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ABSTRACT 

 

Visual object recognition is performed without effort by humans even though it requires a series of 

complex computations which are, for now, not well understood. This study relies on the concept of 

minimal images, smallest configurations where an image is recognizable to the human vision, to study 

the processes by which the brain uses visual features to carry out computations underlying visual 

recognition. The role of these visual features is revealed at the minimal level and a tiny change in the 

image configuration is enough to completely lose recognition. A neurophysiological experiment was 

conducted with twelve subjects implanted with intracranial electrodes. Visual representations elicited 

by minimal as well as sub-minimal images could be observed, and category-selective responses could 

be discriminated. Although the two image conditions did not result in distinguishable neural features, 

the results seem to endorse previous observations regarding behavior and sensitivity to perceptual 

discrimination.  
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GLOSSARY 

 
 

MIRC : Minimally Recognizable Configuration  

subMIRC : Sub-Minimal Recognizable Configuration  

 

EEG : Electroencephalography 

sEEG : Stereo-Electroencephalography 

ECoG : Electrocorticography (also iEEG: intracranial EEG) 

LFP : Local Field Potentials 

fMRI : functional Magnetic Resonance Imaging 

MEG : Magnetoencephalography 
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MOTIVATION AND FRAMEWORK 

 
 

Following decades of evidence in neuroscience, a fundamental question that remains is understanding 

how neural activity gives rise to perception and behavior in the physical world. The visual system turns 

out to be an excellent model for this purpose. The visual system is defined by the part of the central 

nervous system required for visual perception, including receiving, processing and interpreting visual 

information to build representations of our environment. The fact that around half of the non-human 

primate neocortex is involved at some stage in analyzing visual information tells a lot about the 

computational complexity of processes underlying vision throughout evolution and many questions 

remain yet to answer [3]. However, as the processing hierarchy for visual information appears to be 

quite similar to the general functional structure of the brain, an understanding of the visual system 

would provide crucial information on the mechanisms and processes by which the brain carries out 

computations inducing perception and behavior in general. 

 

A major field of investigation in visual neuroscience is seeking to define cortical areas, building blocks 

of the cerebral cortex, and the way they are inter-related to create information pathways that constitute 

the basis of visual perception in humans and animal models. Such knowledge is critical as to help 

people suffering from visual impairments due to damage in the cerebral cortex, among other things 

[4]. Gaining knowledge about the anatomy of visual processing in the brain would also allow to build 

more robust and biologically-relevant technologies such as artificial intelligence, sensors, cameras etc. 

In summary, understanding the brain computations and being able to extend and generalize the 

algorithms to new systems could highlight new ways of repairing broken neuronal circuits as well as 

to augment normally functioning circuits [5]. 

 

An interesting angle to study the structure of the visual system is through object recognition. Among 

all the functions of vision, recognition probably is one of the most crucial. Object recognition is 

essential to most tasks our brains carry out every day: from identifying objects and people faces to 

recognizing letters while reading, walking in the street or driving a car. We are able to recognize 

complex shapes in a very short amount of time, ranging around 150 ms [6][7].  

Our ability to discriminate among different object categories, faces and scenes, or to distinguish among 

similar objects is called visual selectivity and is a key attribute of vision. Another important property 

of object recognition relates to its robustness to object transformations (e.g. changes in size, position, 

rotation, illumination). Both aspects are remarkably well handled by the human brain and we are 

mostly able to recognize objects even though their projections on the retina is never twice exactly the 

same. This robustness to transformations is, however, one of the main challenges for computational 

models of vision.  
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Although such transformations usually keep the general content of the image, single pixels can almost 

completely change and most computational models are not currently able to categorize objects as well 

as humans do [4]. This is one of the questions computer-based visual recognition aims to address: 

what are the visual features and representations used by the brain (and not replicated in machines) 

that are critical for recognition? In recent work, neural network models of visual recognition, including 

biological and deep neural networks, have shown a lot of progress and have started to equalize human 

performance in some tasks. These models are typically trained on image samples to learn and extract 

features and representations and use them to categorize objects. What remains unclear, however, is 

whether these representations and learning processes are similar to those used by the human visual 

system. By introducing minimal recognizable images, it can be shown that human vision uses features 

and processes that are not currently used by models and that are critical for recognition [1].  

 

The concept of minimal images was first introduced by Ullman et al. in 2016 [1]. The main idea is to 

reduce images in size and resolution until a point where they become unrecognizable. The behavioral 

study carried out by Ullman et al. shows that there seem to be a sharp transition where small changes 

to an image make it become unrecognizable to the human vision. This phenomenon cannot be 

accounted for by the best computational models of vision, suggesting that the human visual system 

uses features and processes that current models do not use and that are critical for the task.  

 

In this work, we want to investigate whether neural responses to minimal images can help uncover 

some of the mechanisms that differ between humans and machines. The project focuses on the 

recognition of these minimal images at a physiological level, analyzing data collected by invasive 

neurophysiological recordings (ECoG and sEEG) in 12 subjects that performed a variation of the task 

by Ullman et al.  

First, it will be useful to search for visually responsive signals and assess where and when visual 

responses to stimuli occur. Then we want to ask whether visual responses differ between the so-called 

MIRCs (minimally recognizable configurations) and the so-called subMIRCs (slightly modified 

versions of the MIRC images that are unrecognizable). A full understanding of the use of visual 

information and features would help shed light on the cortical mechanisms underlying visual 

recognition, thus possibly enhancing the ability of current models to learn from visual experience and 

to deal with detailed image interpretation [1]. 
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BACKGROUND 

 

THE HUMAN VISUAL SYSTEM 

 

The visual system is known as the part of the central nervous system that is required for visual 

perception, including receiving, processing and interpreting visual information to build 

representations of the environment. Physically, this consists of the sensory organ that is the eye, but 

also fibers that convey visual information, the superior colliculus and parts of the cerebral cortex 

known as the visual cortex [2]. Fig. 1 (a) represents the main pathway followed by visual information 

from the eye to the visual cortex.  

