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Supplementary Materials

1 In-depth investigation of repetition suppression in the proposed

computational model (Fig. S1 to S3)

In this section we take a more in-depth look at adaptation/repetition suppression in the pro-

posed computational model. Fig. S1 shows stimulus specific repetition suppression, which

is discussed in Fig. 2 of the main text, for each layer of the network and for both com-

puter generated face stimuli as well as natural images from the ImageNet dataset (61). In

Fig. S2 we investigate the relation between the amount of suppression and the similarity

of the stimulus representations in each layer of the network. Finally, in Fig. S3 we demon-

strate the existence of stimulus-specific adaptation in single units, which cannot be explained

exclusively by the activation strength of that unit for the preceding stimulus

In Fig. S1 we show that the difference between repetition trials and alternation trials in

the proposed computational model was larger for stimuli from ImageNet compared to the

face stimuli used in the neural recordings. This observation is consistent with the idea that

the face stimuli were too similar for the model to display the full range of adaptation effects,

which were larger in neural recordings (see Fig. 2). However, these neural responses were

recorded in a patch of cortex where almost all neurons show significantly stronger responses to

a set of face images compared to object images in a localizer experiment (37). To test whether

this bias towards face selective units could explain the stronger stimulus specific effect in the

neural data, we passed the same localizer images through the proposed computational model

and selected only those units that showed on average a substantially larger response to the

face images (Rface) compared to the object images (Robject). Face selectivity was quantified

using a face selectivity index: FSI = (Rface−Robject)/(Rface+Robject). Overall, face selective

units (FSI > 0) did not show a larger stimulus specific effect for face stimuli compared to the

other units. For example, even with highly selective conv5 units (FSI > 0.9; N = 2, 777), the

average alternation-repetition difference for the test stimulus was 0.06, SD=0.10 (normalized

response values), compared to 0.07, SD=0.12 when all units were considered (N = 43, 264).



Fig. S1 Stimulus-specific repetition suppression strength varies across model lay-
ers and stimulus sets (expanding on Fig. 2). (A), Population stimulus-specific rep-
etition suppression in the proposed computational model for a random sub-sample of 500
face pairs (out of 25,000 used in (37), created with FaceGen: facegen.com). Adapter and
test images were presented for five time steps each (large dots in example alternation trial),
preceded by ten time steps of blank (uniform grey) input (small dots). For each trial the
network started in an unadapted state. Black: average activity after ReLU across all units
and all stimuli in each layer before the presentation of the second stimulus. Blue (repeti-
tion): average activity during and after a repeated presentation of the first stimulus. Orange
(alternation): average activity during and after the presentation of a different second stim-
ulus. Grey: average activity for AlexNet with no adaptation. (B), Same as (A), but for
stimulus pairs using a random sample of 1,000 images from the ImageNet test set (61). The
ImageNet images are more distinct and therefore reveal stronger stimulus-specific adaptation
effects (the two images from the example trial were added for display purposes; photo credit:
Kasper Vinken, Boston Children’s Hospital, Harvard Medical School).

facegen.com


Fig. S2 The amount of activation suppression for a stimulus is related to its
similarity with the preceding stimulus (expanding on Fig. 2). (A), Illustration of
the trial sequence used to investigate the effect of an adapter on the population response
suppression for the test image in the model. This experiment was run using a random sample
of 1,000 images from the ImageNet test set (61), and the two images from the example trial
were added for display purposes. Photo credit: Kasper Vinken (Boston Children’s Hospital,
Harvard Medical School). Adapter and test images were presented in succession for five
time steps each (large dots), and each preceded by ten time steps of blank (uniform grey)
input (small dots). For each trial the network started in an unadapted state. (B), Scatter
plots per layer showing for each stimulus pair the Euclidean distance between the activation
patterns for the two images (both calculated without preceding stimulus) and the amount
of suppression for the test image (percentage response change averaged across all units of
a layer). Negative percentage response change values indicate a response reduction when
the test image is preceded by the adapter. Green dots: pairs of ImageNet images; pink
dot: example pair from (A). Regression lines show the fit resulting from a robust Theil-
Sen estimator, and the inserted τ values are Kendall’s correlation coefficient. A positive
slope/correlation indicates that the suppression is stronger for image pairs that elicit more
similar activation patterns. The correlation is slightly positive for all layers, except conv5
(for unknown reasons).



