the human subject puts the bread on the

plate which is probably in the lower half of the egocentric view, DFG-P predicts high

attention values to the upper half of the egocentric view (the table where all bottles are

located) in the next few seconds due to the “jam bottle grabbing” task while DFG-G

estimates the visual saliency of all bottles on the table and selects the jam-bottle like

visual features.

5.1.4 Training

We train DFG end-to-end by stochastic gradient descent with learning rate 0.00005

and momentum 0.5. Adam Optimizer [209] is used. Generator and Discriminator

play against each other. Generator is designed to predict future frames as “real” as

possible to fool Discriminator, while Discriminator strives to tell real frames from

the generated ones. These two networks try to minimize the maximum payoff of its

opponent with respect to their network parameterswD andwG respectively. In addition,

we add another L1 loss term to ensure that the first generated video frame is visually

consistent with the input frame without the over-smoothing artifacts. A hyper-parameter

λ is used for tuning the weight of losses between the min-max game and the consistency

term. Both networks are trained alternatively. The objective function for Discriminator

is:

min
wD

fD(Rt:t+N , h) , Lce(D(Rt:t+N ;wD), 1)

+Lce(D(G(h;wG)), 0),

(5.2)
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where h denotes the hidden representation h(It) of input frame It, Rt:t+N represents

the real frames and the binary cross entropy loss Lce is defined as

Lce(Ŷ , Y ) = Y log(Ŷ ) + (1− Y ) log(1− Ŷ ), (5.3)

where Y ∈ {0, 1} denotes real or fake and Ŷ ∈ [0, 1] denotes the output from Discrim-

inator.

As the opponent of Discriminator, Generator needs to satisfy two requirements:

1) the generated outputs should be real enough to fool Discriminator; 2) the initial

output of the generated frames should be visually consistent with the current frame.

The objective function for training Generator is thus formulated as

min
wG

fG(It) , Lce(D(G(h;wG)), 1)

+ λ‖It −G(It;wG)‖1,
(5.4)

where λ is set as 0.1 which shows to achieve the best performance in our case. ‖ · ‖1

denoting L1 distance is preferred over the mean square error which results in over-

smoothing in the frame generation [210].

Temporal Saliency Prediction takes It+1,t+N as input to generate temporal salien-

cy maps. Temporal Saliency Prediction is trained in a supervised approach using

Kullback-Leibler divergence (KLD) loss function:

KLD(Pi, Qi) =
∑
x

∑
y

Pi(x, y) log

[
Pi(x, y)

Qi(x, y)

]
, (5.5)

where Pi is the temporal fixation map and Qi is the temporal saliency map for the

(t + i)th frame. The fixation map refers to the binary map where we use 1 to indicate

the human gaze location. To avoid sparseness of fixation maps, we convolve each binary

fixation map with a gaussian mask and then we normalize it to be within range [0, 1].

Similarly, DFG-P takes the latent representation h(It) of the current frame It as

the input to generate gaze spatial prior maps. We train DFG-P in a supervised manner

using the same KLD loss function in Equation 5.5 where Pi is the temporal fixation

map and Qi is the gaze spatial prior map for the (t+ i)th frame.
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5.1.5 Implementation Details

DFG is developed based on [208] in Torch. The source code is available at https://

github.com/Mengmi/deepfuturegaze_gan. We train everything from scratch

with the input frame size being 3× 64× 64. The batch size is 32. The latent represen-

tation h(It) is of dimension 1024 × 4 × 4 after 5 layers of 2D convolution layers for

encoding image representation. We normalize all videos to be within the range [−1, 1].

The gaze spatial prior maps and the temporal saliency maps are of the same dimensions

where N = 32, W = 64, and H = 64.

Gaze prediction on current frame DFG can also be used for gaze prediction on the

current frame. Since Generator outputs a sequence of generated frames where the first

frame must be consistent with the input frame due to L1 distance loss in Equation(5.4),

we take the spatial coordinate with the maximum probability in the first predicted tem-

poral saliency map as the predicted gaze location on the current frame.

5.2 Experiments on Third-person and Egocentric Videos

We test DFG on gaze anticipation as well as gaze prediction over current frames on all

public datasets using standard evaluation metrics. We also provide detailed analysis of

DFG through ablation study and visualization of the learnt convolution filters. In the

end, we demonstrate our anticipated gazes are useful in egocentric activity recognition.

5.2.1 Datasets

GTEA Dataset [206] This dataset contains 17 sequences on meal preparation tasks

performed by 14 subjects. Each video clip lasts for about 4 minutes with the frame rate

15 fps and frame resolution 480× 640. The subjects are asked to prepare meals freely.

Same as Yin et al. [9], we use videos 1, 4, 6-22 as training set and the rest as test set.

GTEAplus Dataset [9] This dataset consists of 7 meal preparation activities. There are

5 subjects, each performing these 7 activities. Each video clip takes 10 to 15 minutes

on average with frame rate 12 fps and frame resolution 960× 1280. We do 5-fold cross

validation across all 5 subjects and take their average for evaluation as [9].

Object Search Tasks (OST) To explore whether DFG can be generalized well for oth-
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er tasks in egocentric contexts, we include the public egocentric video dataset in object

search [207]. This dataset consists of 57 sequences on search and retrieval tasks per-

formed by 55 subjects in a fully furnished and functional model home. Each video clip

lasts for around 15 minutes with the frame rate 10 fps and frame resolution 480× 640.

Each subject is asked to search for a list of 22 items and move them to the packing loca-

tion (dining table). Compared with GTEA and GTEAplus, this dataset involves larger

head motions and the human subjects have to walk around and look for objects in the

search list with hands appearing less frequently.

Hollywood2 Dataset [211] This is a public third person video dataset with 12 classes

of human actions. [212] provides the gaze data for this dataset to study gaze dynamics.

We include a subset of this dataset to evaluate DFG on gaze anticipation in the context

of third person videos. In particular, video clips with these four actions related to social

interactions are included in our experiment: handshaking, person hugging, kissing and

person fighting. Among 3669 video clips in total, there are 365 video clips for training

and 127 for testing and validation.

5.2.2 Evaluation Metrics

We use four standard evaluation metrics on gaze anticipation: Area Under the Curve

(AUC) [195], Average Angular Error (AAE) [213], Normalized Scanpath Saliency

(NSS) [203] and Precision-Recall Curve (PR) [214] as below.

Area Under the Curve (AUC) is the most commonly used saliency evaluation met-

ric. It measures the area under a curve of true positive versus false positive rates under

various threshold values on saliency maps.

Average Angular Error (AAE) is the angular distance between the predicted gaze

location and the ground truth.

Normalized Scanpath Saliency (NSS) computes the average normalized saliency at

the fixated locations.
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(a) GTEA Dataset (2.1 sec ahead)
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(b) GTEAplus Dataset (2.7 sec ahead)

0 5 10 15 20 25 30 35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Frame Number

A
re

a 
U

nd
er

 C
ur

ve
 (

A
U

C
)

 

 

ours
DFG−P
DFG−G
salicon
aws
sun
gbvs
aim
itti
imSigLab
awsd
obdl

(c) OST Dataset (3.2 sec ahead)
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(d) Hollywood2 Dataset (1.3 sec ahead)

Figure 5.3: Evaluation of Gaze Anticipation using Area Under the Curve (AUC) on the
current frame as well as 31 future frames in GTEA, GTEAplus, OST and Hollywood2
Dataset.

Precision-Recall Curve (PR) represents results for binary decision in machine learn-

ing [214]. We report the area under the precision-recall curve at the ith future frame.

There are four datasets with four evaluation metrics resulting in 16 combinations.

We report the gaze anticipation evaluation results in full using all evaluation metric-

s across all four datasets. For simplicity, in ablation study and architecture analysis,

we opt to focus on reporting the analysis results on GTEA in egocentric videos and

Hollywood2 in third person videos as representatives only using AUC and AAE. For

consistency, except for Figure 5.3 and 5.4 where we show the metrics scores for all fu-

ture 31 frames, we report the mean gaze anticipation accuracy by averaging the metrics

scores over the current frame as well as the next 31 future frames.
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5.2.3 Baselines

We create several competitive baselines as follows.

First, to show the effectiveness of end-to-end learning where all the parameter-

s are trained jointly, we use Generator to generate future frames after the training

phase and compare DFG with state-of-the-art saliency prediction algorithms on these

frames including Graph-based Visual Saliency (GBVS) [144], Natural Statistics Salien-

cy (SUN) [197], Adaptive Whitening Saliency (AWS) [198], Attention-based Informa-

tion Maximization (AIM) [149], Itti’s Model (Itti) [199], and Image Signature Saliency

(ImSig) [200]. Moreover, we also include gaze prediction methods on videos [161]

(AWSD) and [160] (OBDL).

Second, SALICON [4] is a deep learning architecture for saliency prediction on

static images. We train SALICON from scratch on the egocentric datasets by using real

frames and their corresponding fixation maps. After that, the pre-trained SALICON

model is tested on our generated frames for gaze anticipation.

Third, we create another baseline (OpticalShift) to study the effect of temporal dy-

namics. We use our model to predict gaze on the current frame and compute the dense

optical flow between the previous frame and the current frame using [205]. The pre-

dicted gaze is then warped to the future frames by shifting it based on the flow at that

position as the future gaze locations.

Fourth, we include the graph-based method to model gaze transition dynamics as

proposed by [9] for gaze prediction on current frames in GTEA and GTEAplus. We

exclude this method on OST since the required hand annotations by [9] are not available.

We also cannot extend this method to gaze anticipation problem.

5.3 Results of Gaze Anticipation

In this section, we provide results for gaze anticipation on egocentric and normal videos.

5.3.1 Results on Egocentric Videos

DFG surpasses all the competitive baselines significantly in gaze anticipation in egocen-

tric videos. We report the quantitative evaluation results in Figure 5.3 (AUC), Figure 5.4
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Table 5.1: Averaged gaze anticipation performance over current frame as well as
31 future frames using Normalized Saliency Scanpath (NSS) and the area under the
Precision-Recall Curve (PR).

GTEA GTEAplus OST Hollywood2
Metrics NSS PR NSS PR NSS PR NSS PR

ours 1.62 0.50 1.95 0.53 1.45 0.48 1.91 0.56
SAL [4] 0.97 0.46 1.11 0.43 1.91 0.45 1.76 0.49

GBVS [144] 0.94 0.42 1.52 0.44 0.75 0.43 0.54 0.41
AWS [198] 0.73 0.39 0.74 0.42 0.13 0.39 -0.05 0.41
AIM [149] 0.91 0.39 0.85 0.39 0.55 0.42 0.73 0.41
SUN [197] 0.77 0.38 1.58 0.46 0.74 0.41 0.65 0.38
Itti [199] 0.67 0.40 1.01 0.40 0.18 0.43 -0.22 0.41

ImSig [200] 0.62 0.38 1.03 0.39 0.40 0.42 0.56 0.41
AWSD [161] 0.69 0.40 1.06 0.42 0.56 0.41 0.44 0.41
OBDL [160] 1.02 0.42 1.21 0.42 0.78 0.42 1.14 0.44

(AAE) and Table 5.1 (NSS and PR) on egocentric datasets.

Over all egocentric datasets (GTEA, GTEAplus, and OST), DFG outperforms all

the competitive baselines. In particular, we observe a significant performance boost

with respect to our previous method (DFG-G) [207] which is the second best as shown

in Figure 5.3 and 5.4 by 26.2%, 12.0% and 8.8% in relative advance (RA) in AAE and

4.5%, 0.05% and 2.3% in RA in AUC. RA in percentage is computed as

RA(OUR,BB) =
‖
∑N

i=1OURi −
∑N

i=1BBi‖∑N
i=1BBi

, (5.6)

whereN=32 is the number of generated future frames, OURi is the metric score of our

model and BBi is the metric score of DFG-G on the ith future frame. Complementary

to DFG-G, fusion with DFG-P greatly improves the gaze anticipation performance

which emphasizes the necessary role of DFG-P pathway which predicts gaze priors for

the task at hand and biases the saliency maps predicted by DFG-G. See Section 5.7 for

more analysis.

Qualitative results in Figure 5.5 demonstrate that DFG learns to untangle foreground

and background motions. Our DFG model produces 31 future frames based on the cur-

rent frame. From first to last rows, results on future frames #1, 5, 9, 17, 29 with respect

to the current frame are shown. The leftmost column shows the ground truth (GT) with

red circle denoting human gaze locations. Column 2, 3, 4 (FG, mask, BG) show the

foreground F (·), the maskM(·), and the backgroundB(·) learnt by Generator respec-
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(a) GTEA Dataset (2.1 sec ahead)
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(b) GTEAplus Dataset (2.7 sec ahead)
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(c) OST Dataset (3.2 sec ahead)
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(d) Hollywood2 Dataset (1.3 sec ahead)

Figure 5.4: Evaluation of Gaze Anticipation using Average Angular Error (AAE) on the
current frame as well as 31 future frames in GTEA, GTEAplus, OST and Hollywood2
Dataset.
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Figure 5.5: Example results of gaze anticipation on GTEAplus egocentric video dataset.
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Figure 5.6: Example results of gaze anticipation on egocentric video datasets. The
format and conventions follow those in Figure 5.5.
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Figure 5.7: Example results of gaze anticipation on egocentric video datasets. The
format and conventions follow those in Figure 5.5.
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Figure 5.8: Example results of gaze anticipation on egocentric video datasets. The
format and conventions follow those in Figure 5.5.
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tively. Column 5 shows the generated future frames (GEN). Column 6 and 7 show the

corresponding predicted temporal saliency maps from two pathways DFG-G and DFG-

P in our model. Column 8 show the final integrated temporal saliency maps predicted

by our model. Column 9 and onwards show the predicted temporal saliency maps by all

baselines (See Section 7.2.2). For example, both the hand and the object (the bun) get

highlighted in the foreground. As the high intensity value on the mask denotes the fore-

ground, the manipulation point (the control point where the subject is manipulating the

object with hands) shows the highest activation on the mask whereas the background

(the table surface) is uniform over time as shown in the darker regions of the mask.

It is also observed that the temporal saliency maps anticipated by DFG-P and DFG-

G are visually different. Though DFG-P assigns high attention values to the manipu-

lation point (slightly below the center of the egocentric field of view across all future

frames in general during the table-top food preparation process), it fails to capture the

hand motion when the subject is rotating the bun within the local region; conversely,

DFG-G anticipates the effect of local hand motion and hence, predicts slight attention

shifts in the future frames. More qualitative results in Figure 5.6, 5.7, 5.8 demonstrate

that DFG-G and DFG-P can be jointly adapted in different tasks which cover varieties

of illumination conditions, head orientations, hand poses, and manipulated objects.

Though SALICON learns an abundance of semantic information, it excludes tem-

poral dependencies which are crucial for gaze anticipation on egocentric videos. Al-

though SALICON has performed better than conventional saliency prediction methods,

its performance is inferior to DFG which learns spatial-temporal information.

For OpticalShift, we observe that its AUC and AAE curves drop monotonically.

It confirms that the optical flow computed from the current state cannot adapt to the

complexity of the temporal dynamics in longer time periods.

We provide comparisons with gaze prediction methods on videos [161, 160]. Al-

though these methods take temporal information into account, these feature cues (space-

time whitening and information from video compressors) on synthetic frames are still

not sufficient compared with DFG-G [207]. Another missing element in these models

is task-specific information which is also critical for gaze anticipation.
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Figure 5.9: Example results of gaze anticipation on Hollywood2 third person video
dataset. The format and conventions follow those in Figure 5.5.
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Figure 5.10: Example results of gaze anticipation on Hollywood2 third person video
dataset. The format and conventions follow those in Figure 5.5.