 

Visual pathway 

 

Vision starts with photons impinging on photoreceptors in the retina. The light coming to the outer 

surface of the eye is successively reflected and refracted through the cornea-pupil-lens system which 

acts as a microscope and inverts the image printed on the retina with respect to the visual field.  

Photoreceptors in the retina then act as transducers to convert visual information into chemical 

components for the body. Two different types of receptors are distinguished: rods and cones. Rods 

are mainly associated with movement information, including depth and slight differences in 

brightness. Cones are associated with the perception of colors and fine shape details [8][9]. 

Information flows through the retinal circuit from photoreceptors to retinal ganglion cells that 

produce the retinal output.  

 

The neural signals processed by the retina are then projected via the axons of the retinal ganglion cells 

through the optic nerves, dividing and partially crossing over in the optic chiasm. Thus some of the 

visual information is directly sent towards a part of the thalamus referred to as the lateral geniculate 

nucleus (LGN) [10], while the remaining part of the information follows an indirect path through the 

superior colliculus in the midbrain where eye movements such as saccades and other motor responses 

are processed [11][12].  

The optic chiasm, located at the base of the thalamus, is the stage where the information coming from 

the right (or left) visual field of both eyes is mixed and sent to the LGN in the opposite brain 

hemisphere. The LGN acts as a connection between the optic nerve and the primary visual cortex 

(V1) [13]. In the human brain, it is composed of six layers of cells called magnocellular and 

parvocellular cells, which purpose is to start processing rods and cones information respectively [14]. 

Neurons in the LGN then carry visual information to the visual cortex for further processing. 

 

 



 4 

 

The visual cortex 

 

The visual cortex is located in the occipital neocortex and, like other parts of neocortex, it is composed 

of six cortical layers, many of which can in turn be divided into sublayers [15].  The first layer, known 

as V1, is called the primary visual cortex and is the first stage of computations in the brain, where 

information from both eyes is combined [4]. Other visual areas in the visual cortex are collectively 

called the “extrastriate visual cortex” and comprise cortical layers V2, V3, V4 and V5. In V1, neural 

signals have been shown to be interpreted in terms of visual space including features about the shape, 

color and orientation of objects [16][17].  

 

Fig. 1: Anatomy of vision. (a) Visual information pathway from the eyes towards the primary visual 
cortex in the human brain.  Information from both eyes cross in the optic chiasm before reaching the 
lateral geniculate nucleus where preliminary visual processing occurs.  [image taken from: 

http://www.skidmore.edu/~hfoley/images/Brain.top.jpg] (b) Schematic representing some of the areas 
involved in the processing of visual information in the human brain [4].  V1, V2, V3, V4 and V5 denote 
the different cortical layers in the visual cortex. Two information pathways can be distinguished: the 
dorsal pathway related to spatial information and the ventral pathway associated with object 
perception. 
 

VP: ventral pathway 
DP:  dorsal pathway 
ITC: inferior temporal cortex 
MTC: medial temporal cortex 
STC: superior temporal cortex 
POR: post-rolandic area 
PR: pre-rolandic area 

(a) (b) 
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V1 transmits information to two primary extrastriate regions through a ventral stream and a dorsal 

stream [18][4]. This is shown in Fig. 1 (b). The dorsal stream goes through areas such as V2 and medial 

temporal area (MT/V5) as well as medial superior temporal. It is associated with spatial information 

processing, including motion, position and depth perception and is referred to as the “where/how 

pathway”. The ventral stream goes through visual areas V2 and V4 to the inferior temporal cortex 

(ITC). It is associated with object perception and representations including colors and shapes, and is 

often referred to as the “what pathway”, hence most interesting for object recognition studies [19]. 

 

As neural signals go further into areas of the visual cortex, more associative, complex processes take 

place. The final psychological and perceptual experience of vision includes some aspects of memory, 

expectations and predictions subserved by brain areas that are apparently unrelated to vision [10]. Two 

of these important areas are the prefrontal cortex and the medial temporal lobe, including the 

hippocampus and surrounding structures. They are connected to the last visual stages of both ventral 

and dorsal streams [4]. The prefrontal cortex plays a role in the moment-to-moment and task-

dependent interpretation of visual input to make cognitive decisions, and the hippocampus and 

surrounding areas play a role in the consolidation of information through long-term memories 

[4][20][21][22]. 

 

Internal connections 

 

The visual system is an extremely complex organization comprising billions of interconnected 

neurons. Recent work combined with decades of evidence have helped uncover features about the 

anatomy of interconnections in the visual cortex, but the main part of the mystery remains. 

 

As mentioned previously, cortical areas come with a six-layers structure. Inputs and outputs of each 

visual area share patterns of connectivity of two types that can be distinguished: ascending 

“feedforward” (or bottom-up) pathways where visual information first undergoes computations in 

lower layers; or descending “feedback” (or “recurrent”, top-down) pathways where information 

originates in the upper cortical layers, higher stages of visual processing [3][5].  

Although both bottom-up and top-down modulations are likely to play a role along the way of visual 

computations underlying object recognition, the relative contribution of bottom-up compared to top-

down mechanisms in different aspects of visual object recognition is unclear. For instance, rapid 

categorization tasks and certain transformations of isolated objects such as scale or position changes 

seem to be described using purely bottom-up computational models [6][7]. However, more complex 

tasks like the ones by Tang et al. or Epshtein et al. involving recognition of objects from partial 

information seem to be too difficult of a problem for purely feedforward model architectures and may 

involve non-negligible contributions from recurrent and/or horizontal internal connections 

[23][24][25].  
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One way to gain knowledge into processes taking place in the visual cortex is to use timing analyses. 

Previous work showed that latencies in neural responses could correlate with a need for additional, 

possibly recurrent computations when a recognition task is complicated by some factor [23][25]. As 

argued by S. Ullman and his research team, top-down modulations are also likely to be involved in the 

visual processing of minimal images. This is endorsed by the fact that the purely feedforward 

computational models that they use fail to replicate human recognition performance [1]. Thus, an 

interesting question to ask with minimal images would be whether there are differences in latencies in 

the neural responses that correlate with recognition, because this could indicate that we should 

investigate the role of recurrent computations in the recognition process. 