Fig. S3 Stimulus-specific suppression in single units emerges in deeper layers even
for two adapter images that equally activated the unit (expanding on Fig. 2).
(A), Illustration of the trial sequences used to investigate the relation between the activation
strength for the adapter and amount of adaptation for a subsequently presented test image.
In order to do this, each test image A was randomly paired with a different adapter image B.
As in previous physiology investigations (9), the effect of adapting to a different image (BA
trial) was compared directly with the effect adapting to the same image (AA trial). Photo
credit: Kasper Vinken (Boston Children’s Hospital, Harvard Medical School). (B), Scatter
plots per layer showing the relation between the adapter response difference index and the
adaptation difference index for the image pair in (A). Each dot is a unit that responds
significantly to both adapters (activation > 20% of the unit’s maximum activation across
the random sample of 1,000 ImageNet images of Fig. S2). Regression lines show the fit
resulting from a robust Theil-Sen estimator, and the horizontal line labeled β0 indicates
the intercept. In conv1, the difference in adaptation resulting from adapter A versus B is
proportional to the response difference between adaptors A and B. From conv2 onward, a
richer repertoire of effects emerges: even for units that are activated more by adapter B
than A (negative values on the x-axis), adaptation can be stronger for adapter A (positive
values on the y-axis). In fact, the positive β0 intercept in deeper layers (in particular fc6 and
fc7) indicates that on average, units that are equally activated by adapters A and B, still
show a stronger suppression for a stimulus repetition (AA trial), replicating experimental
results for macaque IT neurons (9). (C), Correlations (Kendall’s τ) between the response
difference index and adaptation difference index, averaged (white line) across 1,000 unique
pairs of the ImageNet images of Fig. S2. Green shaded error bounds indicate the 50th,
75th, and 95th (from dark to lighter green) percentile intervals. Pink markers indicate the
values for the example image pair in (A). The reduced correlation in deeper layers means
that adaptation strength is increasingly less related to the activation strength of the adapter.
(D), Intercepts resulting from regressing (Theil-Sen) the adaptation difference index onto
the response difference index, averaged across the same image pairs as (C) (white line). Same
conventions as (C). A positive intercept, means stronger suppression for a repetition than
for an alternation, even for units that were equally activated by the two adapters.



2 Aftereffects with oriented gratings in the proposed computational

model (Fig. S4 and S5)

A classic example of an adaptation aftereffect is the tilt aftereffect, which occurs when adapt-

ing to an oriented bar or grating causes an observer to perceive a subsequently presented

stimulus to be slightly more tilted in the direction opposite to the orientation of the adapter

(38). To evaluate whether the model also shows the tilt aftereffect, we created a set of grat-

ings that ranged from left to right (-90° to 90°) in 100 steps (Fig. S4A), and measured the

boundary shifts analogous to those along the face-gender dimension in Fig. 3. For a right

tilted adapter (29°), the decision boundary in conv5, that is the orientation at which the pre-

dicted right tilt probability was 0.5, shifted 10° towards the tilt of the adapter (Fig. S4B).

We only present results for the convolutional layers, as the fully connected layers were in-

variant to the property of left or right tilt (e.g. the representation for a -10° grating was

very similar to that for a 10° grating). This mirror-symmetry is likely the result of a form of

data augmentation, where horizontal reflections of the training set were used during training

(35). As predicted, adaptation to a vertically oriented grating (i.e. the original boundary

stimulus) had no effect on the decision boundary.

As for the face-gender stimulus set, we measured orientation discriminability at each test

orientation as a function of the adapter orientation. We found that adaptation in the model

enhanced orientation discriminability for orientations similar to the adapter (Fig. S4D; red

diagonal; Fig. S4E).

We repeated the analyses on response magnitude and tuning changes for the tilt aftereffect

shown in Fig. 4 and 5 for the tilt aftereffect. The results are presented in Fig. S5 and are

consistent with the results for the face-gender stimulus set.