5.3.2 Results on Normal Videos

Beyond egocentric videos, we test DFG on third person videos where the backgrounds

are often static. From the quantitative evaluation results in Figure 5.3(d) (AUC), Fig-

ure 5.4(d) (AAE) and Table 5.1 (NSS and PR), DFG achieves the best performance in

Hollywood2 dataset with four evaluation metrics. Using Equation 5.6, DFG outper-

forms our previous method (DFG-G) [207] by 7.1% in relative advance (RA) in AAE

and 0.09% in RA in AUC.

We present a qualitative example in Figure 5.9 in hand shaking scenario in Hol-

GroundTruth Foreground Mask Background Generated DFG-G DFG-P DFG AIM AWS Itti SUN ImSig GBVS SALICON

T 
= 

1
T 

= 
5

T 
= 

9
T 

= 
1

7
T 

= 
2

9

Figure 5.11: Example results of gaze anticipation on Hollywood2 third person video
dataset. The format and conventions follow those in Figure 5.5.
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lywood2. From the results, it demonstrates that DFG is also capable of segmenting

foreground objects from static backgrounds in third person videos. For example, the

three persons get highlighted in the mask. As the background is uniform over time,

this is reflected in the darker regions of the mask as well as the bright regions in the

background stream. Furthermore, we also observe that DFG can adaptively generate

“realistic” future frames regardless of variant color conditions, such as the gray-scale

video frames as shown in Figure 5.9.

We also note that DFG-P learns the general gaze anticipation patterns when it re-

quires complex gaze shifts while human subjects are observing a video clip in a social

interaction task. The qualitative example in Figure 5.9 shows an occasion where three

persons are having a conversation. Though there is no significant visual change in

this social interaction case and DFG-G predicts almost static future frames over time,

DFG-P anticipates attention spread across the three persons where the highest activa-

tion points on the saliency maps shift from the center to the left across frames which is

consistent with the ground truth gaze patterns.

Compared with the performance on egocentric videos, SALICON performs rela-

tively better on third person videos. This is because the backgrounds in video clips

in Hollywood2 are often static which alleviates the demands of temporal information.

In addition, the semantic information such as faces appear often in social interaction

tasks where SALICON is good at attending to these semantic objects on each frame.

The performance of the rest of the baselines on Hollywood2 is consistent with those in

egocentric videos.

5.4 Spatial Bias Analysis

In this section, we study the various spatial biases including center bias, gaze fixation

distribution from the training data as well as head motion and how they may effect the

gaze anticipation performance in egocentric and normal videos.

5.4.1 Center Bias

We often observe a strong center bias in egocentric videos. This is due to the fact

that egocentric videos are captured from the first person view. Humans always move
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Table 5.2: Evaluation of Center Bias Effect over the Next 31 Frames

sAUC GTEA GTEAplus OST Hollywood2
DFG(ours) 0.62 0.57 0.57 0.52
Center Bias 0.5 0.5 0.49 0.49

Table 5.3: Average Spatial Bias and Human Performance over the Next 31 Frames on
GTEA and GTEAplus Datasets.

GTEA GTEAplus
AUC AAE AUC AAE

Our Best 0.90 8.3 0.94 5.9
GazeDistriMap 0.86 9.3 0.93 7.4
GazeDistriMap + DFG-G 0.88 9.0 0.94 6.8
Human 0.66 9.5 0.77 6.8

their heads to attend to the regions of interest. In this case, gazes often align with

head orientations. Thus, gaze shift in the large distance gets compensated by head

movements with small gaze shifts. Similarly, center bias is also present in free-viewing

tasks in static images and third person videos [215]. As AUC favors center bias, we use

shuffled-AUC (sAUC) to compare our model with center bias and we report its sAUC

score in Table 5.2. It confirms that our model learns to anticipate gaze by taking various

semantic information and motion dynamics into account instead of predicting center

bias on future frames over all datasets.

5.4.2 Gaze Distribution Map

We report the two variations of utilizing the 2D gaze distribution map computed from

all human fixations in the training set: (1). the 2D gaze distribution map alone as the

predicted temporal saliency map on all future frames; (2) we replace DFG-P in our

DFG model with the gaze distribution map.

Table 5.3 shows the gaze distribution map alone (Row 2) is much worse than our

DFG model (Row 1). Though DFG-G with gaze distribution map (Row 3) is better than

gaze distribution alone, it is still inferior to DFG by 1 in GTEA and 1.5 in GTEAplus in

terms of AAE. This suggests the gaze prior has complex dynamics and DFG-P which

learns gaze prior variations depending on the task specifications is important for gaze

anticipation.
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Table 5.4: Statistics of Camera and Gaze Motions

Gaze Motion Camera Motion
Mean Median Variance Mean Median Variance

GTEA 20.4 13.5 508 6.7 3.6 92
GTEAplus 7.1 5.0 89 9.9 5.8 135
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Figure 5.12: Evaluation of Average Gaze Anticipation Performance over 31 future
frames versus magnitude of head motions in GTEA

5.4.3 Head Motion

We provide the statistics of head and gaze motion in pixels in our test data in GTEA

and GTEAplus datasets. As there is no ground truth for head motion, we estimate it by

averaging the dense optical flow in the boundary pixels between adjacent frames. With

respect to a frame (480 by 640 in pixels), the statistics of amplitudes for these motion

are reported in Table 5.4. To study the effect of head motion on gaze anticipation, we

calculate the averaged magnitude of head motion across the next 31 ground truth frames

and report the averaged gaze anticipation performance on these frames in Figure 5.12.

In general, the gaze anticipation performance of our DFG model drops when there

is larger head motion. Here we show two examples where Generator fail to synthesize

realistic future frames due to large head motion. We quantify the large head motion as

the averaged magnitude of head motion vector to be larger than 6 pixels calculated based

on optical flow on boundary pixels over the next 31 future frames. In Figure 5.13(a), the

anticipated gaze location still matches the ground truth despite the large head motion

but in Figure 5.13(b), it fails. In each example, frames #1, 5, 9, 17, 29 are shown (left

to right columns). The topmost row shows the ground truth with red circle denoting

human gaze locations. Row 2, 3, 4 show the foreground F (·), the mask M(·), and
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(a) Example 1 (Head motion = 6.4) (b) Example 2 (Head motion = 27.8)

Figure 5.13: Example results of gaze anticipation when there is large head motion.

the background B(·) learnt by Generator Network respectively. Row 5 shows the

generated future frames. Row 6 shows the corresponding predicted temporal saliency

maps.

These two examples again validate the point that egocentric videos have character-

istics of having small gaze shifts in space as they often get compensated by the head

motion. However, this phenomenon does not imply that either center bias or the gaze

distribution map from all human fixations in the training set is sufficient for gaze antici-

pation. Due to the complex nature and large variances between gaze and head motions,

our analysis confirms that the two-stream Generator in our DFG model is critical for

better gaze anticipation by estimating the these two motions separately.

5.5 Discrepancy of Future Frames from Real Scenes

We study how discrepancy of the future frames from the real scene will effect gaze an-

ticipation performance. To quantitatively evaluate the quality of the generated future

frames from Generator, we compute the confidence of Discriminator which acts as

a competitor against Generator striving to distinguish whether the generated frames

are real or synthetic. The more confident Discriminator is, the easier for Discrimina-

tor to tell real ones from the synthetic; hence, the more discrepancy there is between

the generated future frames generated by Generator and the real scene. Ideally, if the

synthetic frames are indistinguishable from real frames, the Discriminator confidence

is 0.5. Figure 5.14 shows the average gaze anticipation performance over the next 31

61



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
5

6

7

8

9

10

11

12

13

14

Confidence Level of Discriminator

A
ve

ra
ge

 A
ng

ul
ar

 E
rr

or
 (

A
A

E
)

(a) Average Angular Error

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Confidence Level of Discriminator

A
re

a 
U

nd
er

 C
ur

ve
 (

A
U

C
)

(b) Area Under the Curve

Figure 5.14: Evaluation of Average Gaze Anticipation Performance over 31 future
frames versus confidence of Discriminator in our model in GTEA

future frames versus the confidence of Discriminator. The gaze anticipation perfor-

mance is positively correlated with the quality of the generated frames which validates

that Discriminator is critical for providing feedbacks to Generator in order to generate

more realistic future frames useful for improving gaze anticipation performance.

5.6 Human Performance on Gaze Anticipation

As human benchmark is a gold standard in many computer vision tasks and it is not clear

how humans perform in our gaze anticipation task, we conduct human psychophysics

experiments to test human performance in this task. For fair comparison with the com-

putational models, we provide 4 human subjects (22-28 years old, 2 females, 2 males)

with two training phases and test them on gaze anticipation tasks on 50 video clips per

test set from GTEA and GTEAplus datasets. See Figure 5.15 for experiment schemat-

ics. Here we provide detailed description of the psychophysics experiment.

The experiment started with a briefing on the study’s objectives and procedures.

During briefing, all participants are instructed on the objectives of the study: compar-

ison between algorithms and human performance on the gaze anticipation task. The

gaze anticipation task is prediction of gaze point on future unseen frames from a sin-

gle video frame. Participants were given unlimited time to complete the task. There

are 2 sessions with each session containing 50 testing video clips either from GTEA or

GTEAplus datasets.
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Training Phase 1

Frame k Frame k+1 Mouse click on 
anticipated gaze 

Training Phase 2

Frame k Frame k+1

Frame 0 Frame 0: Predicted 
gaze

Frame 1..32:
Anticipated gaze

Testing Phase

Time

Figure 5.15: Schematic description of human psychophysics experiment on gaze antic-
ipation.

In each session, there are 2 training phases and 1 testing phase. Training phase

1 is to familiarize the participants with the system. Training phase 2 is similar to the

supervised learning of our model. Testing phase is the same setup as our machine ex-

periments, that is given one frame, anticipate the gaze positions for some future frames.

In training phase 1, the participant was shown a video frame. It is the ego-centric

view of the scene with the recorded gaze (red circle) overlay on it. This is repeated for

all frames of each video clip. There are 5 video clips during this training phase.

In training phase 2, participant was shown a video frame followed by a blank gray

screen. The participant was then instructed to imagine the next frame and click on their

anticipated gaze location for the next frame. The participant was shown the recorded

gaze (red circle) overlay on the next frame (i.e. ground truth). The user’s mouse click

position (blue cross) was also overlaid as the feedback to the participant. This was

repeated for all frames of all video clips. There are also 5 video clips for this training

phase.

In testing phase, participant was shown a video frame. The participant was then

instructed to click on their location of the predicted gaze for this frame. A blank gray
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screen was shown to the participant. The participant was then instructed to imagine the

next frame and click on the anticipated gaze location for the subsequent frame. The

blank gray screen was repeated for 32 frames of the video clip. For each blank screen,

participant imagined the future frame and clicked on the anticipated gaze location. The

test set includes a total of 100 testing video clips (50 clips per dataset in GTEA and

GTEAplus).

We report the average human performance on gaze anticipation task over the next

31 future frames in Table 5.3, Row 4. Human performance is as good as gaze fixation

maps with DFG-G but still inferior to our DFG model. However, this result cannot be

over-interpreted as there are several differences between humans and the computational

models: (1) number of training samples (humans are exposed to fewer training sam-

ples compared with DFG); and (2) knowledge of the tasks (humans do not have full

knowledge about all the task information in each dataset while computational models

are trained with more varieties of tasks). This is an interesting future research direction

and it suggests promising real life applications where the computational models could

assist humans in several domains involving gaze anticipation, such as health care and

autonomous driving.

5.7 Ablation Study on Egocentric and Normal Videos

In order to study the effect of the individual component of DFG on both egocentric and

third person videos, we do an ablation study and test on GTEA, OST and Hollywood2

datasets by removing only one component in DFG at one time while the rest of the

architecture remains the same. There are five tests: (1) we remove DFG-G and eval-

uate the predicted temporal saliency maps from DFG-P only; (2) we remove DFG-P

and this is the same as our previous algorithm with only DFG-G [207]. (3) we re-

place the two-stream 3D-CNN in Generator with the same structure as [208], i.e. the

background stream is 2D-CNN which assumes the background is “static” while the

foreground stream remains the same; (4) we train Temporal Saliency Prediction di-

rectly on real frames and test it on the generated frames from Generator; (5) we remove

Discriminator and we only use L1 distance loss for future frame generation. Scores

for gaze anticipation in AAE and AUC are averaged across future 31 frames as shown
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Table 5.5: Ablation Study on GTEA, OST and Hollywood2 Datasets

GTEA OST Hollywood2
AUC AAE AUC AAE AUC AAE

Our Best (DFG) 0.90 8.3 0.87 9.5 0.95 7.4
DFG-P 0.88 8.9 0.87 9.8 0.93 7.5
DFG-G 0.86 11.3 0.85 10.3 0.94 7.9
One-stream 0.85 12.0 0.86 10.5 0.95 7.7
Replace(GT) 0.82 13.5 0.80 13.0 0.86 12.6
Remove(D) 0.83 12.0 0.85 10.6 0.88 14.3

in Table 5.5.

Compared with our previous method DFG-G [207], we proposed a complementary

task-specific DFG-P and integrated it with DFG-G. To study its effectiveness, we test

each of these two pathways individually. DFG-P alone performs better than DFG-G by

2.4 in GTEA, 0.5 in OST and 0.4 in Hollywood2 in terms of AAE but both pathways

are worse than our integrated framework (DFG). We also duplicate the results of DFG-

P (Row 2) and DFG-G (Row 3) in Figure 5.3 and Figure 5.4. We observe that both

individual pathways outperform all the baselines significantly. It suggests that both

the bottom-up attention mechanism DFG-G and the gaze prior maps predicted from

task-specific information by DFG-P have essential contributions to gaze anticipation in

egocentric and third-person videos.

5.7.1 Ablation Analysis on Egocentric Videos

The third ablation study (Row 4) on changing the background stream to a static one

leads to an increase of 3.7 in GTEA and 1 in OST in terms of AAE. This implies the

two-stream 3D-CNN in Generator is essential for learning foreground and background

motions which can further improve gaze anticipation accuracy.

Compared with DFG, the fourth ablated model (Row 5) with Temporal Saliency

Prediction trained on real frames performs worse with an increase of 5.2 in GTEA and

3.5 in OST in terms of AAE. In DFG, Temporal Saliency Prediction is attached after

Generator for temporal saliency map prediction using end-to-end training. However,

Temporal Saliency Prediction in the third ablated model, which are trained only on

real frames, cannot perform well since it cannot learn the essential features on the gen-

erated frames. It demonstrates that the features on the generated frames are different
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Table 5.6: Results of Gaze Prediction on the Current Frame

GTEAplus GTEA Our OST Hollywood
Metrics AUC AAE AUC AAE AUC AAE AUC AAE
DFG(ours) 0.95 5.6 0.92 8.1 0.88 9.6 0.95 7.75
DFG-P 0.93 6.2 0.9 7.69 0.88 9.5 0.94 7.9
DFG-G [207] 0.95 6.6 0.88 10.5 0.85 10.6 0.95 8.3
Yin [9] 0.87 7.9 0.88 8.4 - - - -
SAL [4] 0.82 15.6 0.76 16.5 0.85 13.3 0.84 14.0
GBVS [144] 0.80 14.7 0.77 15.3 0.71 18.8 0.75 10.5
AWS [198] 0.82 14.8 0.78 17.5 0.56 22.8 0.5 17.5
AIM [149] 0.76 15.0 0.82 14.2 0.77 17.0 0.75 14.4
SUN [197] 0.84 14.7 0.80 18.1 0.53 25.0 0.66 17.7
Itti [199] 0.75 19.9 0.75 18.4 0.62 19.0 0.67 26.7
ImSig [200] 0.79 16.5 0.78 19.0 0.56 24.2 0.60 20.9
AWSD [161] 0.78 16.0 0.77 18.2 0.49 21.9 0.68 20.6
OBDL [160] 0.82 19.9 0.80 15.6 0.63 19.7 0.85 16.0

from those on real frames and hence, end-to-end training is necessary for Temporal

Saliency Prediction to learn these essential features on the generated future frames.