 

NEUROPHYSIOLOGICAL RECORDINGS 

 

In order to better understand the functionality of neuronal circuits underlying visual information 

processing, it is necessary to examine the brain activity in response to visual stimuli at a high spatial 

and temporal resolution. The patients taking part in this experiment suffer from a severe form of 

Fig. 2: Schematic depicting the various types of brain recordings (EEG, ECoG, LFP, single 
neuron) and their location with respect to the brain. Less invasive systems provide recordings 
of lower resolution compared to intracortically-implanted electrodes. [28] 
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epilepsy that cannot be cured by medication. As a treatment for the seizures, they have to be implanted 

with electrodes into their brains to help identify epileptogenic zones (i.e. brain areas generating 

epileptic seizures that should eventually be surgically removed to get freedom from the seizures [26]). 

Several recording techniques allow to achieve this. Non-invasive techniques like scalp 

electroencephalography (EEG) typically have a poor resolution in detecting epileptic foci due to the 

high resistance underlying tissues (skin, skull) blocking the electrical signal [27]. Hence other recording 

methods are used, allowing to implant electrodes inside the skull as pictured in Fig. 2 [28]: 

electrocorticography (ECoG, or intracranial electroencephalography, iEEG) and stereo-

electroencephalography (sEEG, or depth electrodes)[29]. The choice depends on the clinical need of 

patients. In this experiment, both types of intracranial electrodes are involved.  

 

ECoG is a type of neurophysiological recording that uses electrodes placed directly below the skull 

on the brain exposed surface. sEEG recordings typically involve placing electrodes at a depth inside 

a given brain area, as opposed to placing electrodes over the same area in ECoG recordings. Compared 

to conventional EEG and other non-invasive neuroimaging methods such as functional magnetic 

resonance imaging (fMRI) and magnetoencephalography (MEG), ECoG and sEEG recordings have 

the clear advantages of high spatial resolution (millimeter scale) and high temporal resolution 

(millisecond scale). A further asset of these intracranial recordings lies in the fact that they are not 

susceptible to artifact contamination from eye movements or blinks, which are known to be very 

detrimental to the quality of scalp EEG [30]. On the flipside, the procedure is highly invasive, 

especially considering ECoG electrode implantation requires a full craniotomy surgery. Thus, the 

implants are fully dependent on clinical needs and it should be noted that electrodes may not be 

associated in any way with behaviors underlying visual processing, depending on their location in the 

brain. 

 

Other recording techniques such as local field potentials (LFP) recordings and single neuron 

recordings have been shown to provide neural responses with similar or better features [31][32]. 

Namely, microwire electrodes implanted extracellularly inside the cortex allow to monitor the 

extracellular voltage at a millisecond temporal resolution and neuronal spatial resolution. They are 

more selective compared to ECoG [33]. However, they are not extensively used for medical purposes 

in epilepsy treatments, and little remains known about the activity of single neurons in the human 

cortex. 
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MATERIAL AND METHODS  

 

SUBJECTS 

 

Subjects of the neurophysiological experiment were 12 patients (5 male, 11 to 43 years old) with 

pharmacological intractable epilepsy. They were admitted either into Boston Children’s Hospital 

(CHB) or Johns Hopkins Hospital (JH) to localize their seizure foci for potential surgical resection.  

 

INTRACRANIAL FIELD POTENTIAL RECORDINGS 

 

The subjects were implanted with intracranial electrodes (Ad-Tech, Racine, WI, USA) that were 

arranged into either sEEG electrodes or ECoG grids and strips. All the data was collected during 

periods without any seizure events. Depth electrodes contained from 6 to 10 recording sites. Each 

subdural grid or strip contained from 4 to 64 recording sites and their layout was such that the 

electrode centers had 1 cm separation with one another. Each recording site was 2 mm in diameter. 

The number of recording sites per subject ranged from 80 to 223, for a total of 1712 electrodes.  

Throughout the text the recorded signal is referred to as “intracranial field potential” (IFP). This 

nomenclature aims to distinguish this particular type of electrophysiological recording from scalp 

EEG recordings or LFPs.  

Starting block 1 of 6, 
press a key to begin.. 

What object or object 
part do you see? 

keypress or 3s 

+ 

400ms 

1s 

? 

audio record 

up to 5s or keypress 

Fig. 3: Schematic depicting the timeline of the experiment. Subjects are first presented with a fixation 
cross  for a delay period of 400 ms before stimulus presentation  (1 s). They are asked to report the 
stimulus content in an audio recording which is then analyzed for correctness of recognition.  
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  condition exemplars 

submirc 100 

mirc 100 

father 100 

full 50 

submirc_post 50 

control 50 

(c) 

submirc mirc father full submirc control 

(a) 

(b) 

cat1 

cat6 

cat5 cat4 cat3 cat2 

cat10 cat9 cat8 cat7 

Fig. 4: Images presented during the experiment. (a) 10 image categories were shown to subjects. (b) 
Images were presented in six different conditions. They were presented in a specific order to avoid 
artifacts due to unwanted perceptual discrimination. Exemplars were shown in the order represented 
in the figure, from left to right. Control images were interspaced between the trials. (c) Images were 
not represented with the same number of exemplars. 
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STIMULUS PRESENTATION AND TASK 

 

After being introduced to the task, subjects are first presented with a blank screen with a centered 

fixation cross for a delay period of 400 ms. This aims to provide a visual aid for subjects to keep their 

gaze steady and cue them to the area where the stimuli will be presented, so as to remove artifacts 

related to unwanted eye movements that could propagate to later stages of the visual system. After 

the fixation cross, an image from the dataset appears at the center of the screen for a duration of 1 s. 

Finally, subjects are presented with a blank screen and asked to say out loud what they recognized on 

the image in an audio recording. The task timeline is summarized in Fig.3. After each trial, no 

correct/incorrect feedback was provided.  

 

IMAGE SELECTION 

 

Subjects were presented with a diverse set of visual stimuli belonging to 10 different categories (bike, 

car, eagle, eye, eyeglasses, fly, horse, plane, ship, suit) within 4 image conditions (subMIRC, MIRC, 

father, full) which are shown in Fig.4 (a) and (b). Images of all conditions are presented in grayscale. 