Fig. S4 Perceptual bias and discriminability changes for the tilt aftereffect in
the proposed computational model (expanding on Fig. 3). (A), Examples of the
stimuli used in our simulated experiments: a set of gratings that ranged from -90° (left
tilt) to 90° (right tilt) in 100 steps. The example adapt, test, and perceive orientations
were picked based on the estimated boundary shift shown in (B). (B), Decision boundaries
pre (blue) versus post (orange) exposure to a 29° right tilted adapter based on the top
convolutional layer (conv5) of the model with intrinsic suppression. Only angles between
-63° and 63° were used to fit the psychometric functions to avoid issues with the circularity
of the orientation dimension. Markers show class probabilities for each test stimulus, full
lines indicate the corresponding psychometric functions, and vertical lines the classification
boundaries. Adaptation to a 29° adapter leads to a shift in the decision boundary towards
positive (right tilted) orientations, hence perceiving the 10° test stimulus as vertical (0°).
(C), Decision boundary shifts for the test stimulus as a function of the adapter tilt per layer.
The round marker indicates the boundary shift plotted in (B). (D), Relative orientation
discriminability (|∆ypostm |/|∆yprem |) for conv5 as a function of adapter and test tilt. See color
scale on right. The red areas indicate where orientation discriminability is increased. (E),
Average changes in tilt discriminability per layer as a function of the absolute difference in
orientation between adapter and test stimulus.



Fig. S5 Response magnitude and tuning changes for the tilt aftereffect in the
proposed computational model (expanding on Fig. 4 and 5). (A), Effects of adapting
to oriented gratings on the activation strength of single units. Left: heatmap showing
the activation of all responsive conv5 units (rows) for all oriented gratings (from -90° to
90°; columns). Rows are sorted according to a left versus right tilt selectivity index (SIt),
calculated analogously to the gender selectivity index (equation (3)). The remaining five
heatmaps show the difference (post - pre adaptation) in single-unit activations after adapting
to five different adapters. (B), Mean response change (activity post - activity pre) across
responsive units for each layer (shaded area = 95%CI). For highly left versus right tilt-
selective units (red), the magnitude change (averaged across stimuli) was taken after adapting
to a stimulus tilted opposite to the unit’s preferred tilt (-45° adapter for SIt > 0.6, 45° adapter
for SIt < −0.6; black rectangles in (A)). For less tilt-selective units (blue), the magnitude
change after both -45° and 45° adapters was used. (C), Proportion of adapters causing the
preferred morph level to shift towards (attractive, pink) or away (repulsive, green) from
the adapter, averaged across units (shaded area = 95% binomial CI). (D), An example
unit showing a repulsive shift in tuning curves for the -45° (left) and 45° (right) adapters
(the y-axes depict activation in arbitrary units; black: pre adaptation tuning curve; green:
post adaptation tuning curve; yellow marker: adapter morph level). (E), An example unit
showing an attractive shift in tuning curves (pink: post adaptation tuning curve; same
conventions as (D)). (F), Tilt boundary shifts towards the adapter were produced both
by magnitude changes without tuning changes (left) as well as by tuning changes without
magnitude changes (right). Grey shading indicates the range of original layer effects shown
in Fig. S4C. (G), Tilt discriminability enhancement for orientations close to the adapter
was produced by tuning changes without magnitude changes (right), but not by magnitude
changes without tuning changes (left). Grey shading indicates the range of original layer
effects shown in Fig. S4E.



3 Adaptation produces mostly repulsive shifts in highly responsive

units (Fig. S6)

Fig. S6 Peak shift direction separate for most and least responsive units (ex-
panding on Fig. 4). (A), Average peak shift of orientation tuning curves as a function of
the adapter orientation, relative to the preferred orientation, which is centered at 0. Units
were split based on the 20th (P20) and 80th (P80) percentiles of their median pre-adaptation
responsivity (R), calculated across all orientations. Highly responsive units (red) undergo
on average repulsive peak shifts, whereas the lowest responsive units (blue) undergo on av-
erage attractive shifts. (B), Average peak shift of face-gender tuning curves as a function of
the adapter morph level (gender percentage), relative to the preferred morph level, which is
centered at 0. Only units with preferred morph-level between 25% and 75% were considered,
in order to be able to have an adapter at equal distances left and right of the peak. Units
were split based on the according to the same criterion as (A).