The fifth ablation study with Discriminator removed (Row 6) shows an increases

of 3.7 in GTEA and 1.1 in OST in terms of AAE. This demonstrates that Discriminator

is important as the feedback to Temporal Saliency Prediction which provides the ad-

ditional constraints such that Generator can generate more “realistic” future frames in

longer time duration. These “realistic” future frames are critical for gaze anticipation.

5.7.2 Ablation Analysis on Normal Videos

Results in Hollywood2 dataset show DFG outperforms DFG-G by 0.5 and DFG-P

by 0.1 in Hollywood2 in terms of AAE. Compared with GTEA, we observe that the

task-specific influences from DFG-P have less impacts in Hollywood2 which is a third

person video dataset. As gaze information reflects human intention and behaviors, this

implies that the gazes in egocentric videos are often guided by willful plans or current

goals as task-specific attentional effect. This has also been verified in the literature [216,

217].

The third ablated model (Row 4) has shown marginal effect in Hollywood2 with

an increase of 0.3 in terms of AAE while there is an increase of 3.7 in GTEA dataset.

As the backgrounds in Hollywood2 are often static in most cases, the 2D-CNN stream

in Generator in the ablated model could still model the semantics on the background
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in normal videos. However, in GTEA, the second ablated model cannot learn complex

motion dynamics in the backgrounds which leads to a significant performance drop.

This further verifies the necessity of splitting Generator into two 3D-CNN streams in

order to model the foreground and background motions in egocentric videos.

Compared with DFG, the fourth ablated model (Row 5) with Temporal Saliency

Prediction trained on real frames performs worse with an increase of 5.2 in Holly-

wood2 in terms of AAE. It implies that the end-to-end training on the generated frames

is equivalently important in both egocentric videos and third person videos such that

Temporal Saliency Prediction can learn essential features on the synthesized frames.

The fifth ablation study (Row 6) with Discriminator removed shows an increases of

6.9 in Hollywood2 in terms of AAE. This again validates the point that Discriminator

plays a critical role in generating more realistic future frames. Moreover, we note that

the performance drops more in Hollywood2 compared with GTEA. This implies that

Discriminator is more important in the case of third person videos as the supervision

from Didscriminator prevents over-fitting problems of Temporal Saliency Prediction

in a more simplified task where there is less motion involved.

5.8 Results on Current Frame Gaze Prediction

We compare DFG with state-of-the-art saliency prediction algorithms in Section 7.2.2

on real frames in the testsets of all egocentric and third person video datasets and we

report both AAE and AUC scores of gaze prediction on current frames in Table 5.6.

Number denoted in bold is the best. Results show that DFG performs better than the-

state-of-the-arts even without explicitly specifying useful visual cues, such as hands,

objects of interest and faces. Moreover, different from the traditional methods, our

model takes the current frame as the only input without any past information. Compared

with DFG-G, we observe that AAE scores decrease significantly and even surpass Yin

et al. [9] on GTEA. It implies that the integration of task-specific information from

DFG-P with DFG-G contributes to gaze prediction on current frames.
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Table 5.7: Evaluation of Gaze Anticipation on Frames at Time t+ 16 and t+ 32

Average Angular Error (AAE)
GTEAplus GTEA

Models Ours(DFG) SALICON Ours(DFG) SALICON
time t+ 16 6.0 11.4 8.4 18.4
time t+ 32 6.5 19.5 9.0 16.6

Area Under Curve (AUC)
GTEAplus GTEA

Models Ours(DFG) SALICON Ours(DFG) SALICON
time t+ 16 0.939 0.916 0.891 0.710
time t+ 32 0.937 0.722 0.873 0.767

5.9 Analysis on Temporal Dependency of Gaze States

It is observed that the gaze movement on individual frames is dependent on their pre-

vious states; e.g. to anticipate gaze on the frame t + 32, we need to consider gaze

transitions across frames by also anticipating gaze on frames t to t + 31. For verifi-

cation, we created one baseline: train SALICON model, a 2D-ConvNet, directly for

gaze anticipation at time t + 16 and t + 32 using their respective ground truth at time

t + 16 and t + 32. See Table 5.7 for results in terms of AUC and AAE on GTEA and

GTEAplus. Number denoted in bold is the best. DFG performs much better than SAL-

ICON. This suggests the temporal dependence across frames plays fundamental roles

in gaze anticipation in egocentric videos and future frame generation using GANs is

useful.
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Table 5.8: Correlation Between Number of Frames and Corresponding Performance of
Our Model

Angular Average Error (AAE)
# 1−2 # 3−4 # 5−8 # 9−16 # 17−32

#2 10.4 − − − −
#4 10.7 10.9 − − −
#8 10.4 10.4 10.3 − −

#16 10.2 10.0 10.3 10.8 −
#32 8.0 8.0 8.0 8.2 8.5

Area Under the Curve (AUC)
# 1−2 # 3−4 # 5−8 # 9−16 # 17−32

#2 0.87 − − − −
#4 0.86 0.86 − − −
#8 0.87 0.87 0.86 − −

#16 0.88 0.88 0.87 0.86 −
#32 0.91 0.91 0.91 0.90 0.89

5.10 Analysis on Frame Numbers

In video analysis, the number of consecutive frames is a key parameter in practice. To

study the effect of the number of frames on which we anticipate gaze, we assign the

scalar weights to tune the losses in both Generator and Temporal Saliency Prediction

for the next 32 frames while maintaining the same architecture. For example, we design

the weight matrix to be [1, 1, 1, 1, 0, ..., 0] for gaze anticipation in the next 4 frames

while ignoring the subsequent frames. In Table 5.8, we present the averaged metric

scores of our model for gaze anticipation in the next 2, 4, 8, 16, 32 frames starting from

the current frame #1. Scores for gaze anticipation in both AAE and AUC are computed

every # frames indicated in columns in the testset in GTEA Dataset.

From the results, we observe that given an input frame, in order to anticipate gazes

on subsequent L frames, models trained with L + K frames will perform better as

K increases. This is because Temporal Saliency Prediction can learn the temporal

dynamics with more information flowing back from the future K frames.

5.11 Visualization of Convolution Filters

As Temporal Saliency Prediction estimates temporal saliency maps based on the gen-

erated frames, we analyze the learnt convolution filters in Temporal Saliency Pre-

diction and align the observations with human bottom-up visual attention mechanism.
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(a) GP1 (b) GP4

Figure 5.16: Visualization of the convolution filters in the first (GP1) and the second
last (GP4) 3D convolution layers of Temporal Saliency Prediction Module in our
DFG model.

[218] proposed a top 4 patch visualization approach in 2D-CNN. We extend their work

to visualization of 3D-CNN. As a simplified version of their method, we parse all video

frames from the test set in GTEA and record the regions with the highest filter activa-

tion in both spatial and temporal dimensions for the first and the second last convolution

layer in Temporal Saliency Prediction in our model. Those regions are then projected

back into their input video frames based on their corresponding receptive fields across

both space and time dimensions where the input frames are the current frame and its

subsequent 31 frames. Due to the consistency of egocentric videos between adjacen-

t frames, we increase the diversity of the visualization by sorting the filter activation

from highest to lowest and selecting these top filters where their receptive fields do not

overlap with their neighboring frames by a pre-defined threshold.

We observe that the filters in the first convolution layer of Temporal Saliency Pre-

diction learn the low level features, such as edges and regions of high contrast. This

observation aligns well bottom-up visual attention which is driven by low level features

at the initial stage according to [6]. More interestingly, we also find the learnt features

change across time, e.g. the black region increases from left to right across time (row

2 in Figure 5.16(a)) and the brightness in the bottom regions decay across time (row 4

in Figure 5.16(a)). This demonstrates DFG learns motion dynamics such as translation

and the gradient change of surfaces. As the level of convolution layers increases, we

can see more complex patterns. In the second last layer, the regions containing semantic

information get activated with some examples shown in Figure 5.16(b). This includes

salient objects, such as the white bowl, the tip of the milk box, the fonts on the oatmeal
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box and the bread with butter. Overall, we infer that DFG-G not only learns egocentric

cues in the spatial domain but also motion dynamics in the temporal domain.

5.12 Application in Gaze-aided Egocentric Activity Recogni-

tion

Recent papers have shown that visual attention could help in egocentric activity recog-

nition [219, 9]. To verify our proposed future gaze model is also useful for egocentric

activity recognition, we integrate gaze information into the feedforward 3D-CNN for

egocentric activity recognition. As [220] shows that 3D-CNN can be used for activi-

ty recognition, we adapt the down-scaled framework from [220] (C3D) and integrate

the anticipated gaze into the network. A Gaussian mask at the gaze location for each

frame, as an additional channel, is concatenated with the input frames of RGB color

channels. Cross entropy loss is used for training. Since GTEAplus dataset contains

rich instances per activity class as recommended by [219], we follow their evaluation

settings and select the top 44 activity classes which have the most instances per class in

our recognition task. Confusion matrix of the model with our anticipated gaze is shown

in Figure 5.17. In comparison, we also use the same architecture, discard the gaze in-

formation and train the network from scratch. In addition, we provide the baseline that

the same architecture with the ground truth gaze information as the upper bound. Since

center bias is also effective in gaze prediction, we create an artificial baseline where the

network with the center gaze is also evaluated. Activity recognition rates are reported

in Table 5.9.

From the results, one can observe that our gaze-aided model surpasses C3D network

Table 5.9: Accuracy of Gaze-aided Egocentric Activity Recognition

Models Activity Recognition Rate
Guess At Random 2.3%

STIP 14.9%
Cuboids 22.7%

C3D 26.9%
C3D + center gaze 13.6%

C3D + DFG-G gaze 28.5%
C3D + our pred gaze 29.3%

C3D + ground truth gaze 33.5%
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Figure 5.17: Confusion matrix of 44 egocentric activity classes from GTEAplus
Dataset.

[220] and several traditional methods [221, 222] and the guess-at-random basline sig-

nificantly. By comparing the model with our predicted gaze and the one with the center

gaze, it can be found that more accurate gaze prediction could result in better egocentric

activity recognition. However, the wrong gaze information may be misleading for the

network, which may result in poor performances as the baseline uses the center bias.
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Chapter 6

Search Network: Modeling Human

Visual Search by Top-down

Attention

This chapter is based on the paper named “Finding any Waldo with zero-shot invari-

ant and efficient visual search”1. Please refer to the same weblink for supplementary

materials mentioned in this chapter.

We provide a high-level intuitive outline of our invariant visual search network

(IVSN) model. IVSN posits an attention map, Mf , which determines the fixation lo-

cation by conjugating local visual inputs with target information (Figure 7.3). Both the

target image (It) and the search image (Is) are processed through the same deep con-

volutional neural network, which aims to mimic the transformation of pixel-like inputs

through the ventral visual cortex [15, 16, 17, 223]. Feature information from the top

level of the visual hierarchy is stored in a module which we refer to as pre-frontal cor-

tex, based on the neurophysiological role of this area during visual search (e.g., [23]).

Activity from the pre-frontal cortex module provides top-down modulation, based on

the target high-level features, on the responses to the search image, generating the atten-

tion map Mf . A winner-take-all mechanism selects the maximum local activity in the

attention map Mf for the next fixation. If the fixation location contains the target, the

search stops. Otherwise, an inhibition-of-return mechanism leads the model to select

1Paper download link: https://www.nature.com/articles/s41467-018-06217-x
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Figure 6.1: Architecture of our proposed invariant visual search network (IVSN) model.

the next maximum in the attention map and the process thus continues until the target

object is found. The model was always presented with the exact same images that were

shown to the subjects in the psychophysics experiments described in the later section.

6.1 Zero-shot Visual Search Model

In this section, we provide detailed description of each functional module in our IVSN

model.

6.1.1 Ventral Visual Cortex

The deep feed-forward network builds upon the basic bottom-up architecture for visual

recognition described in previous studies (e.g. [15, 16, 17, 18, 223]). We used a state-of-

the-art deep feed-forward network, implemented in VGG16 [17], pre-trained for image

classification on the 2012 version of the ImageNet dataset [224]. The network weights

W learnt from image classification extract feature maps for an input image of size

224× 224 pixels. The same set of weights, that is, the same network, is used to process
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the target image and the search image. Only a subset of the multiple layers is illustrated

in Figure 7.3 for simplicity (see [17] for full details of the VGG16 architecture). The

images from the ImageNet dataset used to train the ventral visual cortex network for

object classification are different from all the images used in the experiments. The

weights W do not depend on any of the target images It or the search images Is (hence

the model constitutes a zero-shot training architecture for visual search). The output of

the ventral visual cortex module is given by the activations at the top-level (Layer 31

in VGG16), φ31(It,W ), and the layer before that (Layer 30 in VGG16), φ30(Is,W ),

in response to the target image and search image respectively. As noted above, it is

the same exact network, with the same weights W that processes the target and search

images, and we use the activations in layer 31 in response to the target image to provide

top-down modulation to layer 30’s response to the search image (Figure 7.3).

6.1.2 Pre-frontal Cortex

The top-level of the VGG-16 architecture conveys the target image information to the

pre-frontal cortex module, consisting of a vector of size 512. To search for the target

object, IVSN uses the ventral visual cortex responses to that target image stored in the

pre-frontal cortex to modulate the ventral visual cortex responses to the search image.

This modulation is achieved by convolving the representation of the target with the

representation of the search image before max-pooling:

Mf = m(φ(It,W ), φ(Is,W )) = m(φ31(It, w), φ30(Is,W )) (6.1)

where m(·) is the target modulation function defined as a 2D convolution operation

with kernel φ31(It,W ) on the search feature map φ30(Is,W ). Mf denotes the attention

map.

6.1.3 Fixation Sequence Generation

At any point, the maximum in the attention map determines the location of the next fix-

ation. In the figures, we normalize the attention map to [0, 1] for visualization purposes.

A winner-take-all mechanism selects the fixation location. The model needs to de-

cide whether the target is present at the selected location or not (see below). If the target
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Figure 6.2: Schematic description of the three visual search tasks.
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is located, search ends. Otherwise, inhibition-of-return [186] is applied toMf by reduc-

ing the activation to zero in an area of pre-defined size, centered on the current fixation

location. This reduction is permanent, in other words, infinite memory is assumed for

inhibition of return here. These window size choices were based on the average object

sizes in each experiment. Similar to other attention models (e.g. [3]), the winner-take-

all mechanism then selects the next fixation location and this procedure is iterated until

the target is found. In the psychophysics experiments, we limited the duration of each

trial to 20 seconds. When we compared the number of fixations at the image-by-image

level, we restricted the analyses to those images when the target was found and exclud-

ed those images where the target was not found in 20 seconds. Otherwise, all images

were included in the analyses.

6.1.4 Target Presence Decision

Given a fixation location, the model needs to perform visual recognition to decide

whether the target is present or not (in a similar way that humans need to decide whether

they found the target after moving their eyes to a new location). There has been exten-

sive work on visual recognition models (e.g. [15, 17, 18, 223]). In this study, we focus

on the attention selection mechanism. To isolate the search process from the verification

process, in the default IVSN model we bypass the recognition question by using an “or-

acle” system that decides whether the target is present or not. The oracle checks whether

the selected fixation falls within the ground truth location, defined as the bounding box

of the target object. The bounding box is defined as the smallest square encompassing

all pixels of the object. For fair comparison between models and humans, we imple-

mented the same oracle system for the human psychophysics data, by considering the

target to be found the first time a subject fixated on it.