SubMIRC, MIRC and father images are all descendants of the full image of the same category. An 

additional image condition was added, consisting of images of various objects unrelated to the 10 

image categories used in the experiment. These are highly recognizable images used only for control 

purposes throughout the experiment. These control images have a resolution of 100×100 pixels and 

are presented in grayscale.  

 

The 10 full images used in the experiment and their descendants are the same images than the ones 

used by Ullman et al. in their MIRCs project [1]. They are obtained through a psychophysics 

experiment on Amazon’s online Mechanical Turk platform. The full images have a 50×50 pixels 

resolution. Descendants are obtained by gradually reducing the full image size or resolution by steps 

of 20%. At each step, a single image patch from each of the 10 images is taken and presented to 

observers. If a patch is recognizable (i.e. more than 50% of observers correctly recognized the image), 

then five descendants are taken from the patch. One descendant is obtained by reducing the resolution 

of the patch and the four others are obtained by cropping 20% of the patch on one corner. This is 

pictured in Fig.5 (a). For instance, the 50×50 original full images produces four cropped images with 

size 40×40, and one 40×40 copy of the original with reduced resolution. The process was reiterated 

until finding an image patch where none of the five descendants reach a recognition rate of 50%. This 

patch was then labelled as MIRC, and its descendants were labelled as subMIRCs (Fig.5 (a), (b) and 

(c)). For presentation purposes, all patches were rescaled to 100×100 pixels by image interpolation so 

that the size of the presented image was homogeneous across trials without adding or losing 

information. 
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Compared to the experiment by Ullman et al., an additional image condition (father) was added. This 

condition is a less reduced version of the MIRC (as shown Fig.5 (a)) and aims to account for cases 

where subjects might not recognize the MIRC condition. Because our number of subjects is highly 

reduced compared to the psychophysics experiment used to get MIRCs and subMIRCs, we do not 

want to “lose” data for one patient if his recognition threshold happens to be different than expected 

(i.e. in between the father and the mirc). Adding this new condition is a way to capture information 

for these particular cases. 

 

father 

mirc 

smirc 

(c) 

(a) 

father mirc smirc coverage 

(b) 

Fig. 5: MIRC and subMIRC images for testing. (a) Reduced images were obtained through a 
psychophysics experiment by reducing original images either in lowering resolution or cropping 
one corner.  MIRCs correspond to patches were the five descendants are unrecognized and the 
subsequent descendants are labelled as subMIRCs. The recognition rate is indicated under the 
images. (b) Father, MIRC and subMIRC images obtained from a specific patch and used for testing. 
Resolution and recognition rate are indicated for each image. It can be noticed that the small 
change in the image from MIRC to subMIRC induces a strong drop in recognition to the subMIRC.s 
in the psychophysics experiment. (c) Distribution of resolution across MIRCs and subMIRCs for 
testing.  
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Again because the number of epileptic subjects is obviously limited, special attention has to be granted 

to the design of the task. One primary difference with the task by Ullman et al. is that in our 

experiment, more than one image exemplar will be shown to each subject. Each subject will even see 

all conditions and all categories, and they will see them several times. A primary concern that was 

raised during the early phases of the study was that showing several same subMIRCs images in a row 

to a subject would make them more likely to be recognized. A preliminary behavioral study on non-

epileptic subjects eventually removed that concern (see Fig. 6). However, images still have to be 

presented to subjects in a very specific order during the neurophysiological experiment to account for 

visual recognition.  

 

Trials are organized in blocks where the succession of images is as pictured in Fig. 4 (b). Because the 

subMIRC condition is supposed to be the hardest to recognize, it is presented first. Then follow the 

MIRC, father and full image conditions. Control images are interspaced between the trials for control 

purposes. After full images, subjects are presented with a second occurrence of subMIRC images, 

which are exactly the same exemplars as the ones that were shown before. This aims to study whether  

the second occurrence induces some kind of perceptual discrimination due to the fact that subjects 

just saw the full image corresponding to the same category. 

 

Two versions of the experiment have to be distinguished. For one subject, subMIRC images from all 

10 categories were first presented on the screen, then all MIRCs from the 10 categories, then all fathers 

etc. This structure of the experiment had to be changed for psychological reasons. Since 100 subMIRC 

images (see Fig.4 (c)) and 100 MIRC images were first shown to the patient, there was a risk that none 

Fig. 6: Distribution of the recognition rate across image conditions in a preliminary behavioral 
study carried out with 7 non-epileptic subjects. Images were shown in blocks of two categories as 
in the final experiment. Compared to the final experiment where exemplars from the two 
categories are presented in a random order, here the exemplars of condition 1 of category 1 are 
all presented in a row, followed by exemplars of condition 1 of category 2, then condition 2 etc. 
Thus 20 exemplars of subMIRCs in the same category are presented in a row. The figure shows 
that this does not seem to affect the recognition performance. 
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of the images would be recognizable and the task would be considered “too hard” for the patient who 

might give up on trying to recognize subsequent stimuli. For this reason, all other subjects were 

presented with five blocks of images composed of only two categories at a time. For instance, they 

would be shown first 20 subMIRC exemplars belonging to bike and eagle categories, then 20 MIRC 

exemplars of bikes and eagles, then 20 father images, 10 full images and 10 other subMIRCs. The 

following block would consist of the same succession of images in e.g. horse and ship categories. 

 

PRE-PROCESSING OF THE DATA 

 

The signal was recorded from each electrode with sampling rates of 1000 Hz or 2000 Hz depending 

on subjects, before being amplified and notch-filtered to remove noise at 60 Hz. In two subjects, eye 

positions were recorded simultaneously with the physiological recordings, but this data was not 

analyzed at this stage of the study. 