Overall, attractive shifts were more common in the proposed computational model (Fig. 4,

Fig. S5), whereas several studies report mainly repulsive shifts (13, 18). A plausible expla-

nation is that repulsive shifts are caused by recurrent interactions at short timescales of a few

100 ms, whereas adaptation causes more attractive shifts at a longer timescale (Discussion).

Another possible explanation is that neurons with clear and strong response profile, which

are more likely to get isolated and recorded from, are also more likely to show a repulsive

shift. Consistent with this idea, we noticed that adaptation produced mostly repulsive shifts

for units with higher average activations, particularly for oriented gratings. We demonstrate

this by splitting the units per layer into three groups based on the 20th and 80th percentiles



of their median activation, calculated across all morph levels for the face-gender aftereffect,

and across all orientations for the tilt aftereffect (Fig. S6).

4 Adaptation in single layers (Fig. S7 to S9)

Fig. S7 An increased sensitivity to stimulus presentation frequency in down-
stream areas requires intrinsic suppression at multiple stages (expanding on
Fig. 2). (A), Difference (average with 95% bootstrap CI) in response between the low
(deviant) and high probability (standard) stimulus in the oddball experiment explained in
Fig. 2. The response difference increases from V1 to downstream area LI. (B), Difference in
average activation for the low and high probability stimulus in a simulated oddball sequence
(Fig. 2D), for the full model which has intrinsic suppression implemented in each layer. The
response difference builds up across network layers. Grey horizontal lines indicate the neural
data averages of (A). (C), Same as (B), except that the model has intrinsic suppression only
implemented in one layer (yellow markers). The response difference between low and high
probability stimuli no longer builds up across multiple layers.

Several adaptation effects in the model increase across consecutive layers or emerge only in

deeper layers. This could be because each layer increases adaptation by providing additional

activation-based suppression on top of the adapted outputs from the previous layer, but it

is also possible that adapted outputs from early layers propagating through the network are

sufficient. Here we address this question by recreating several critical figures, using modified

models with intrinsic suppression implemented in only one layer at a time (always using the

same parameters values α = 0.96 and β = 0.7 that were used for the full model).

In Fig. 2, we showed that repetition suppression in the proposed computational model



accumulated across layers, replicating the increased sensitivity to stimulus frequency in the

putative homologue of the rat ventral stream (12). The modified neural networks with

intrinsic suppression in only one layer do not show any build-up of repetition suppression

across layers (Fig. S7C), demonstrating that activation-based suppression implemented at

multiple stages of processing is indeed necessary to capture the neural data (Fig. S7A).

Fig. S8 Intrinsic suppression causes a perceptual bias within the same layer,
but only causes discriminability enhancements in downstream layers (expanding
on Fig. 4). (A), Adapting to a female/male face shifted the face-gender decision boundary
towards the adapter morph level (Fig. 3C). Left: boundary shifts for a network with intrinsic
suppression in all layers. Rest: boundary shifts for networks with intrinsic suppression in only
one layer (indicated by the column title). The first layer to show a boundary shift is always
the first layer with intrinsic suppression. (B), Adapting to a female/male face enhanced face-
gender discriminability around the adapter morph level (Fig. 3E). Left: discriminability
changes for a network with intrinsic suppression in all layers. Rest: discriminability changes
for networks with intrinsic suppression in only one layer (indicated by the column title).
The first layer to show enhanced discriminability is always downstream of the first layer
with intrinsic suppression.

Similar to the accumulation of repetition suppression across layers, the magnitude of per-

ceptual aftereffects (i.e., perceptual bias and discriminability changes) also increased across

layers Fig. 3C and E. Fig. S8 shows that, consistent with the increase in neural adaptation

effects in Fig. S7, the increase in magnitude of aftereffects also requires intrinsic suppres-

sion in multiple layers. The same analysis also shows that a perceptual bias (i.e., boundary

shift) as well as a reduced discriminability (for morph levels further from the adapter) al-

ways already occurs in the first layer with intrinsic suppression (Fig. S8A,B). In contrast,



the enhanced discriminability effect for face-gender morph levels close to the adapter oc-

curs first in the layer after the one with intrinsic suppression (Fig. S8B), suggesting that

this aftereffect relies on the downstream propagation of suppressed outputs. Note also that

the discriminability effects are smaller when the layer with intrinsic suppression is more

downstream.