6.2 Experiments on Visual Search

We designed four sets of psychophysics experiments and tested our IVSN model as well

as humans in these experiments.
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6.2.1 Experiment 1 - Object Arrays

We selected segmented objects without occlusion from 6 categories in the MSCOCO

dataset of natural images [225]: sheep, cattle, cats, horses, teddy bears and kites (e.g.

Figure 6.3A). Due to the uncontrolled and diverse nature of stimuli in the MSCOCO

dataset, the images may differ in low-level properties that could contribute to visual

search performance. To minimize such contributions, we took the following steps: (1)

resized the object areas such that a bounding box of 156 × 156 pixels encompassed

the outermost contour of the object while maintaining their aspect ratios; (2) converted

the images to grayscale; (3) equalized their luminance histograms, and (4) random-

ly rotated the objects in 2D. We conducted a verification test to make sure that the

low-level features of all the objects were minimally discriminative: we considered the

feature maps from the first convolution blocks of four pre-trained image classification

networks (ResNet [226], AlexNet [227], VGG16 and VGG19 [185]), and performed

cross-validated category classification tests on these features maps as well as on the

image pixels using a Support Vector Machine (SVM) classifier 51. The total of 2000

object images were split into 5 groups for training, validation and testing. The classi-

fication performance obtained with these low-level features was consistent across the

different computational models and was slightly above chance levels (Supplementary

Table 1).

A schematic of the sequence of events during the task is shown in Figure 6.2A.

After fixation for 500 ms, a random exemplar from the target category was shown in

the fixation location, subtending 5.5 degrees of visual angle, for 1500 ms. The object

was shown at a random rotation (0-360 degrees) along with the category name. After

another 500 ms of fixation, the search image was presented. Subjects searched for the

target in a search image containing an array of 6 objects (Figure 6.3A). In the search

images, the 6 objects, each 156× 156 pixels and subtending 5 degrees of visual angle,

were uniformly distributed on a circle with a radius of 10.5 degrees eccentricity. All

the objects could be readily recognized by humans at this size and eccentricity. The

target was always present only once within these 6 objects and was placed randomly in

one of the 6 possible positions. There was one distractor from each category, randomly

chosen.
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Figure 6.3: Experiment 1 (Object arrays)

Figure 6.4: Experiment 2 (Natural images)
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Subjects were instructed to find the target as soon as possible by moving their eyes

and pressed a key to go to the next trial. To evaluate within-subject consistency, and

unbeknown to the subjects, each trial was shown twice (the exact same target image

and search image was repeated). The order of all trials was randomized. There were

300× 2 = 600 trials in total, divided into 10 blocks of 60 trials each. We split the 300

unique trials into 180 target-different trials and 120 target-identical trials (Supplemen-

tary Figure 9A). In the target-identical trials, the appearance of the target object within

the search image was identical to that in the target image. In the target-different trials,

the target object was a random exemplar from the same category as the one shown in the

target image, and was presented at a random rotation (0-360 degrees). Target-different

and target-identical trials were randomly interleaved, except in the additional experi-

ment discussed in Supplementary Figure 9D (see below). To evaluate between-subject

consistency, the same target and search images were shown to different subjects.

We initially hypothesized that performance would be higher in target-identical tri-

als compared to target-different trials. Upon examining the results, this hypothesis

was found to be correct but the difference in performance between target-identical and

target-different trials was small (Supplementary Figure 9C). In addition, performance

in the target-identical trials was lower than what we reported previously in a different

experiment consisting exclusively of target-identical trials and using different object-

s10. We conjectured that the task instructions and structure including the presence of

target-different trials influenced performance in the target-identical trials. To further

investigate this possibility, we conducted an additional variation of Experiment 1 in

which target-identical and target-different trials were blocked (Supplementary Figure

9D). In this task variation, subjects were told whether the next block would include

target-identical or target-different trials. To counter-balance any presentation order bi-

ases, we tested 2 subjects on target-identical trials first followed by target-different tri-

als and 3 subjects on the reversed order. This experiment confirmed our intuitions and

showed that performance was higher in target-identical trials when they were blocked,

compared to when they were interleaved, while performance in target-different trials

did not depend on the task structure and instructions. Throughout the text (and except

for Supplementary Figure 9D), we focus all the analyses on the original and more nat-
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ural version of the task where target-identical and target-different trials were randomly

interleaved.

6.2.2 Experiment 2 - Natural Images

We considered 240 objects from common object categories, such as animals (e.g. clown-

fish) and daily objects (e.g. alarm clock). The object sizes were 106.5 ± 71.9 pixels

high x 114.4± 74.8 pixels wide. The 240 objects were not restricted to the 6 categories

in Experiment 1 but could involve any object. To test whether IVSN can generalize

to searching for novel objects (zero-shot training), we also included objects that are

not part of the 2012 ImageNet data set45 (the database of images used to train the

model, see Model section below). Examples of such objects include SpongeBob toys,

Eve robot, Ironman figures, QuickTime app icon, deformed flags or clothes, weapon-

s, tamarind fruits, fried chicken wings, special hand gesture, Lego blocks, push toys,

chopsticks, and ribbons on gifts, among others. There were 140 images out of the s-

elected 240 images containing target objects that were not included in ImageNet. All

target objects were manually selected such that each search image contained only one

target object. The object shown in the target image was not segmented from the search

image, but rather was a similar object: for example, Figure 6.4A shows a vertically and

rotated version of Minnie with a dress and bow displaying white circles (left) whereas

the target as rendered in the search image shows Minnie at a different scale, with a dif-

ferent attire, partially occluded and under different rotation (right). The search images

were 1028×1280 pixel natural images that contained the target amidst multiple distrac-

tors and clutter (e.g. Figure 6.4A). Both the search images and the target images were

presented in grayscale. As illustrated in Figure 6.4A, the target objects were picked

such that they were visually different from the ones rendered on the search images;

these changes included changes in scale, 2D and 3D rotation, changes in attire, partial

occlusion, etc.

The sequence of steps in Experiment 2 followed the one described for Experiment

1 (Figure 6.2B), with three differences described next. The presentation of the target

image did not include any text. The search image was a grayscale natural image, always

containing the target, and occupied the full monitor screen (subtending 32× 40 degrees
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Figure 6.5: Experiment 3 (Waldo images)

of visual angle). The distribution of target object sizes and locations within the search

image, which were approximately uniformly distributed. The appearance of the target

object within the search array was always different from that in the target image, that

is, there were no target-identical trials. Subjects were instructed to find the target as

soon as possible by moving their eyes. Experiment 2 was harder than Experiment 1

because objects in the search image were not segmented and were shown embedded

in complex natural clutter, and because the appearance of the target object was more

different from the target object than in Experiment 1. As the search task became more

difficult, subjects could fixate on the target object, yet fail to realize that they had landed

on the target (Supplementary Figure 12). Hence, to ensure that subjects had consciously

found the target, they had to use the computer mouse to click on the target location. If

the clicked location fell within the ground truth, subjects went on to the next trial;

otherwise, subjects stayed on the same search image until the target was found. If

the subjects could not find the target within 20 seconds, the trial was aborted, and the

next trial was presented. Subjects were unable to find the target within 20 seconds in
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16.4% of the trials. To evaluate between-subject consistency, different subjects were

presented with the same images. To evaluate within-subject consistency, every trial

was repeated once, in random order (same target image and same search image). To

avoid any potential memory effect (whereby subjects could remember the location of

the target), we restricted the analyses to the first presentation, except in the within-

subject consistency metrics reported in Figure 6.6, Supplementary Figure 7 and S8.

The results were very similar for the first instance of each image versus the second

instance of each image and any memory effects across trials were minimal, but we still

implemented these precautions focusing the results on the first instance of each image

in all the experiments.

6.2.3 Experiment 3 - Waldo Images

“Where’s Waldo” is a well-known search task [228] with crowded scene drawings con-

taining hundreds of individuals that look similar to Waldo undertaking various activities.

Exactly one of these individuals is the character known as Waldo (e.g. Figure 6.5A). We

tested 67 Waldo images from [228]. The target object sizes were 24.7±4.5 pixels wide

and 40.3 × 7.4 pixels high. Given the large size of the Waldo search images and the

limited precision of our eye tracker in terms of individual characters on these images,

we cropped each Waldo image into four quadrants and only showed the human subjects

the quadrant containing Waldo. There were 13 out of 67 images that had an instruc-

tion panel in the upper left corner that could contain additional renderings of Waldo.

Subjects were explicitly instructed not to look at the instruction panel. At the model

evaluation stage, these areas were also discarded. The locations of these panels can be

approximately glimpsed from less dense fixation patches in Supplementary Figure 1H.

Because all subjects were familiar with the Waldo task, we changed the overall struc-

ture such that there was no target image presentation in each trial (Figure 6.2C). The

target (Waldo) in color was presented at the beginning of the experiment. After fixation,

the search image, always containing Waldo, was presented occupying the full monitor

screen (subtending 32 × 40 degrees of visual angle). Subjects were instructed to find

Waldo as soon as possible by moving their eyes. Similar to Experiment 2, once the

target was found, subjects had to click on the target location. If the clicked location fell
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on the ground truth, subjects proceeded to the next trial; otherwise, subjects stayed on

the same search image until the target was found. If subjects could not find the target

in 20 seconds, the trial was aborted. The limit of 20 seconds was based on pilot tests

and was dictated by a compromise between allowing enough time to find the target in as

many trials as possible while at the same time maximizing the number of search trials.

Subjects were unable to find the target within 20 seconds in 27% of the trials. There

were 67 trials in total and the trial order was randomized. Within- and between-subject

consistency was evaluated as described above for Experiments 1 and 2. In addition to

searching for Waldo, we conducted a separate set of trials where subjects searched for

the “Wizard”, another character in the Waldo series. The results for the Wizard search

were similar to those for the Waldo search. We restrict this report to the Waldo search

task for simplicity.

6.2.4 Experiment 4 - Novel Objects

We conducted an additional experiment to evaluate whether human subjects are able to

search for novel objects that they have never encountered before (other than the single

exposure to the target image). We collected a total of 1860 novel objects belonging

to 98 categories. These objects were composed from well-designed novel object parts

and we also included novel objects used in previous studies (Supplementary Figure 10)

[229, 230]. We used the same pre-processing steps to normalize the novel objects’ low-

level features as in Experiment 1. Supplementary Figure 10A shows 6 example novel

objects. The task structure followed the one in Experiment 1, except that here there was

no text indicating the object category during the target presentation (Supplementary

Figure 10B). The number of trials for target identical and target different trials was

balanced (80 target-identical vs. 80 target-different trials in novel objects). To directly

compare the results for novel objects versus those obtained with known objects, the

objects from Experiment 1 (known objects) were also presented in this experiment,

randomly intermixed with the novel object trials.

In visual search experiments, the similarity between the target object and the distrac-

tor objects plays a critical role in the difficulty of the task. As a proxy for task difficulty,

we computed the similarity between the target object and the distractors by computing
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the Euclidian distance between all possible target-distractor object pairs in each im-

age (x-axis in Supplementary Figure 10C). The target and distractor novel objects were

chosen so as to match the distribution of similarities for known objects (Supplementary

Figure 10C) to avoid scenarios where one set of stimuli could be easier to discriminate

than in the other set. The results for the novel object visual search experiment are shown

in Supplementary Figures 10D-E.

6.2.5 Human Participants

We conducted four psychophysics experiments with 60 naive observers (19-37 years

old, 35 females, 15 subjects per experiment). The sample size was chosen based on the

results in one of our previous experiments [19]. In Experiment 1, we used a sample size

that was effective in a previous study with a similar structure [19]. For Experiments

2 and 3, we used the same sample size to facilitate comparisons across experiments.

We focus on the first 3 experiments in the main text and report the results of the fourth

experiment in Supplementary Figure 10. All participants had normal or corrected-to-

normal vision. Participants provided written informed consent and received 15 USD

per hour for participation in the experiments, which typically took an hour and a half

to complete. All the psychophysics experiments were conducted with the subjects’

informed consent and according to the protocols approved by the Institutional Review

Board at Children’s Hospital.

6.2.6 Experimental Protocol

The general structure for all three experiments was similar (Figure 6.2). Subjects had

to fixate on a cross shown in the middle of the screen, a target object was presented

followed by another fixation delay (Experiments 1 and 2), a search image was presented,

and subjects had to move their eyes to find the target. In Experiments 2 and 3, subjects

also had to indicate the target location via a mouse click. Stimulus presentation was

controlled by custom code written in MATLAB using Version 3.0 of the Psychophysics

Toolbox. Images were presented on a 19-inch CRT monitor (Sony Multiscan G520), at a

1024×1280 pixel resolution, subtending approximately 32×40 degrees of visual angle.

Observers were seated at a viewing distance of approximately 52 cm. We recorded the
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participants’ eye movements using the EyeLink D1000 system (SR Research, Canada).

6.2.7 Psychophysics Fixation Analysis

We used the EDF2Mat function provided by the EyeLink software (SR Research, Cana-

da) to automatically extract fixations. We clustered consecutive fixations that were with-

in object bounding boxes of size 45×45 pixels for more than 50 ms. If fixation was not

detected during the initial fixation window, the experimenter re-calibrated the eye track-

er. The last trial before re-calibration and the first trial after calibration were excluded

from analyses. In Experiment 1, we filtered out fixations falling outside the six object

locations (13.7 ± 5.6% of the trials). Upon presentation of the search image, we con-

sidered the first fixation away from the center. We considered that a fixation had landed

on the target object if it was within a square window centered on the target object. The

window sizes were 45x45 for Experiment 1, 200 × 200 pixels for Experiment 2 and

100 × 100 pixels for Experiment 3. These values correspond to the mean widths and

heights of all the ground truth bounding boxes for each dataset (Supplementary Figure

1). In Experiments 2 and 3, subjects had to click the target location with the mouse.

The mouse click location had to fall on the window defining the target object location

for the trial to be deemed successful. In 15.9 ± 4.9% of trials in Experiment 2 and

10.1 ± 7.0% of trials in Experiment 3, the initial mouse clicks were incorrect. If the

location indicated by the mouse click was incorrect, subjects had to continue searching;

otherwise, the trial was terminated. It should be noted that in several cases, subjects

could fixate on the target object but not click the mouse, most likely because they were

not consciously aware of finding the target despite the correct fixation (Supplementary

Figure 12, see Discussion). For fair comparison with the models, we used an oracle

version such that the target was considered to be found upon the first fixation on the

target, except in Supplementary Figure 12.

6.2.8 Comparisons of Fixation Patterns

We evaluated the degree of within-subject consistency by comparing the fixations that

subjects made during the first versus second presentation of a given target image and

search image. We evaluated the degree of between-subject consistency by performing
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pairwise comparisons of the fixations that subjects made in response to the same target

image and search image for all 15-choose-2 subject pairs. We compared the fixations

of the IVSN model against each of the 15 subjects. We used the following metrics

to compare fixations within subjects, between subjects and between subjects and the

IVSN model: (1) we considered the cumulative accuracy as a function of the number of

fixations to evaluate the overall search performance (Figures 6.3E, 6.4E, 6.5E); (2) we

compared the number of fixations required to find the target on an image-by-image basis

(Supplementary Figure 7); (3) we compared the spatiotemporal sequence of fixations

on an image-by-image basis (Figure 6.6, Supplementary Figure 8).

Cumulative performance We compute the probability distribution p(n) that the sub-

ject or model finds the target in n fixations. Figures 6.3E, 6.4E, 6.5E show the cumula-

tive distribution of p(n).

Number of fixations to find the target For each image, we plot the number of fix-

ations required to find the target for S1 and S2 where S1 and S2 can be different rep-

etitions of the same image (within-trial consistency), different subjects (between-trial

consistency), or subject and model (model-subject consistency). This metric is reported

in Supplementary Figure 7.