 

FURTHER PROCESSING  

 

All the operations made on the data and data analyzes have been carried out with Python (Jupyter 

notebooks, Anaconda, Inc) using the scikit-learn toolbox in addition to standard libraries (Scipy, 

Numpy) and toolboxes. Matlab (R2020, Mathworks) was also used in certain cases, along with the 

signal processing toolbox.   
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DATA ANALYSES 

 

RELABELING 

 

Because the study aims to investigate what happens around the threshold where an image becomes 

unrecognizable, one of the first steps to take with the data is to relabel the trials around this threshold. 

Among subjects and image categories, the same image condition does not always lead to a similar 

recognition rate, which can induce noise in the data regarding the phenomena under study. It is also 

important to put aside of the study cases where subMIRC images are recognized, as well as cases 

where father images are unrecognized. The method chosen to achieve optimal relabeling was to 

compute recognition rates (i.e. proportion of correct trials) in all conditions corresponding to an image 

category. Fig. 7 (a) and (b) show an example subject where, even though overall MIRC and father 

images seem to be recognized (a threshold of 50% has been used as a criterion for the recognition 

rate), the behavioral responses differ a lot across categories. SubMIRC, MIRC and father images in 

eagle, plane and ship categories are always unrecognized. Conversely, images in the car category are 

always recognized, even subMIRCs. In the bike category, MIRCs are not recognized but father images 

are. In this case, the category father images have been relabeled as MIRCs and MIRCs have been 

relabeled as subMIRCs. An example of relabels is presented in Fig. 7 (c) 

 

VISUAL RESPONSIVITY 

 

A first interesting question to answer is whether there are electrodes, among the dataset, that show 

visual responsivity related to stimulus presentation. As mentioned in the previous section, the dataset 

is composed of a total of 1712 electrodes, most of them most likely located in areas unrelated to the 

visual system. Hence discriminating visually responsive electrodes would allow to reduce the 

dimensionality of the data and still keep relevant information.  

Previous studies have demonstrated that neural responses in the visual cortex usually occur in the 

window between 50 ms and 300 ms post stimulus onset [7][6]. The risk in considering neural responses 

occurring after this time period is that information contained in the data would be unrelated to the 

presentation of the stimulus, or even the experiment. Hence, this is the time window that will be 

considered to assess responsivity. 

The method used involves comparing the IFP magnitude to the average baseline response in the 

period from -200 ms to 50 ms post stimulus onset. Comparisons are made at every time point in the 

50 ms to 300 ms post stimulus onset time window using a paired t-test. This parametric test is 

commonly used to compare the means of two groups against a null-hypothesis of equal distributions  
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smirc mirc father full smirc_post 

bike 0 1 2 4 8 

cardoor 9 9 9 9 9 

eagle 10 10 10 4 10 

eye 1 2 3 4 5 

fly 1 2 3 4 5 

glasses 1 2 3 4 5 

horse 1 2 3 4 5 

plane 10 10 10 4 10 

ship 10 10 10 4 10 

suit 1 2 3 4 5 

0: sub-sMIRC; 1: sMIRC; 2: MIRC; 3: father; 4: full; 5: 
sMIRC_post; 8: sub-sMIRC_post; 9: allrecognized; 10: 
allunrecognized 

(b) 

(a) 

(c) 

Fig. 7: Example relabeling procedure for one subject of the experiment. (a) Behavioral recognition 
performance across image conditions. Full and control images show very good performance as 
expected. SubMIRCs, MIRCs and father images show increasing performance. subMIRCs_post are 
recognized much more often than subMIRCs. (b) Recognition rate by image category. Eagle, plane 
and ship categories are not recognized by this subject. The car category is too easily recognized 
and no recognition threshold can be observed. In the bike category, the threshold turns out to be 
a MIRC/father transition. (c) New labels per category and condition. The remaining part of the 
study will focus on conditions 1,2,4 and 5 in particular. Labels 6 and 7 correspond to control 
images, which do not require relabeling. 
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with the following assumptions: the two samples must be related and following a normal distribution. 

They should also be free from any outliers. The first two hypotheses seem reasonable considering the 

data under study. To remove potential outlier trials from the study, each trial was compared against 

the mean distribution of the IFP response magnitude across all trials. A trial was considered an outlier 

when its magnitude was higher than the mean and four standard deviations of the IFP magnitude 

distribution. The remaining data passed the criterion given in equation (1). 

𝑚𝑎𝑔𝑡𝑟𝑖𝑎𝑙 < 𝑚𝑎𝑔̅̅ ̅̅ ̅̅ + 4. 𝑠𝑚𝑎𝑔         (1) 

To assess whether an electrode was visually responsive, it was chosen to only consider trials 

corresponding to full and control images, as they are supposed to be best recognized and thus might 

elicit the most significant responses. It has to be noted that we distinguished two types of 

“responsivity” in this study. Hypothetically, brain areas might either respond to the presentation of a 

stimulus regardless of the image condition (essentially, the onset of pixels on the screen induces a 

visual response), or they might respond according to the intensity of the internal representations 

elicited by the image and thus respond better to images that are easily recognizable. As we are 

interested in capturing both cases, full and control images were the most relevant to take into account 

in the comparison. 

The p-value is computed following equation (2) where 0 is the null hypothesis for the comparison 

between the two samples (0 = 0 in this case) and n is the size of sample x.   

𝑝 =
x̅ −  𝜇0

𝑠𝑥/√𝑛
 

An electrode is considered visually responsive if the comparison rejects the null hypothesis (p-value 

below 0.01) for more than 35 consecutive milliseconds. In addition, the IFP response magnitude has 

to be higher than 70 V to pass the criteria. These two thresholds have been obtained through trial 

and error. The method leads to a false discovery rate of 0%, as computed over 100 iterations of 

randomly shuffling the baseline and epoch responses. 

 

In such visually responsive electrodes, responsivity was then assessed at a per-condition level, 

computing the p-values corresponding to the trials in a given image condition. If a condition is 

significantly different from its baseline response for more than 35 consecutive milliseconds, then it is 

responsive. With this criterion, an electrode that is considered visually responsive is not necessarily 

responsive in all the image conditions. 