Spatiotemporal dynamics of fixations on an image-by-image basis We used the

scanpath similarity score proposed by [33]. This measure takes into account both s-

patial and sequential order by aligning the scanpath between two sequences. We used

the implementation described in [231]. Briefly, a mean-shift clustering for all human

fixations was computed, and a unique character was assigned to each cluster center and

corresponding fixations. The Needleman-Wunsch string match algorithm [196] was im-

plemented to evaluate the similarity of a scanpath pair. In Supplementary Figure 8, we

compare the entire sequences. In Figure 6.6, we compare the first x fixations as shown

in the x-axis in the figure.
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6.2.9 Comparison with Other Models

We performed several comparisons with other models (Supplementary Figures 4, 11,

13, 14). In all cases, the alternative models proposed a series of fixations. In all cas-

es except for IV SNrecognition (described below), we used the oracle method to de-

cide whether to stop search or to move on to the next fixation. In all cases except for

IV SNfIOR (described below), the models had infinite inhibition of return (IOR), as

described above. We considered the following alternative models:

Chance We considered a model where the location of each fixation was chosen at ran-

dom. In Experiment 1, we randomly chose one out of the six possible locations, while

still respecting infinite IOR. In Experiments 2 and 3, a random location was selected in

each fixation, while still respecting IOR; this random process was repeated 100 times.

The selected location was the center of a window of the same size used for the recog-

nition model described above. This window was used to determine the presence of the

target and also to set IOR.

Sliding Window (SW) We considered a sliding window approach which takes the

fixated area (a window of the same size used for the recognition model described above)

as inputs, scans the search image from the top left corner with stride 28 pixels, and uses

oracle verification to determine target presence. In Experiment 1, the sliding window

sequentially moves through the 6 possible objects.

Template Matching To evaluate whether pixel-level features of the target were suf-

ficient to direct attention, we introduced a pixel-level template-matching model where

the attention map was generated by sliding the canonical target of size 28 × 28 pixels

over the whole search image. Compared with the SW model, the Template Matching

model can be thought of as an attention sliding window.

IttiKoch It is conceivable that in some cases, attention selection could be purely driv-

en by bottom-up saliency effects rather than target-specific top-down attention modula-

tion. We considered a pure bottom-up saliency model that has no information about the

target [3].
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RanWeight Instead of using VGG16, pre-trained for image classification, we ran-

domly picked weights W from a Gaussian distribution with mean 0 and standard devi-

ation 1000. The network was otherwise identical to IVSN. We ran 30 iterations of this

model, each iteration with random selection of weights.

6.2.10 Extensions and Variations of Visual Search Model

We considered several possible extensions and variations of the IVSN model.

IV SNAlexNet (Supplementary Figure 14) The “ventral visual cortex” module in

Figure 7.3 was replaced by the AlexNet architecture [227]. The “pre-frontal cortex”

module corresponded to layer 8 and sent top-down signals to layer 7.

IV SNResNet (Supplementary Figure 14) The “ventral visual cortex” module in Fig-

ure 7.3 was replaced by the ResNet200 architecture [226]. The “pre-frontal cortex”

module corresponded to the output of residual block 8 in the target image and sent

top-down signals to residual block 8 in the search image.

IV SNFastRCNN (Supplementary Figure 14) The “ventral visual cortex” module in

Figure 7.3 was replaced by the FastRCNN architecture [28] pre-trained on ImageNet for

region proposal and pre-trained on PASCAL VOC for object detection. The “pre-frontal

cortex” module corresponded to layer 24 and sent top-down signals to layer 23.

IV SN24→23, IV SN17→16, IV SN10→9, IV SN5→4(Supplementary Figure 13) In the

IVSN model as presented in Figure 7.3 (based on the VGG16 architecture3), the “pre-

frontal cortex” module corresponded to layer 31 and sent top-down signals to layer 30.

We considered several variations using top-down features from different levels of the

VGG16 architecture as described by the model sub indices.

IV SNrecognition (Supplementary Figure 11A-C) The IVSN model presented in the

main text uses an oracle to determine whether the target was found at a given fixation

or not. In the brain, of course, there is no oracle. Each fixation places the new lo-

cation within the high-resolution fovea, and responses along the ventral visual stream
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within this region are enhanced via attention modulation [23, 35, 37]. By emphasiz-

ing the selected areas, IVSN allows the ventral pathway to perform fine-grained object

recognition. As a schematic proof-of-principle of a model that addresses whether the

target was found or not, in Supplementary Figure 11A-C we implemented an additional

step that included recognition after fixation. This recognition machinery involved an

object classifier which determined whether the fixated area contained the target or not

(IVSNrecognition). We implemented this step by cropping the search image centered

at the fixation location using the same window sizes described for inhibition of return

(45 × 45, 200 × 200, and 100 × 100, for Experiments 1, 2, and 3, respectively), and

using the object recognition network, VGG16 [185], pre-trained on ImageNet [224],

to extract the classification vector from the last layer, which emulates responses in in-

ferior temporal cortex with high object selectivity and large receptive fields, for both

the target image It and the cropped area. The Euclidean distance between activation of

this top layer to It and the cropped area was computed. If this Euclidian distance was

below a threshold of 0.9, the target was deemed to be found and search was stopped.

Otherwise, the search continued after applying inhibition-of-return, as described above

for the oracle. In this model including a recognition component, failure to locate the

target could be due to fixating on the wrong location or fixating on the right location but

not realizing that the target was there.

IV SNfIOR The IVSN model assumes infinite inhibition-of-return, that is the model

never revisits a given fixation location. In contrast, humans do tend to revisit the same

location even if the target is not there. An example of this behavior can be seen in mul-

tiple fixations from subject 1 in Supplementary Figure 5C and also in fixations 3 and 6

in Supplementary Figure 7B2 (the reader may have to zoom in on the figures to appre-

ciate this phenomenon). The finite inhibition of return is a well known phenomenon in

the psychophysics literature42,47,48. We implemented a variation of the IVSN model

with finite inhibition-of-return (IV SNfIOR). At each location in the image (x, y) and

at time t, the feature attention map Mf was multiplied by a memory function Mm to

generate a new attention map Af (x, y) =Mf (x, y) ∗Mmm(x, y, t). In the implemen-

tation with infinite IOR, Mm(x, y, t) is 0 if the location (x, y) was visited previously
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and 1 otherwise (independently of time t). In the IV SNfIOR model, Mm(x, y, t) was

fitted to the empirical probability of revisiting a location from the human psychophysics

data. The inaccuracy in our eye movement measurements is on the order of 1 degree of

visual angle. To be overly cautious, we defined a location as revisited if another fixation

landed within 3 degrees of visual angle. None of the parameters in the default IVSN

model were trained or fitted to human psychophysics data. In contrast, the functionMm

was fitted to the human psychophysics data, separately for each experiment. To avoid

overfitting, we randomly selected 7 out of the 15 subjects to fit Mm and all the com-

parisons between IV SNfIOR and human psychophysics was based on the remaining 8

subjects.

IV SNsize The IVSN model has no constrain on the size of each saccade (e.g. one

fixation could be in the upper left corner and the immediate next fixation could be

in the lower right corner). In contrast, humans tend to make smaller saccades fol-

lowing a gamma-like distribution (Supplementary Figure 11G-I). We implemented a

variation of the IVSN model where the saccade size was constrained by the empiri-

cal distribution of human saccade sizes (IV SNsize). We defined the attention map

as a weighted sum of the feature attention map Mf and a size constraint function

Msc : Af (x, y) = wMf (x, y) + (1 − w)Msc(x, y). The weight factor w was set

to 0.2346 across all the experiments, selected to optimize the fit between human and

IVSNsize saccade sizes. In a similar fashion to IV SNsize and to avoid overfitting with

did cross-validation by fitting Msc separately for each experiment, using only a random

subset of 7 out of the 15 subjects.

6.3 Consistency between Human and Model Search Perfor-

mance

We considered the problem of localizing a target object that could appear at any location

in a cluttered scene under a variety of shapes, scales, rotations and other transforma-

tions. We conducted 3 increasingly more difficult visual search experiments where 45

subjects had to move their eyes to find the target (Figure 6.2). We propose a biologically

inspired computational model to account for the fixations during visual search (Figure
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7.3).

6.3.1 Searching for A Target within An Array of Objects

Many visual search studies have focused on images with isolated objects presented

on a uniform background such as the ones in Experiment 1 (Figure 6.2A, 6.3A). We

used segmented grayscale objects from 6 categories from the MSCOCO dataset [225]

(Methods). After fixation, 15 subjects were presented with an image containing a word

describing the object category and a target object cue at a random 2D rotation (Figure

6.2A). After an additional fixation delay, a search image was introduced, containing a

different rendering of the target object, randomly located in one of 6 positions within a

circle, along with 5 distractors from the other categories. The target was always present

and appeared only once. The rendering of the target in the search image was different

from the one in the target cue (e.g. Figure 6.3A): it was a different exemplar from

the same category, and it was shown at a different random 2D rotation. Subjects were

instructed to rapidly move their eyes to find the target. Example fixation sequences from

5 subjects are shown in Figure 6.3C: in these examples, subjects found the target in 1 to

4 fixations, despite the fact that the rendering of the target in the search image involved

a different sheep, shown at a different 2D rotation. The target locations were uniformly

distributed over the six possible positions (Supplementary Figure 1A) and subjects did

not show any appreciable location biases (Supplementary Figure 1B). Subjects made

their first fixation at 287 ± 152 ms (mean ± SD, n = 15 subjects, Figure 6.3D).

The interval between fixations was 338 ± 203 ms (Supplementary Figure 2A). The

rapid deployment of eye movements is consistent with previous studies [19], and shows

that subjects followed the instructions, without adopting alternative strategies such as

holding fixation in the center and searching for the target purely via covert attention

(Discussion).

Subjects located the target in 2.60 ± 0.22 fixations (mean ± SD, Figure 6.3E),

corresponding to 640 ± 498 ms (mean ± SD, Supplementary Figure 2B). The num-

ber of fixations required to find the target was significantly below the number expected

from random exploration of the 6 possible locations, which would require 3.5 fixations

in this experiment (Figure 6.3E, p < 10−15, two-tailed t-test, t=10, df=4473). Even
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Figure 6.6: Image-by-image consistency in the spatiotemporal pattern of fixation se-
quences

93



in the first fixation, subjects were already better than expected by chance (performance

= 26.4 ± 4.1% versus 16.7%). At 6 fixations, the cumulative performance was be-

low 100% (93.3 ± 1.6%), since subjects revisited the same locations, even when they

were wrong. The number of fixations required to find the target was lower when the

target was identical in the target and search images (Supplementary Figure 3A-B), yet

subjects were able to efficiently and robustly locate the target despite changes in 2D ro-

tation (Supplementary Figure 3B) and despite the exemplar differences (Supplementary

Figure 3A).

To better understand the guidance mechanisms that incorporate target shape infor-

mation to dictate the sequence of fixations, we implemented a computational model

inspired by neurophysiological recordings in macaque monkeys during visual search

tasks. The Invariance Visual Search Network (IVSN) model consists of a deep feed-

forward network that mimics processing of features along ventral visual cortex, a way of

temporarily storing information about the target tentatively associated with pre-frontal

cortex, modulation of visual features in a top-down fashion to generate an attention

map, and sequential selection of fixation locations (Figure 7.3B, Methods). Of note,

IVSN was neither trained with any of the images used in this study, nor was it trained

in any way to match human performance. The same images used for the psychophysics

experiments were presented to the model. The model builds an attention map (Figure

6.3B, left) in response to the target and search images from Figure 6.3A, and uses this

map to generate a sequence of fixations, locating the target in 3 fixations (Figure 6.3B,

right). Despite the lack of training with this image set, and the large degree of hetero-

geneity between the target cue and the targets appearance in the search image, IVSN

was able to efficiently locate the targets in 2.80 ± 1.71 fixations across all the trials

(Figure 6.3E, blue). IVSN performed well above the null chance model (p < 10−11,

two-tailed t-test, t=7.1, df=598), even in the first fixation (performance = 31.6 ± 0.5%

compared to chance = 16.7%). The model had infinite inhibition-of-return and therefore

never revisited the same location, by construction thus achieving 100% performance at

6 fixations (see Supplementary Figure 11 and Discussion). Although there were no free

parameters tuned to match human behavior, IVSN’s performance was similar to that

of humans. The strong resemblance between IVSN and human performance shown in
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Figure 6.3E should not be over interpreted: there was still a small difference between

the two (p=0.03, two-tailed t-test t=2.2, df=4473); in addition, we will discuss below

other differences between humans and the IVSN model. Similar to human behavior, the

model required fewer fixations when the rotation of the target cue matched the one in

the search image, but the model was also able to efficiently locate the target at all the

rotations tested (Supplementary Figure 3A-B).

We considered several alternative null models to further understand the image fea-

tures that guide visual search (Supplementary Figure 4A). In the sliding window model,

commonly used in computer vision, a fixed-size window sequentially scans the image

(here scanning was restricted to the 6 locations), which is equivalent to random search

with infinite inhibition of return in this case, and fails to explain human behavior. Visu-

al search was not driven by pure bottom-up saliency features as represented by the Itti

and Koch model [3]. The weight features in the ventral visual cortex part of the model

are important to generate the shape-invariant target-dependent visual attention map, as

demonstrated by two observations: (i) randomizing those weights led to chance perfor-

mance (RanWeight model); (ii) template matching algorithms based on pixels, using

rotated templates or not, which are poor at invariant visual object recognition, were in-

sufficient to explain human behavior (Template Matching model). In sum, both humans

and IVSN significantly outperformed all the alternative null models.

6.3.2 Searching for A Target in Natural Scenes

The object array images used in Experiment 1 lack critical components of real world

visual search. In natural scenes, there is no fixed type and number of distractors e-

quidistantly arranged in a circle, the target object is not segmented nor is it generally

present on a uniform background, and the appearance of the target object can vary along

multiple dimensions that are not pre-specified. In Experiment 2, we directly tackled vi-

sual search in natural images (Figure 6.4). The structure of the task was essentially the

same as that in Experiment 1 (Figure 6.2B) with the following differences: (i) search

images involved natural images (e.g. Figure 6.4A), (ii) objects and distractors were not

restricted to 6 categories, (iii) the appearance of the target object in the target and search

images could vary along multiple dimensions, (iv) a trial was ended if the target was
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not found within 20 seconds, and (v) to ensure that the target was correctly found, sub-

jects had to use the computer mouse to indicate the target location (see Section 6.1).

The target locations were randomly and uniformly distributed (Supplementary Figure

D). Subjects made rapid fixation sequences throughout the entire search image, with

certain biases such as a larger density of fixations in the center and a smaller density

of fixations along the borders (Supplementary Figure 1E). Figure 6.4C shows example

sequences where subjects were able to rapidly find the target in 2 to 5 fixations despite

the changes in target appearance and despite the large amount of image clutter. The first

fixation occurred at 285±135 ms (Figure 6.4D), and the interval between fixations was

290±197 ms (Supplementary Figure 2C). The last fixations became progressively clos-

er to the target (Supplementary Figure 2H). Subjects found the target in 1867 ± 2551

ms (Supplementary Figure 2D), which was about three times as long as in Experiment

1 (Supplementary Figure 2B).