 

LATENCY MEASUREMENTS 

 

(2) 



 17 

 

To characterize the latency of neural responses, a first attempt was made considering the moment 

where the maximum IFP amplitude occurs in the time period between 50 ms and 300 ms post stimulus 

onset. This method turned out to be highly unprecise in some cases, hence it was chosen to turn to a 

different criterion. After discriminating visually responsive electrodes in a first step, the latency was 

defined as the first time point where the neural response is considered significantly different from the 

baseline response according to the t-test p-value criterion. The latency was then defined at a per-

condition level, where all the trials in a given condition were averaged.  

 

COMPARISONS 

 

To compare the different conditions at a neural level, several types of analyzes have been run. This 

has been done in an iterative process, trying to always extract the best possible information for the 

data at hand.  

 

Parametric tests 

 

Statistical comparisons of the neural responses in different conditions were made first. The analyses 

include a one-way analysis of variance (ANOVA) to compare the variance related to each of the image 

conditions, and a t-test to run pairwise comparisons.  

Conditions were considered significantly different from one another when the p-value reached a value 

below 0.01. Comparisons were made at a time point level as explained in the previous section on visual 

responsivity.  

 

Latencies 

 

Latencies between two different conditions were compared computing the corresponding value of the 

cumulative binomial distribution function. Latencies were assessed over all subjects and visually 

responsive electrodes and arranged in pairs of conditions. The proportion of values tending towards 

each of the two conditions was computed. The value of the cumulative binomial distribution then 

accounts for the probability of observing the same number or fewer successes over the same number 

of experiments, when a single experiment has a probability p of success (here p = 0.5). Equations (3) 

and (4) provide the general formula. 

 

F(x) = P(X  x) = ∑ 𝑓(𝑚) = 𝑓(0) + 𝑓(1) + ⋯ + 𝑓(𝑥)

𝑥

𝑚=0

 

 

where         f(k ) = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

(3) 

(4) 
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Classification  

 

To discriminate further the neural responses corresponding to conditions, it was used a machine 

learning approach where classifiers were trained on the neural data before being tested. As labels are 

available at a trial level, the analysis falls into supervised learning techniques. The upside of this 

approach compared to other techniques is that it allows to combine several features of the data to try 

and differentiate the conditions.  

 

To run the analysis, all the visually responsive electrodes are combined together in a so-called “pseudo-

population” of electrodes (i.e. across subjects, measures were not recorded simultaneously). Data is 

randomly sampled so as to obtain an identical number of trials per condition across subjects. The data 

is then split in two separate datasets: a training set which allows to train the machine learning classifier 

to discriminate conditions, and a testing set on which the performance of the model is then evaluated. 

This separation of the data is crucial so that the model does not “see” test data before the actual test, 

which would induce an overestimation of the classifier performance, also referred to as “overfitting” 

in machine learning terms.  

The classifier performance accounts for the accuracy of its prediction on the test data and is computed 

as an averaged score over a certain number of train-test splits, also referred to as the “cross-validation” 

step in machine learning terms. This is to ensure the prediction is not biased towards a particular 

result, due to the random character of the train-test split and the small number of trials per condition 

resulting from the sub-sampling over subjects. 

 

In this study, a support vector machine was used as the classifier. This type of model is commonly 

used in classification analyses of neural data and is known to result in good generalization performance 

with such type of dataset. 

The training data accounted for 70% of the dataset, and test data accounted for the remaining 30%. 

A 5-fold stratified shuffle split was used as cross-validation. Binary comparisons were run across 

conditions, and all features were computed as an averaged value over 50 random sampling iterations. 

For each comparison, the chance level was computed by testing the model on data with randomly 

shuffled labels and averaging the score over 100 iterations.  

 

Several features have been computed and tested with the model. Only features allowing to get the best 

performance of the model were then kept. 

 

IFP magnitude. The magnitude of the IFP response was computed in the time window from 50 ms 

to 500 ms post stimulus onset.  

 

Time of maximum magnitude. The time at which occurs the maximum IFP amplitude of the signal 

in the time window from 50 ms to 500 ms post stimulus onset. 
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Sliding windows. The amplitude of the IFP response averaged in sliding time windows in bins of 20 

ms. This was also done in the time window from 50 ms to 500 ms post stimulus onset. 

 

Principal components analysis (PCA). The principal components of the data, according to a 

principal component analysis. This analysis allows to reduce the dimensionality of the data by 

projecting it to a lower dimensional space and keeping the relevant information. Five principal 

components were used in this analysis. 

 

Frequency analysis. The instantaneous power was computed from the time series. Previous research 

has shown that electrical activity in the brain could be analyzed from the power in different frequency 

bands [34]. One of them in particular is highly interesting regarding the analysis of neural signals in 

the visual cortex: the gamma frequency band [35]. Definitions of frequency bands vary across the 

literature. The interval 30Hz-100Hz was picked for the gamma band, as it is defined in several studies 

[34][36][37].  

The signal is first bandpass-filtered using a Butterworth filter of order 5 in the desired frequency band. 

The complex representation of the signal is then obtained via the Hilbert transform and the 

instantaneous power is obtained through getting the magnitude.  

 

To evaluate the influence of a feature on the classification performance of the model, we proceeded 

to look at the distribution of each feature across the dataset. When the distribution of the feature 

allows to distinguish conditions, then it is relevant to use it for the task. In most analyses, the features 

used were the magnitude and the timings of maximums and minimums. 
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RESULTS  

 

BEHAVIORAL RECOGNITION 

 

All subjects taking part in the neurophysiological experiment were first evaluated on their recognition 

performance at a behavioral level. Fig. 8 shows the distribution of these evaluations across subjects 

and different image conditions. It can be noticed immediately the good recognition performance at 

full and control images, which was certainly expected. Cases where subjects gave incorrect feedback 

Fig. 8: Distribution of the behavioral recognition to the different image conditions across all 
subjects taking part in the study. Each color accounts for one subject. (a) Before relabeling. It can 
be observed that most subjects do not pass the 50% threshold of recognition for MIRCs. This 
highlights the relevance of father images and the need to differentiate recognition between image 
categories. (b) After relabeling. A strong recognition drop occurs between the subMIRCs and MIRC 
images. Besides, subjects do seem to recognize much better the second occurrence of the sMIRCs 
at a behavioral level. 

Before relabeling 

After relabeling 

(b) 

(a) 
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to full and control images occurred mostly due to memory issues and lack of attention probably due 

to fatigue (e.g. subject did not get the time to see the image or did not get the time to reply). The 

epileptic patients involved in the study indeed are under heavy medication and they are also recovering 

surgery.  

 

Overall, the recognition to father images is higher than to MIRCs, which is in turn higher than 

subMIRCs. However, it would have been reasonable to expect that MIRC images in Fig. 8 (a) would 

be better recognized compared to subMIRCs. One result of Ullman et al. in their MIRC study was 

observing a sharp drop in recognition from MIRCs to subMIRCs across most observers taking part 

in their task. They suggest that the transition occur for the same images regardless of individual 

experience and thus different subjects would share similar visual representations about the images [1]. 

Our behavioral data shows that not only the recognition threshold varies across subjects but, even 

(b) 

(a) 
(c) 

Fig. 9: Example neural response from an electrode in the left temporal cortex. Time zero indicates 
the onset of stimulus presentation on the computer screen. (a) IFP response averaged by image 
condition.  The horizontal black line indicates the time period when the IFP response significantly 
differs from the baseline response (t-test, p<0.01). (b) IFP response averaged by condition. The trials 
have been previously relabeled. (c) IFP response across all trials. Each line accounts for a trial. On the 
ordinate axis in increasing order are subMIRC, MIRC, full, subMIRC_post and control trials. The color 
indicates the intensity of the response in microvolts. Visual responsivity can be observed around 100 
ms post stimulus onset. 
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more importantly, it varies significantly across image categories. Our data is, however, much more 

reduced in number of subjects, which could explain getting high variance in behavioral recognition 

compared to Ullman’s work. 

 

Fig. 8 (b) shows the same result after a relabeling procedure was applied to the data. A sharp drop in 

recognition (0.86 ± 0.08) can now be observed in between subMIRC and MIRC images, confirming 

the result by Ullman et al. Besides, the second occurrence of subMIRCs also show much higher 

recognition performance (difference of 0.65 ± 0.3) than the first occurrence, suggesting that subjects 

might get use of perceptual representations, built with MIRC and full images that they saw just before, 

to discriminate these stimuli.  

 

NEURAL RESPONSES AND VISUAL RESPONSIVITY 

 

Neural responses were recorded across 1712 electrodes in 12 subjects, and it could be observed 

responsivity to visual stimuli in some of them. An example electrode is shown in Fig. 9, where a visual 

response to the stimuli occur around 100 ms. Another visually responsive electrode is presented in 

Fig. 10.  

 

56 electrodes were evaluated visually responsive in the time interval from 50 ms to 300 ms post 

stimulus onset, according to the data analysis described in the previous section. Among these 

electrodes, 51 were specifically responsive to the full image condition, 50 were responsive to the MIRC 

condition, 36 were responsive to the subMIRC condition and 22 were responsive to the 

subMIRC_post condition. All electrodes were specifically responsive to control images, which are the 

easiest to recognize. This result shows that images that are more recognizable seem to elicit higher 

neural responses on average across subjects. This agrees with a result by Lerner et al. where they show 

that greater brain activation occurs in informative image fragments over non-informative fragments 

[38]. Even more so in our study, nearly as many electrodes are responsive to MIRCs and full images, 

but a drop in the number of responsive electrodes occurs for the subMIRC condition. This reminds 

of the drop in recognition rates that could be observed in the behavioral part of the study, and that 

has been mentioned previously. 

 

The low number of electrodes responsive to the second occurrence of the subMIRCs can be explained 

by the fact that this condition usually has only half the number of trials compared to other conditions, 

or even less depending on the relabeling. This results in electrodes being rejected of the analysis for 

this condition, because it is not represented by enough trials to be considered relevant (fewer than 10 

trials). 
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VISUAL SELECTIVITY 

 

Although this is not the main focus of the study, it was interesting to investigate whether some 

electrodes were selective to some image categories in particular. In Fig. 11 an electrode in the occipital 

lobe is pictured where some image categories seem to induce a higher visual response compared to 

others. This result seem to correlate with a recent fMRI study on minimal images, where it was shown 

that minimal images were able to elicit category-selective responses in higher visual areas such as the 

lateral occipital cortex, selective to objects [39]. However, the localization of electrodes has not been 

thoroughly evaluated is our study, thus it is not possible to say with sufficient accuracy where the 

electrode in Fig. 11 is actually implanted. 

 

(a) 

(b) 
(c) 

Fig. 10: Example neural response from an electrode in the temporal cortex. It can be observed that 
the visual response seems to be shifted with respect to the example electrode presented in Fig. 9 (c) 
In increasing order on the ordinate axis: sub-sMIRC, subMIRC, MIRC, Full, subMIRC_post and Control. 
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TIMINGS 

 

Differences in latencies could be observed in particular electrodes such as the ones pictured in Fig. 13 

(a) and (b). To try and account for these differences, latency measurements were presented in pairwise 

comparisons between image conditions. This is shown in Fig. 12. The analysis shows a clear difference 

for the second occurrence of subMIRCs in particular, which seem to have higher latencies compared 

to subMIRC, full and control images. This could be explained by the fact that this condition calls on 

short-term memory and perceptual representations from the previous full image. Pattern completion 

skills could also be involved, that have been shown to correlate with higher latencies [23]. This result 

endorses the behavioral result that shows much higher performance for these subMIRC_post 

compared to subMIRCs. 

Fig. 11: Neural response from an electrode in the occipital lobe. The raster plots picture every trial 
as a line, and the intensity of the response corresponds to the color scale in microvolts on the right. 
It can be observed that the visual response appears in different intensities depending on the image 
category. Plane and fly trials are weakly represented compared to glasses and eagle categories, 
although plane and fly categories were recognized by the subject at a behavioral level. 
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The latency results hardly show any other tendency on other conditions and this is probably a sign 

that the metric could be further optimized. Other than that, latencies might not characterize the 

different conditions as well as expected, and it would be useful to include other features of the data 

to try drawing a clearer comparison between the conditions.   