Subjects located the target in 6.2 ± 0.7 fixations (Figure 6.4E, red). Performance

saturated at 15 fixations, well below 100%. In 16.4±5.9% of the images, subjects were

unable to find the target within 20 seconds, hence human performance was well below

ceiling. Human performance was more efficient than the chance model (p < 10−15,

two-tailed t-test, t=14, df=3247). Subjects tended to revisit the same locations even

though the target was not there. In part because of this behavior, the null chance model

showed a higher cumulative performance after 20 fixations. The average number of

fixations that humans required to find the target was below that expected from the null

chance model. Even in the first fixation, subjects were better than expected by chance

(performance = 18.3 ± 3.8% versus 7.0 ± 0.2%). The target as rendered in the search

image could be larger or smaller than the target cue. Intuitively, it could be expected

that performance might monotonically increase with the target size in the search image.

However, subjects performed slightly better when the size of the target in the search im-

age was similar to the original size in the target cue. Subjects were still able to robustly

find the target across large changes in size (Supplementary Figure 3D). In addition to

size changes, the target’s appearance in the search image was generally different in

many other ways, which we quantified by computing the normalized Euclidian distance

between the target cue and the target image in the search image. Subjects robustly found
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the target despite large changes in its appearance (Supplementary Figure 3C).

Next, we investigated the performance of IVSN in natural images. Importantly, we

used exactly the same model described for Experiment 1, with no additional tuning or

any free parameters adjusted for Experiment 2. IVSN generated the attention map and

scanpath in Figure 4B in response to the target and search images from Figure 6.4A:

the model located the target in 3 fixations even though it had never encountered this

target or any similar target before, despite the large amount of clutter, and despite the

visual appearance changes in the target. IVSN efficiently located the target in natural

scenes, requiring 8.3 ± 7.5 fixations on average (Figure 6.4E, blue). IVSN performed

well above the null chance model (p < 10−15, two-tailed t-test, t=8.5, df=478), even in

the first fixation (14 ± 5% versus 7.0 ± 0.2%). IVSN had infinite inhibition-of-return,

never revisiting the same location, and achieving 100% accuracy in about 45 fixations.

Humans outperformed the model up to approximately fixation number 10, but the model

performed better than humans thereafter. Consistent with human behavior, IVSN was

also robust to large differences between the size of the target in the search image and

target cue (Supplementary Figure 3D) and it was also robust to other changes in target

object appearance (Supplementary Figure 3C).

As described in Experiment 1, we considered several alternative null models, all of

which were found to show lower performance than humans and IVSN (Supplementary

Figure 4B). A pure bottom-up saliency model was worse than chance levels, because it

did not incorporate features relevant to the target and instead concentrated on regions

of high contrast in the image that were not relevant to the task. Similarly, template

matching models were also worse than chance because they generated attention maps

that emphasized regions that showed high pixel-level similarity to the target without

incorporating invariance and therefore failing to account for the transformations in the

target object shape present in the search image.

6.3.3 Searching for Waldo

The IVSN model could find objects that it had never encountered before (see also Sup-

plementary Discussion and Supplementary Figure 5). To further investigate invariant

visual search for novel objects, we designed Experiment 3 to test IVSN with more ex-
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treme images that bear no resemblance to those used in Experiments 1 and 2, or to

the images in the ImageNet data set. We considered the traditional “Where is Waldo”

task41 (Figure 6.5), comprising colorful cluttered drawings with scene statistics that are

very different from those in natural images. The structure of Experiment 3 was simi-

lar to that of Experiment 2, except that a picture of Waldo was only presented at the

beginning of the experiment and not in every trial (Figure 6.2C). The target locations

were randomly and uniformly distributed (Supplementary Figure 1G). Subjects made

fixations throughout the entire search image, with certain biases such as a higher den-

sity in the center and a smaller density of fixations along the borders (Supplementary

Figure 1H). Subjects made rapid sequences of fixations (e.g., Figure 6.5C), with the first

fixation occurring at 264 ± 112 ms (Figure 6.5D), and an interval between fixations of

278 ± 214 ms (Supplementary Figure 2E). On average, subjects progressively became

closer to the target in their last fixations (Supplementary Figure 2I).

Searching for Waldo constitutes a difficult challenge for humans, as confirmed by

our results. On average, subjects found the target in 21.1± 3.1 fixations corresponding

to 6051 ± 4962 ms (Figure 6.5E, Supplementary Figure 2F), about three times longer

than in Experiment 2 and about nine times longer than in Experiment 1. Performance

reached a plateau at about 60 fixations, well below 100%. In 26.9±9.6% of the images,

subjects were unable to find the target within the allocated 20 seconds. Despite the task

difficulty and despite infinite inhibition of return in the null chance model, subjects were

able to find Waldo more efficiently than by random exploration (p < 10−15, two-tailed

t-test, t=18, df=800). There were also differences between the rendering of the target

object in the search image and target image. Subjects were able to find Waldo despite

these changes in target appearance (Supplementary Figure 3E).

We evaluated IVSN responses on the images from Experiment 3, without fine-

tuning any parameters. IVSN had no prior experience with Waldo images or drawings

of any kind. In the example in Figure 6.5A-B, the model located Waldo in 9 fixations.

IVSN efficiently located Waldo, requiring 29.0±21.6 fixations on average (Figure 6.5E,

blue). IVSN performed well above the null chance model (p < 10−15, two-tailed t-test,

t=10, df=116). Despite the task difficulty, humans were more efficient in finding Waldo

than IVSN (p=0.001, two-tailed t-test, t=3.3, df=784). IVSN was robust to changes in
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the appearance of the target (Supplementary Figure 3E). The alternative null models did

not perform as well as humans or the IVSN model (Supplementary Figure 4C).

Waldo was completely novel to IVSN but not for humans. We conducted a separate

experiment with objects that were completely novel for humans and showed that sub-

jects were still able to find targets under situations where they had no prior exposure to

the target objects (Supplementary Figure 10, Supplementary Discussion).

6.4 Comparisons between Human and Model Search at Im-

age Levels

The results presented thus far compared average performance between humans and

models considering all images. We next examined consistency in the responses at the

image-by-image level within-subjects (identical trials presented to the same subject),

between-subjects, and between IVSN and subjects. We compared the number of fixa-

tions required to find the target in each trial in Supplementary Figure 7. Subjects were

slightly more consistent with themselves than with other subjects, and the between-

subject consistency was slightly higher than the consistency with IVSN (Supplementary

Discussion).

The number of fixations provides a summary of the efficacy of visual search but

does not capture the detailed spatiotemporal sequence of eye movements (Supplemen-

tary Figures 6, 8). We used the scanpath similarity score [33], to compare two fixa-

tion sequences (Supplementary Discussion). This metric captures the spatial and tem-

poral distance between two saccade sequences, ranging from 0 (maximally different)

to 1 (identical). Within-subject comparisons yielded slightly more similar sequences

than between-subject comparisons in all 3 experiments (Figure 6.6, p < 10−9). The

between-subject scanpath similarity scores, in turn, were higher than the IVSN-human

similarity scores for all 3 experiments. The IVSN-human similarity scores were higher

than the human-chance similarity scores for all 3 experiments. In sum, IVSN captured

human eye movement behavior at the image-by-image level in terms of the number of

fixations and the spatiotemporal pattern of fixations.
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6.5 Variational IVSN Computational Model Performance

We next considered variations of the IVSN model architecture and revisited several

simplifications and assumptions of the model. The results presented thus far assumed

that the model can perfectly recognize whether the target is present or not at the fix-

ated location. After each fixation, an “oracle” decides whether the target is present or

not. Rapidly recognizing whether the target is present or not is not easy, particularly

in Experiments 2 and 3. Subjects sometimes fixated on the target, yet failed to rec-

ognize it, and continued the search process (Supplementary Figure 12A-B). Examples

of this behavior are illustrated for Subjects 1 and 5 in Figure 6.4C where the second

fixations land on the target, yet the subjects make additional saccades and subsequently

return to the target location. For fair comparison, all the psychophysics results present-

ed thus far also used an oracle for recognition (search was deemed successful the first

time that a fixation landed on the target). Without the oracle, human performance was

lower but still well above chance (Experiment 2: p < 10−15, t=14, df=3247, Supple-

mentary Figure 12C; Experiment 3: p < 10−15, t=18, df=800, Supplementary Figure

12D). We introduced a simple recognition component into the model to detect whether

the target was present or not based on the features of the object at the fixated loca-

tion (IV SNrecognition, Supplementary Figure 11A-C, Methods). IV SNrecognition per-

formed slightly but not significantly below IVSN, particularly in the more challenging

case of Experiment 2. IV SNrecognition was still able to find the target above chance

levels (Experiment 1: p < 10−11, t=7.3, df=594, Supplementary Figure 11A; Experi-

ment 2: p < 10−13, t=8, df=434, Supplementary Figure 11B; Experiment 3: p < 10−15,

t=12, df=112, Supplementary Figure 11C).

Another simplification involved endowing IVSN with infinite inhibition of return.

In contrast, humans show a finite memory and tend to revisit the same locations not

only for the target (Supplementary Figure 12C-D) but also for non-target locations (e.g.

subject 1 in Figure 6.5C) [232]. We fitted an empirical function to describe the proba-

bility that subjects would revisit a location at fixation i given that they had visited the

same location at fixation j < i [232]. We incorporated this empirical function into

the IVSN model so that previous fixated locations could be probabilistically revisited,

thus creating a model with finite inhibition of return (IV SNfIOR, Methods, Supple-
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mentary Figure 11D-F). The IV SNfIOR model showed lower performance than the

IVSN model but this difference was not significant or marginally significant (Experi-

ment 1: p=0.11; Experiment 2: p=0.02; Experiment 3: p=0.07). Despite this drop in

performance, IV SNfIOR was still able to find the target better than chance (Experi-

ment 1: p=10−15, t=9.7, df=864; Experiment 2: p < 10−15, t=11, df=617; Experiment

3: p=10−15, t=16, df=145, two-tailed t-tests). Furthermore, IV SNfIOR’s performance

was closer to humans for all 3 experiments (Supplementary Figure 11D-F, IV SNfIOR

versus human performance: Experiment 1: p=0.87; Experiment 2: p=0.03; Experiment

3: p=0.29; two-tailed t-tests).

Another difference between humans and the model is the size of saccades (Supple-

mentary Figure 11G-I). For example, in Experiment 2, the average saccade size was

7.6 ± 5.7 degrees for humans and 16.8 ± 8.4 degrees for IVSN (Experiment 2: Sup-

plementary Figure 11H, p < 10−15, two-tailed t-test, t=62, df=22960; Experiment 3:

Supplementary Figure 11I, p < 10−15, two-tailed t-test, t=100 df=29263). Humans

typically made relatively small saccades (Supplementary Figure 11H-I). In contrast, the

saccade sizes for the model were approximately uniformly distributed (Supplementary

Figure 11H-I). We used the empirical distribution of saccade sizes to probabilistical-

ly constrain the saccade sizes for the model, creating a new variation of the model,

IV SN size (Methods) The distribution of saccade sizes for the IVSNsize model resem-

bled that of humans. IVSNsize showed similar performance to IVSN (Experiment 1:

p=0.97; Experiment 2: p=0.52; Experiment 3: p=0.47; Supplementary Figure 11J-L),

suggesting that the distribution of saccade sizes plays a lesser role in overall search

efficiency.

Attentional modulation based on the target features is implemented in the IVSN

model as a top-down signal from layer 31 to layer 30 in the VGG16 architecture (Fig-

ure 7.3, Methods). Connectivity in cortex is characterized by ubiquitous top-down sig-

nals at every level of the ventral visual stream. We considered variations of the model

where attention modulation was implemented via top-down signaling at different lev-

els: layer 31 to 30 (default, Figure 7.3), layer 24 to 23 (IV SN24→23), layer 17 to 16

(IV SN17→16), layer 10 to 9 (IV SN10→9), layer 5 to 4 (IV SN5→4) (Supplementary

Figure 13). In general, these model variations were also able to find the target above
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chance levels (all models were statistically different from chance except for IV SN5→4

in Experiment 1). The low-level features (layer 5 to layer 4) showed the lowest perfor-

mance, probably because they lack the degree of transformation invariance built along

the ventral stream hierarchy. Generally, model features at higher levels showed bet-

ter performance but the trend was not monotonic. For example, IV SN24→23 showed

slightly better performance than IVSN in Experiment 1 (Supplementary Figure 13A),

but this difference was not statistically significant (p=0.045, two-tailed t-test, t=2, d-

f=299).

We also considered the AlexNet [227], ResNet [226] and FastRCNN [28] archi-

tectures instead of the VGG16 architecture for the ventral visual cortex in Figure 7.3

(Supplementary Figure 14). All of these alternative models were above chance in all

the experiments (p < 0.006, Supplementary Discussion).

6.6 Discussion

We examined 219,601 fixations to evaluate how humans search for a target object in

a complex image under approximately realistic conditions and proposed a biologically

plausible computational model that captures essential aspects of human visual search

behavior. Subjects efficiently located the target in object arrays (Figure 6.3), natural

images (Figure 6.4), and Waldo images (Figure 6.5) despite large changes in the ap-

pearance of the target object when rendered in the search image. Search behavior could

be approximated by a neurophysiology-inspired computational network consisting of a

bottom-up architecture resembling ventral visual cortex, a pre-frontal cortex-like mech-

anism to store the target information in working memory and provide top-down guid-

ance for visual search, and a winner-take-all and inhibition-of-return mechanism to di-

rect fixations. Both humans and the Invariant Visual Search Network (IVSN) model,

demonstrated selectivity, efficiency and invariance, and did not require any training

whatsoever with the sought targets.

Human visual search was efficient in that it required fewer fixations than alternative

null models including random search, template matching, and sliding window model-

s (Figures 6.3E, 6.4E, 6.5E). Humans actively sampled the image in a task-dependent

manner, guiding search towards the target. Human visual search demonstrated invari-
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ance in being able to locate objects that were transformed between the target image

and the search image in size (Experiments 1, 2, 3), 2D rotation (Experiments 1 and 2),

3D rotation (Experiment 2), color (Experiment 3), different exemplars from the same

category (Experiments 1 and 2), and other appearance changes including occlusion (Ex-

periments 2 and 3). The large dissimilarity between how the targets were rendered in

the search image and their appearance in the target image indicates that humans do not

merely apply pixel-level template matching to find the target. These results suggest that

the features guiding visual search must be invariant to target object transformations.

The problem of identifying objects invariantly to image transformations has been

extensively discussed in the visual recognition literature (e.g.,[15, 185, 227, 226], a-

mong many others). Indeed, the ventral visual cortex module in IVSN is taken from a

computational model that is successful in object recognition tasks, VGG16 [185]. The

invariance properties in IVSN are thus inherited from VGG16. The current results show

that the types of features learned upon training VGG16 in an independent object label-

ing task (ImageNet [224]), can be useful not only in a bottom-up fashion for visual

recognition, but also in a top-down fashion to guide feature-based attention changes

during visual search. The current results show that top-down features guiding visual

search must show invariance to object transformations.

There has been extensive work characterizing the features that guide visual search

[18]. IVSN incorporates those ideas into a quantitative image-computable framework

to explain how the brain decides where to allocate attention in a task-dependent manner.

Importantly, there is no additional training in IVSN to achieve invariance. The current

model, as well as other models of feature-based attention [19, 20, 35, 39, 233], assume

that such top-down influences provide feature-selective and transformation-tolerant in-

formation. The lack of any training or fine-tuning in IVSN distinguishes the proposed

model from other work in the object detection literature that focuses on supervised

learning from a large battery of similar examples to locate a target [28, 173]. The abili-

ty to perform a task without extensive supervised learning by extrapolating knowledge

from one domain to a new domain is usually referred to as “zero-shot training”. The

specific exemplar objects in Experiments 1-2 were new to the subjects, even though

subjects had extensive experience with those object categories. Subjects were also able
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to efficiently search for novel objects from novel categories that they had never encoun-

tered before (Supplementary Figure 10). IVSN was able to find novel objects from

known categories in Experiment 1. More strikingly, IVSN could find target objects in

natural images even when those objects came from categories that it had never encoun-

tered before (Experiment 2, Supplementary Figure 5). Furthermore, IVSN could find

Waldo in images that did not resemble any of the images used to train VGG-16 (Ex-

periment 3). The ability to generalize and search for novel objects that have never been

encountered before is consistent with the psychophysics literature showing that there

are common feature attributes that guide visual search [18]. IVSN extends and formal-

izes the set of attributes from the low-level features that have been extensively studied

in psychophysics experiments (e.g. color, orientation, etc.) to a richer and wider set

of transformation-tolerant features relevant for visual recognition and for visual search

under natural conditions.

Beyond exploring average overall performance, it is interesting to examine the s-

patiotemporal sequence of fixations for individual images. There is a large degree of

variability when scrutinizing visual search at this high-resolution level. The same sub-

ject may follow a somewhat different eye movement trajectory when presented with

the same exact target image and search image (Figure 6.6, Supplementary Figures 7-8),

an effect that cannot be accounted for by memory for the target locations (Supplemen-

tary Figure 7). As expected, the degree of self-consistency was higher than the degree

of between-subject consistency, which was in turn higher than the degree of subject

model consistency at the image-by-image level both for the number of fixations (Sup-

plementary Figure 7) and for the spatiotemporal sequences of fixations (Figure 6.6,

Supplementary Figure 8).
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Chapter 7

Target Inference Network:

Inferring What A Person is

Looking For

This chapter is based on the paper named “What am I searching for?”1.

Figure 7.1 illustrates the target inference problem. Human subjects were instructed

to move their eyes to search for a given target (A) in the search image (B) irrespective

of changes in size, rotation angles, or other format changes. The visual search task

resulted in a sequence of fixations (C, yellow circles with the arrows). The red bounding

box refers to the ground truth target location in the search image (not shown in the

actual experiment). In this example, the subject required 2 fixations to find the target.

We defined the fixations falling on the non-target objects as “error fixations” before

the target was found. In the target inference task, given the error fixations recorded

from the psychophysics visual search task (D, yellow circle), the model is asked to

infer what target object the subject was searching for out of the remaining possible

objects (E, question marks in orange color, the question marks are not shown to the

computational model). In this example, there is only 1 error fixation, in general, there

could be anywhere from 1 to 4 error fixations in these experiments with arrays of 6

objects.

1Paper download link: https://docs.wixstatic.com/ugd/d2b381_
dc785deebb184aebb56fbc7522a70837.pdf
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Figure 7.1: Illustration of the target inference problem.
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(a) Last fixations on target objects

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

Ratio wrt random fixations

P
ro

p
o

rt
io

n

 

 
L1
L20
L40
ratio = 1

(b) Error fixations on non-target objects

Figure 7.2: Feature similarity analysis between error fixations or last on-target fixations
and the given target exemplars across layers in object arrays in human visual search
tasks.

According to [52, 53, 54], the error fixations share more target-similar features than

distractors. Thanks to the rich deep features from VGG16 pre-trained on object classi-

fication task, we provided a detailed analysis of the feature similarity between pairs of

error fixations-target and pairs of random fixations-target in object arrays within layers

and across layers in VGG16.

Figure 7.2(b) showed the distribution of the ratio between L2 distance of last on-

target fixation-target pair versus random fixation-target pairs in subplot (a) and error

fixation-target pair versus random fixation-target pair in subplot (b) using features ex-

tracted from different layers in pre-trained VGG16. Similar trends are observed across

all layers. For simplicity, we only presented results on Layer 1 (red), Layer 20 (green)

and Layer 40 (blue). The dash line denotes the ratio equal to 1. If there are more er-

ror fixations-target pairs which are more similar than random fixation-target pairs, the

distribution of the ratios is skewed to the left of dash line (ratio = 1) and vice versa.
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If error fixations share more target-similar features, the distance between error fix-

ations and the targets is expected to be smaller than random fixation-target pairs which

makes the ratio less than 1. We observed that the ratio distribution is skewed to the

left of dash line (ratio equals 1) within layers which validates the point that there are

more error fixations which share more similarities with the targets than random fixa-

tions versus the targets. The ratio distribution in higher layers (from 1 to 40) becomes

more dispersed with larger variance which suggests features in higher layers have more

discriminative power to distinguish target-similar objects among other distractors. The

area under the curve to the left of the dash line becomes more dominant than the other

half as the layer number increases.

For comparison purposes, we also provided the ratio distribution between last on-

target fixation-target pairs versus random fixation-target pairs (See Figure 7.2(a)). As

expected, since the last fixations are on the target, they should share more feature simi-

larities than random fixation-target pairs. Thus, most of the pairs should have ratio less

than 1. Across all layers, we observed that the area under the curve for ratio < 1 is far

greater than the other half. As the layer number increases, the area under the curve on

the left of the dash line (ratio = 1) increases.

Our model is based on the idea that the location with more feature similarities for

all error fixations is more likely to be the search target location. We approximate the

target inference problem in feature similarity space among targets and distractors: given

T error fixations with coordinates (xi, yi) where 1 ≤ i ≤ T , the task is to predict a 2D

probabilistic map Mf of where the search target is most likely to be (Figure 7.3). We

take the maximum on Mf as the current guess location. If the cropped area centered

at the current guess location overlaps with the ground truth bounding box encompass-

ing the whole target object, the inference is deemed successful; otherwise, after each

incorrect guess, the map is updated by removing the erroneous inference location on

Mf .

7.1 Zero-shot Target Inference Model

We provide an overview of the model, followed by a more detailed description of our

proposed zero-shot deep network (InferNet, Figure 7.3).
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Figure 7.3: Architecture of InferNet.

The model is based on a pre-trained deep convolutional network that is applied to

the error fixations (Prior Nework (PN)) and to the search image (Likelihood Netwrok

(LN)). PN takes the cropped area Iie of size 28 × 28 pixels centered at error fixation

i as input and outputs feature maps across layers. We define Iis as the search image

which has the objects at all past error fixations 1, ..., i inhibited with a black mask. LN

modulates the feature maps from Iis, generating a series of likelihood maps (Mi1, Mi2,

..., Mij , ...,MiN ) across different layers where j denotes the index of the jth likelihood

map Mij for error fixation i. These maps are concatenated and max-pooled to produce

the final likelihood map Mif for error fixation i which tracks the parts of the image that

are most similar between Iie and Iis. InferNet integrates these likelihood maps Mif

across all T error fixations via elementwise-sum by assuming all the error fixations

play equally important roles in contributing to the final inference map Mf .

7.1.1 Prior Network

We used a deep feed-forward network, implemented in VGG16 [185], and pre-trained

for image classification on the ImageNet dataset [224]. We show that the invariant

features from VGG16 can be directly used for target inference task without any addi-

tional training. Given Iie at error fixation i, the network weights W learnt from image
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classification extract feature maps ϕPN
j (Iie,W ) at layer j (orange boxes in Figure 7.3).

7.1.2 Likelihood Network

Given Iis, LN has the same network parameters W as PN and extracts the feature

representation of Iis at layer j, ϕLN
j (Iis,W ) (gray boxes in Figure 7.3). The weights

are shared between PN and LN, and both are pre-trained for image classification, not

for target inference. The weights W do not depend on Iis or Iie. The InferNet network

has no prior training with the objects or images in this study. The locations of the error

fixations in Iis are blacked out (so that the model does not indicate that the most similar

location to an error fixation is the error fixation itself). The input to PN is smaller

than the input to LN, hence the output ϕPN
j (Iie,W ) is smaller than ϕLN

j (Iis,W ). The

activity of the units in LN in response to the search image is modulated by those in PN,

which contain features more similar to the visual search target than distractors.

The modulation in the activation map is achieved by convolving the representation

of the error fixation with the representation of the search image at multiple scales:

Mij = m(ϕSN
j (Iis,W ), ϕPN

j (Iie,W )) (7.1)

where m(·) is the error fixation modulation function defined as 2D convolution with

kernel ϕPN
j (Iie,W ) on the search feature map ϕLN

j (Iis,W ) where j denotes the index

of the jth feature similarity map Mij for error fixation i.

Inspired by neurophysiological recordings during visual search and attentional mod-

ulation in visual cortex [22, 59, 19], and with the goal of capturing target properties at

multiple scales and with different features, modulation is applied across multiple lay-

ers. Intuitively, if the target object shares more similarities with the error fixations in

low-level features, such as similar orientations, error fixation modulation on Mij may

be sufficient; however, if high-level features are shared between the target and the er-

ror fixations, such as surface texture, feature similarity maps at higher levels may be

required. We empirically selected N = 7 feature similarity maps. In InferNet, the fol-

lowing specific layers were selected: Mi1 (layer j = 5 of VGG16, size 101×101), Mi2

(layer j = 10, 52× 52), Mi3 (layer j = 17, 27× 27), Mi4 (layer j = 23, 27× 27), Mi5

(layer j = 24, 15 × 15), Mi6 (layer j = 30, 15 × 15), Mi7 (layer j = 31, 9 × 9). The
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layer number refers to the layer index in VGG16 [185].

Each of these feature similarity maps is up-sampled to 224 × 224 pixels and the

final feature similarity map is max pooled at each location (x, y) on Mij over all the N

intermediate maps (Table 7.2 reports performance separately for each feature similarity

map). The model thus keeps track of all the locations which share similar sub-patterns

including both low-level and high-level feature descriptors:

Mif (x, y) =
N

max
j=1

Mij(x, y) (7.2)

7.1.3 Combination of Maps and Target Inference

The feature similarity maps Mif are summed over all T error fixations:

Mf (x, y) =
T∑
i=1

Mif (x, y) (7.3)

We assume all error fixations play equally important roles in inferring the search target.

In general, it is possible to use a weighted summation where some error fixations are

more important than the rest depending on the applications. InferNet selects the maxi-

mum of the Mf map. If the cropped area centered at the current guess location overlaps

with the ground truth bounding box encompassing the whole target object, the inference

is deemed successful and the inference stops. Otherwise, that location is inhibited and

the next maximum is selected.

7.1.4 Evaluation

To evaluate performance of InferNet, we computed the average number of guesses re-

quired over all the trials with different images as a function of the number T of error

fixations. The less number of guesses required, the more effective the inference process

is. However, since the target inference difficulty varies, we report the relative per-

formance Pr defined as the average number of guesses required by the computational

model Am(T ) relative to the average number of guesses required by a chance model

Ac(T ) on the same image and task (the chance model is defined below):
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Pr(T ) =
Ac(T )−Am(T )

Ac(T )
× 100% (7.4)

If the computational model requires less number of guesses on average, Pr(T ) is

greater than zero. The larger Pr(T ), the more efficient the inference process is.

7.2 Experiments on Target Inference

We tested InferNet on images containing object arrays and in natural images by eval-

uating the number of guesses required to correctly infer the sought target, Pr(T ). As

benchmarks, we compared our model with other alternative null models.

7.2.1 Datasets

We used the dataset introduced in the previous Chapter 6 on object arrays and natural

images. We excluded the Waldo dataset because the target to search for remains the

same throughout the experiment.

7.2.2 Comparative Null Models

We compared our model with several alternative null models. In all cases, the alternative

models proposed an inference map and the procedure to select a target was the same

as with InferNet, including infinite inhibition-of-return (i.e. never selecting the same

location twice).

Chance. We considered a model where the target location was chosen at random. For

object arrays, we randomly chose one out of the remaining possible locations. For the

natural images dataset, a random location was selected for each guess. This random

process was repeated 20 times.

Template Matching. To evaluate whether pixel-level features of the error fixations

were sufficient for guiding inference, we introduced a pixel-level template matching

model where the inference map was generated by sliding the canonical target of size

28 × 28 pixels over the whole search image of size 224 × 224 pixels. Compared to
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Figure 7.4: Two example results of target inference in object arrays (first 3 columns)
and two examples in natural images (last 3 columns).
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(b) Natural images

Figure 7.5: Evaluation of model inference performance for object arrays (a) and natural
images (b).

the classical sliding window models in computer vision, this can be interpreted as an

“attentional” sliding window.

IttiKoch. We considered a pure bottom-up saliency model that has no information

about the error fixations [3].

RanWeight. Instead of using VGG16 [185] pre-trained for image classification, we

randomly picked weights W from a gaussian distribution with mean 0 and standard

deviation 1000. The network was otherwise identical to InferNet. The random selection

of weights was repeated 100 times.
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7.3 Model Inference Performance

In this section, we provided the evaluation results of our model on object arrays and

natural images in terms of the location and category information of the targets.

Figure 7.4 shows example results of target inference by our InferNet model on ob-

ject arrays and natural images. Given the “error fixations” (yellow circles, column 1

and 4), the InferNet model predicts the 2D probabilistic map Mf overlaid on the stim-

uli (Columns 2 and 5, scale on the right). The red bounding box (Column 1, 4) denotes

the ground truth area encompassing the search target. The red circles (Column 3) and

black boxes (Column 6) show the successive maxima of the final inference map. Infer-

Net correctly determined the target at the 1st and 3rd guess (Column 3) and in the 2nd

guess (Column 6).

Figure 7.5 shows quantitative evaluation of model inference performance. Relative

performance improvement for the computational model relative to the chance model is

as a function of the number of error fixations. The smaller the number of guesses, the

better the inference algorithm is and the higher the relative performance improvement.

The different colors denote different models: InferNet model (blue), bottom-up IttiKoch

saliency (red), template matching (green), RanWeight (magenta), Chance (black). See

Section Comparative Null Models for descriptions. Error bars are standard error of the

mean for all trials.

7.3.1 Object Arrays

Figure 7.4 shows examples illustrating how the model efficiently inferred the target lo-

cation given only one or two fixations on object arrays. In the first example (Column

1-3, Row 1), a subject made one error fixation on the cow which looks visually similar

to the sheep before finding the sheep. Given this single error fixation, InferNet deter-

mined that the subject was probably looking for a sheep among all the five remaining

distractors (red circle, Column 3, Row 1). In the second example (Column 1-3, Row 2),

a subject made 2 error fixations before finding the target (horse). In this case, InferNet

correctly determined the target at the 3rd guess (Column 3, Row 2).

InferNet showed an overall improvement of 3.8 ± 3% with respect to the chance

model over all error fixations (Figure 7.5(a), blue). Even with a single error fixation as
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input data, InferNet could infer the target 6.87% faster than the chance model. That is,

while random guessing would correctly land on the target within 3 guesses, InferNet

only required 2.80 ± 0.01 guesses on object arrays.

In Figure 7.5(a), none of the null models reached the level of relative performance

improvement shown by InferNet (P < 4.6 × 10−20, two-tailed t-test, t = −9.2 ,

df = 12128 ) for all the numbers of error fixations except for the case of 4 error fix-

ations where none of the models were above chance. Though we took precautions to

normalize average low-level features on arrays, for goal inference, on any trial, InferNet

can capitalize on shared IttiKoch features between error fixations and the target. Per-

formance for the bottom-up saliency model (IttiKoch) is better than the chance model

but still below InferNet which suggests that the target information embedded in error

fixations is useful for target inference. The model with random weights (RanWeight)

and the model with template matching (TempMatch) on pixel levels show minimal im-

provements from selecting random locations (Figure 7.5(a)), suggesting the discrimi-

native features learnt from a hierarchical network for image classification are important

for target inference.

7.3.2 Natural Scenes

The experiment reported so far focused on images consisting of segmented objects at

discrete locations, presented on a uniform background, at fixed positions equidistant

from the center of the image. In the real world, visual search happens most of the time in

cluttered environments involving non-segmented objects amidst a complex background.

As the inference space becomes continuous (the target object could be anywhere on the

search image), the inference problem becomes more challenging and hence, there is

higher demand for computational models to assist in target inference in these scenarios.