Fig. 12: Pairwise comparisons of latencies. Each plot represents a comparison and each point on a 
plot accounts for an electrode among the 56 visually responsive electrodes. On the top left corner of 
each plot is given the number of electrodes visually responsive to both conditions represented in the 
plot. On the top center is given the percentage of points respectively above and below the diagonal. 
It can be observed that the subMIRC_post condition has significantly longer timings for all conditions 
it is compared to (plots (b), (c) and (h)). 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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COMPARISONS 

 

A first step was to be able to visually compare the different conditions. Fig. 13 (a) and (b) show two 

example electrodes where differences can be observed between subMIRCs and MIRCs and 

subMIRC_post, both in timing and in amplitude.  

 

Across the dataset, neural responses differ a lot and finding a good metric to accurately compare the 

conditions has been a real challenge. In order to include more features of the data into the analysis, it 

was adopted a machine learning approach where a classifier was trained on data from visually 

responsive electrodes to try and categorize the different conditions. The results of pairwise 

comparisons are presented in Fig. 14 (a) and (b). The features used for the classifier were the 

magnitude of the neural response along with the timing of both the maximum and minimum 

amplitude.  

Fig. 14 (a) and (a) show the classification score is, except for one comparison, significantly above 

chance. Thus, the model is able to discriminate pairs of conditions when compared to one another 

based on the given features.  

Interestingly, the classification performance for the subMIRC/MIRC comparison is very low above 

chance level. SubMIRCs were expected to elicit lower responses compared to MIRCs, especially given 

the fact that the visual responsivity analysis led to evaluate quite fewer subMIRC-responsive electrodes 

compared to MIRC-responsive electrodes.  

  

(a) (b) 

Fig. 13: Visual representation of the comparison between subMIRC, MIRC and subMIRC_post 
images in two example electrodes. (a) An electrode in the left temporal cortex, where a difference 
in timing can be observed between subMIRC_post and the two other conditions (b) An electrode 
located in the mesial temporal lobe, where the subMIRC condition seem to differ in amplitude 
compared to the other conditions. The horizontal bars show the time period when the subMIRCs 
are significantly different from the MIRCs (green) and subMIRC_post (beige) (t-test, p<0.01).  
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Fig. 14: Classification performance results. (a) Results of the classification task (Data analyses 
section). The lower dashed line represents the chance level obtained by randomly shuffling the labels 
over 100 iterations. The upper dashed line accounts for the statistical significance of the result, 
defined as 3 standard deviations above chance score. Data from all subjects were taken into 
consideration in this computation. (b) Comparisons with subMIRC_post images. This computation 
was done removing 3 subjects from the study, due to the low number of trials remaining for 
subMIRC_post images after relabeling. 

(a) 

(b) 
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DISCUSSION 

 

 
Overall, the results obtained are consistent with previous analyzes on minimal images [1][39]. The 

behavioral data allowed to observe a sharp threshold in recognition at the MIRC level, confirming the 

result by Ullman et al. (2016) and introducing once again this type of image as an unique configuration 

requiring each and every feature available to be effectively used by the brain for visual recognition.  

 

The fact that the second occurrence of subMIRC image shows both a much better recognition 

performance than the first occurrence at a behavioral level, and higher latencies, seem to be consistent 

with the hypothesis that such images induce perceptual discrimination calling on different 

computations maybe related to short-term memory and pattern completion. It could be argued that 

such computations would involve feedback modulations in the visual cortex, similarly to the task by 

Tang et al. [23]. It would then be interesting to study whether this observation can be accounted for 

by using computational models of vision.  

 

An important step to take further the analysis would be to properly run the localization of electrodes 

in subjects. This part of the study was put aside for logistic reasons. The brain locations provided in 

this report are based on predicted surgery plans and notes from doctors, but a more accurate account 

of electrode implantation could be made by looking at subjects CT and MRI images. 

Considering visual selectivity, it would be interesting to observe whether the example electrode from 

Fig. 11 belongs to a brain area that is known as “category-selective” such as the lateral occipital cortex, 

as well as whether other electrodes can be found category-selective in the same area.  

Comparing image conditions in groups of electrodes in a similar localization could be a good way to 

grasp the specific processes occurring in different areas. For example, MIRCs could be expected to 

elicit higher responses compared with subMIRCs in high-level areas engaged in visual recognition, but 

not necessarily in the early visual cortex that is less involved in pattern recognition [39]. This might be 

part of the explanation for the poor recognition performance on subMIRCs and MIRCs in the 

machine learning analysis (Fig. 14 (a)), if most visual responses do not occur in high-level visual areas 

across the dataset.  

 

Further analysis could also be run with the data to improve our understanding of the processes 

underlying recognition. Another interesting way to compare conditions is known as “demixed” 

principal component analysis and has been introduced in a paper by Kobak et al. as a way to account 

for simultaneous representations of different elements of a task [40]. This analysis reduces 

dimensionality using the dependance of the data on external parameters such as stimuli and decisions. 

The output is then a “mixed” representation over a time and stimulus components. 

Also, a lead to improve the accuracy of latency measurements and statistical comparison tests would 

be to try reducing the sensitivity to type I errors (false positive) using multi-comparison correction 

methods [41][42].  
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SUMMARY 

 
 

Twelve patients with pharmacological intractable epilepsy completed a neurophysiological experiment 

aiming to study object recognition at a minimal image level. Minimal images are unique configurations 

where visual features are crucial for recognition and the smallest change to the image can make it 

unrecognizable. Results show that such a small change in size or resolution induces a sudden drop in 

recognition performance (86% ± 8%) at a behavioral level. At a neural level, visual responses do not 

seem to be specific enough to draw a distinction between minimal and sub-minimal images. 

Interestingly, neural responses to sub-minimal images seem to match perceptual discrimination when 

images are presented a short time after an easily recognizable version of the image. Higher latencies 

are also involved with these types of sub-minimal images, suggesting bottom-up modulations might 

take place in the computational account for recognition.  
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