To evaluate whether our model could generalize to complex natural scenes, we extended

the previous results by evaluating the relative performance of InferNet in the natural

images (Figure 7.4 and Figure 7.5(b)).

Figure 7.4 shows two examples where InferNet successfully determined the target

in natural images. The appearance of the target in the search image is notably different

from that in the target image due to changes in size and 3D rotation. Yet, the examples
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in Figure 7.4 show that InferNet can still effectively use features from error fixations to

infer what the target is. For example, in Row 1, column 4, the error fixations fall on

plush toys, such as teddy bears. Based on the characteristics of all plush toys, InferNet

outputs an inference map with high activations around all the plush toys regions. In this

example, InterNet correctly inferred the target within 2 guesses. In another example

(Row 2, column 4), all the high activations on Mf focused on ground regions, such

as the surface of coral reefs. InferNet can extract the essential texture information of

ground surface under the sea and consider the features shared across all error fixations.

Figure 7.5(b) shows that InferNet was successful at inferring the target in natural

images with significant improvements of 19 ± 4% compared with the chance model.

In general, InferNet required an average of 16.2 ± 0.07 guesses given only one error

fixation and 15 ± 0.6 guesses given 8 error fixations (blue) while the chance model

required 18.2 guesses given only one error fixation and 17.3 guesses given 8 error fix-

ations. As we observed in Figure 7.5(b), InferNet outperformed all the alternative null

models (P < 4× 10−27, two-tailed t-test, t = −10.8, df = 140422). Performances for

the bottom-up saliency model (IttiKoch) was relatively high among all the null models

because target objects were typically salient and they occupied a large percentage of

the image. We also noted that template matching under-performs the chance model. It

is possible that pixel-level matching misleads the model towards wrong locations and

wrong cues are worse than random cues.

We also observed that given more error fixations, the average number of guesses

required to infer the target of interest was reduced. This effect can be ascribed to two

factors: (i) the hypothesis space, i.e. number of location choices on the search image, is

reduced with more error fixations, and (ii) more error fixations provide richer informa-

tion that is useful for target inference.

7.3.3 Target Category Inference

In addition to inferring the target location, we tested InferNet on sought object category

inference task. Out of 240 natural images, we selected 100 images where the target

categories belong to ImageNet. For each subject, InferNet predicts the belief of possible

target categories out of total 1000 categories by leveraging on the weights pre-trained
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Error
Fixations

Top N category inference accuracy %
1 2 4 8 16 32 64 128

1 6 8 11 13 17 29 38 55
2 4 9 14 20 23 33 46 65
3 3 10 16 25 28 38 51 72
4 0 13 20 20 30 39 54 74
5 3 11 23 28 34 42 56 74
6 0 14 23 31 37 45 54 77
7 1 15 25 31 37 47 53 78
8 4 17 28 37 40 48 57 80

Table 7.1: Our model performance of top N inferred target category accuracy across
error fixations (rows) where N = 1, 2, ..., 128 (columns) is shown.

on ImageNet and accumulates these belief across error fixations. Table 7.1 reports the

accuracy of top N most probable target categories inferred by InferNet based on the

accumulated belief across error fixations. We have two observations. First, given even

only one error fixation, the inference accuracy of InferNet surpasses the chance model

(1/1000). As N increases, the target category inference accuracy increases. Ideally, the

accuracy of inferred top 1000 probable target categories should be 1 as the target always

belong to at least one of the 1000 categories from ImageNet. Given 8 error fixations,

InferNet is capable of inferring the target category correctly with accuracy of around

50% for top 32 most probable categories out of 1000 categories. Second, as InferNet

takes more number of error fixations as inputs, the belief gets constantly updated and

the inference becomes more accurate. This validates the error fixations carry important

information revealing the target identity during visual search.

7.4 Ablation Study

In this section, we provided detailed model analysis via a series of ablation studies and

compared the model performance with humans.

7.4.1 Effect of Low and High-level Features from Error Fixations

To evaluate the contribution of different layers of InferNet, we tested each individual

feature similarity map Mj and their different combinations in object arrays and natural

images. Table 7.2 shows our ablated models’ relative performance (%) compared with
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Table 7.2: Target inference relative performance (%) of ablated models compared with
the chance model in object arrays and natural images given T error fixations.

Object Arrays Natural Images
#Error Fixations 1 2 3 4 1 2 3 4 5 6 7 8

InferNet (our model) 6.87 5.25 3.10 - 12.83 19.67 22.48 24.20 24.35 25.59 28.28 18.14
Layer 5 1.88 3.51 1.58 - 9.35 15.91 17.11 14.70 17.24 13.18 20.91 9.56
Layer 10 3.98 4.07 0.67 - 14.69 21.26 24.82 23.18 25.16 23.82 26.97 15.98
Layer 17 5.96 5.64 1.99 - 16.50 22.51 19.28 23.50 22.42 19.17 26.43 14.38
Layer 23 7.46 6.13 0.01 - 13.32 22.44 24.72 22.33 28.07 25.00 23.56 16.93
Layer 24 6.60 6.74 3.28 - 18.53 25.73 28.04 28.10 30.59 28.37 30.42 27.61
Layer 30 8.21 5.77 3.08 - - 7.04 4.45 0.51 6.03 0.02 3.36 -
Layer 31 7.56 3.78 2.34 - - 6.15 4.60 - 5.00 2.26 3.93 -

Max + Max 6.87 3.99 1.13 - 12.84 19.40 21.11 22.13 22.96 21.75 24.49 20.01
Mean + Max 7.01 4.48 2.63 - 8.67 11.60 11.97 12.66 14.22 11.87 16.05 7.92
Mean + Mean 7.01 6.24 3.68 - 8.67 10.60 9.68 9.78 10.61 8.71 13.31 6.30

Human performance - - - - 60.87 74.27 67.33 66.20 38.18 43.29 35.65 44.47
Model using common fixations 10.96 1.29 1.52 2.22 20.09 - 30.35 26.30 24.98 36.34 25.77 3.90

the chance model using feature similarity maps (Mj) at different layers j for T error

fixations. The larger, the better. (-) denotes performance not significantly better than

chance. The layer number refers to the index in the VGG16 network [185]. The first row

Mf corresponds to our full model considering all feature similarity maps across layers

whereas the other rows show the predictions using either only one feature similarity

map from Mi1 to Mi7 in Figure 7.3 or their combinations.

From Table 7.2, we have several observations: (1) Compared to the individual map-

s, target inference performance was generally more effective using the feature similarity

maps Mj in higher layers which implies that high-level features extracted at error fix-

ations are more reliable for target inference. (2) We are also interested in exploring

how the compositionality of feature similarity maps across layers reveals the identity

of the target. InferNet takes max-pooling of Mij for error fixation i and averages Mif

for all T error fixations. Instead of max-pooling across layers, we also evaluated ab-

lated models where the max-pooling across N layers is replaced by averaging and vice

versa. We did not observe any significant improvements in object arrays but different

combination methods of feature similarity maps contribute dramatically differently in

natural images. Our InferNet model outperforms the rest which suggests error fixations

seem not to be guided by the overall target features as a whole (taking average across

N layers) but by sub-patterns of the search target (max-pooling across N layers) which

aligns with [180].

7.4.2 Effect of Locations and Sequence Orders of Error Fixations

Our InferNet model treats all error fixations equally and only utilizes the visual feature

information at the error fixations. In the last ablated model, we study the role of the
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Table 7.3: Target inference performance of ablated model after taking into account of
error fixation locations and fixation order information in two datasets: object arrays and
natural images.

Object Arrays Natural Images
# Error Fixation 1 2 3 4 1 2 3 4 5 6 7 8

InferNet (our model) 6.87 5.25 3.10 - 12.83 19.67 22.48 24.20 24.35 25.59 28.28 18.14
Location + Sequence 7.14 10.61 7.87 0.78 -37.78 -26.14 -30.16 -31.91 -28.65 -34.25 -30.92 -34.81

locations and the sequence order of error fixations in target inference. We created the

ablated model and trained it using supervised learning to predict the final inference

map directly: (1) generate a binary error fixation map masked with gaussian kernels

to denote the locations of error fixations and the magnitude of gaussian kernels vary

depending on the fixation order. The higher intensity of the gaussian mask is applied at

the error fixation, the more recent the error fixation is. (2) concatenate this fixation map

with the search image as inputs to a feed-forward 2D convolution neural network. (3)

KullbackLeibler divergence loss is computed between the predicted inference map and

the ground truth map where 1 denotes the target location and 0 otherwise.

In Table 7.3, we reported the result (Location+Sequence) in both object arrays and

natural images. This ablated model which takes location and order information into

account performs equally well as InferNet in object arrays but much worse than InferNet

in natural images. It is surprising that the experimental result seems to suggest the

location and order information of error fixations do not matter much in target inference

task.

7.4.3 Comparison of Human and Model Performance

Human visual search is variable both within-subject and between-subjects [19]. We

conducted additional psychophysics experiments to explore the question whether hu-

man subjects could correctly infer what the target is on the search image. We reported

the results in Table 7.2 (last two rows). Humans were not able to solve the inference

problem in object arrays but were better than InferNet in natural images, perhaps by

using contextual cues (second last row). To investigate the between-subject variability,

we created a new model using only error fixations that are common across subjects.

The result (last row) shows that in some (but not all) cases, InferNet can overcome the

consequences of variability in human scanpath patterns. However, in general, we need

algorithms that can predict individual intentions in single trials, which is the goal for
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InferNet.
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Chapter 8

Conclusions and Perspectives

Within the context of visual attention, we are interested in developing a computation-

al visual attention model integrated with memory, which can adaptively apply both

bottom-up and top-down attention modulations in various tasks.

8.1 Summary of Bottom-up Visual Attention Models

In the first half of the thesis, we design several attention subsystems to explore the role

of the fovea, the bottom-up pathway in the ventral stream of the visual cortex as well as

their interaction with the working memory. Our experimental results have shown that

our current models have outperformed state-of-the-art methods in scanpath prediction

on static images, gaze prediction and anticipation in egocentric videos. The contribution

in each chapter is summarized below:

In Chapter 3, we go beyond the current deep neural network-based saliency map

prediction and extend it to visual scanpath prediction. We introduced DSNN, the first

RNN on scanpath prediction. It integrates the sequence of fixations to estimate the

temporal saliency maps, and it makes decision on where the human subjects may look

next. In addition to substantial improvements on scanpath prediction compared with the

state-of-the-arts, DSNN also obtains a competitive predictive accuracy of the saliency

map with state-of-the-art models. Our analysis on the learnt model demonstrates the

utility of recurrent connections in the predictive scanpath accuracy and the emergence

of a temporally changing spatial bias during the scanpath prediction.

In Chapter 4, we present a novel foveated neural network for gaze prediction on
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egocentric videos. Evaluation results on the publicly available dataset demonstrate that

FNN outperforms the state-of-the-art methods. The integration process of proposing,

attending and analysing ROI on the previous frame as well as the feature extraction

from the current frame helps gaze prediction performance. We also incorporate head

movement to FNN by introducing the dense optical flow as the additional feature inputs.

We will extend FNN to more than two adjacent frames by introducing a memory module

in the near future.

In Chapter 5, we present a new challenging gaze anticipation problem on future

frames as an extension of the gaze prediction problem on current frames on both ego-

centric and third person videos. We develop an integrated framework, named as Deep

Future Gaze (DFG), consisting of two pathways: bottom-up pathway DFG-G built upon

Generative Adversarial Network (GAN) and task-specific pathway DFG-P generating

gaze spatial prior maps which modulate the bottom-up saliency prediction. We evalu-

ate our integrated model using standard metrics and our performance surpasses all the

competitive baselines significantly in both egocentric and third-person videos covering

various activities, such as cooking and object search tasks. Moreover, we investigate the

potential factors contributing to better gaze anticipation performance and justify the im-

portance of the individual component in our proposed architecture. Though our model

is not specifically trained for gaze prediction problem on current frames, DFG performs

better compared with the state-of-the-art. Different from all the existing methods, DFG

does not require explicit egocentric cues or any past information.

8.2 Summary of Top-down Visual Attention Models

In the second half of my thesis, we develop our attention model and integrate it with

memory functions as well as top-down modulation mechanism. At last, we introduce

how we apply the top-down attention modulation in the target inference task.

In Chapter 6, we show for the first time that humans can efficiently and invariantly

search for natural objects in complex scenes. To gain insight into the mechanisms that

guide visual search, we propose a biologically inspired computational model, Invariant

Visual Search Network (IVSN) model. The current model provides a reasonable ini-

tial sketch that captures how humans can selectively localize a target object amongst
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distractors, the efficiency of visual search behavior, the critical ability to search for an

object in an invariant manner, and zero-shot generalization to novel objects including

the famous Waldo. Waldo cannot hide any more.

Even when our Invariant Visual Search Network (IVSN) model may approximate

human search behavior, the model may not be searching in the same way that humans

do. First, IVSN shows constant acuity over the entire visual field, which is clearly not

the case for human vision where acuity drops rapidly from the fovea to the periphery.

Second, humans must decide after each saccade whether the target is present or not. The

default IVSN model executed this decision through an “oracle” (the same oracle was

used for the human data for fair comparison). As a proof-of-principle, we implemented

a recognition step for each fixation, a step that can be improved through the extensive

work on invariant visual recognition systems [15, 185, 227, 226]. Humans also make

recognition mistakes (e.g., visual search experiments in natural images and Waldo im-

ages where subjects fixated on the target yet did not click the mouse). Third, humans

also revisit the same location even if the target is not there. Yet, the default IVSN mod-

el implements infinite inhibition of return as a simplifying assumption that could also

be improved upon by including a memory decay function, as shown in IV SNfIOR.

Fourth, there is no learning in the current model. The visual system could learn the

interaction of the different bottom-up, top-down, memory and recognition components.

An elegant idea on how learning could be implemented was presented in ?? where the

authors proposed an architecture that can learn to generate eye movements via reinforce-

ment learning with a system that is rewarded when the target is found. IVSN can be

improved by training or fine-tuning for various search tasks. Fifth, the model assumes

that each saccade is independent of the previous one except for the inhibition-of-return

mechanism and the saccade distance constraints. A complete model should incorporate

inter-dependences across saccades such that visual information obtained during previ-

ous fixations can be used to guide the next saccade. Finally, subjects may capitalize on

high-level knowledge about scenes [18, 234] including statistical correlations in object

positions (e.g., car keys are usually not glued to the ceiling), physical properties (keys

are more likely on top a desk rather than floating in the air), correlations in object sizes

(the size of a phone may set an expectation for the size of the keys), etc.
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In Chapter 7, we proposed a computational model to infer intentions from behaviors

in the context of a visual search task. InferNet can determine what the sought target is,

in object array images as well as in natural images, by using the prior set of non-target

fixations. InferNet is based on transfer-learning in that it uses weights learnt for a dif-

ferent task. InferNet is a “zero-shot” architecture: there is no training with the specific

objects or images that the model analyzes during the inference process. Leveraging on

the idea that error fixations share feature similarities with the targets, InferNet builds an

implicit relationship between the inference problem and the feature similarity problem.

The experimental results show that InferNet significantly outperforms the comparative

null models.

There are many areas where the model could be improved. Most notably, inference

could be enhanced by incorporating intuitive semantics in the real world (e.g. if the

error fixations are mostly distributed on the ground, one could deduce that the target of

interest would most likely not be the airplanes in the sky). Problem-specific training

(e.g. weights for each layer, or weights for each error fixation) could also improve

performance. The proof-of-principle demonstration in this study provides a possible

inference solution to effectively guess what the subject is searching for in complex

images and suggests that computational models can make reasonable conjectures to

read the subject’s mind purely based on behavioral data.
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