Fig. S9 Intrinsic suppression causes response reductions within the same layer,
whereas response enhancements and tuning peak shifts only emerge in down-
stream layers (expanding on Fig. 4). (A), Mean response change after adapting (shaded
area: 95% CI). Left: highly gender-selective units (|SI|g > 0.6, red) show response enhance-
ment after adapting to a gender stimulus opposite to their preferred gender; less selective
units (|SI|g < 0.6, blue) show response suppression. Left: magnitude changes for a net-
work with intrinsic suppression in all layers (see also Fig. 4B). Rest: magnitude changes
for networks with intrinsic suppression in only one layer (yellow markers). The first layer
to show suppression is always the first layer with intrinsic suppression, but enhancement
only emerges downstream. (B), Proportion of adapters causing the preferred morph level to
shift towards (attractive, pink) or away (repulsive, green) from the adapter, averaged across
units (shaded area: 95% CI). Left: peak shifts for a network with intrinsic suppression in all
layers (see also Fig. 4C). Rest: peak shifts for networks with intrinsic suppression in only
one layer (yellow markers). The first layer to show peak shifts is always downstream of the
first layer with intrinsic suppression.

The perceptual aftereffects in the model coincided with complex adaptation effects in

deeper layers, including response enhancement and tuning curve peak shifts (Fig. 4). As

expected, in the networks with intrinsic suppression in only one layer, response suppression

occurred already within the layer with intrinsic suppression, with little change in subsequent

layers (Fig. S9A, blue). This is generally consistent with Fig. S7. In contrast, complex



adaptation effects (i.e., response enhancements and tuning curve peak shifts) only occurred

in layers downstream from the layer with intrinsic suppression (Fig. S9A, red; B).

5 Intrinsic suppression in the proposed computational model cap-

tures the experimental data of Fig. 6 (Fig. S10)

Fig. S10 Adapting to prevailing but interfering input enhances object recognition
performance in the proposed computational model (expanding on Fig. 6). (A),
Participants showed an increase in categorization performance after adapting to the same
noise pattern (this is a repeat of Fig. 6C). Gray circles and lines denote individual partic-
ipants (N = 15). The colored circles show average categorization performance, error bars
indicate 95% bootstrap confidence intervals. Chance = 20%. (B), The proposed computa-
tional model could capture the effect in (A) with adaptation parameters α and β chosen to
impose suppression. To match the performance increase in humans, the suppression scaling
constant was lowered to β = 0.1 (for all other figures it was set to β = 0.7). (C), Adapting
the model for 40 time steps to the same-noise condition moved the fc8 representations of the
noisy doodles into more separable clusters matching the five doodle categories. The 3 axes
correspond to the first 3 principal components of the fc8 layer representation of all the test
images. Each dot represents a separate noisy doodle image, the color corresponds to the cat-
egory (as shown by the text in (D)). (D), Dissimilarity matrices for all pairs of images. Entry
(i,j) shows the Euclidean distance between image i and image j based on the fc8 features
before (time step 0) or after (time step 40) continuous exposure to same-noise. The distance
is represented by the color of each point in the matrix (see scale on right). Images are sorted
based on their categories. Adaptation leads to an increase in between category distances and
a decrease in within category distances as shown by the pairwise distance matrices.

The model with α and β fixed to impose suppression captures same pattern of results

as the psychophysics experiment in Fig. 1. To simulate the experiment, we fine-tuned the

pre-trained fully connected layers of AlexNet to classify high contrast (i.e., 40% as opposed

to 22% in the experiment) doodles on a noisy background. We used a set of 50, 000 doodle



images (10, 000 per category) that were different from the ones used in the experiment and

fine-tuned the fully connected layers of AlexNet (without intrinsic suppression) for 5 epochs

(i.e. 5 full cycles through the training images), with every epoch using a different noise

background for each image. We used the Adam optimization algorithm (63) with a learning

rate of 0.001, the sparse softmax cross entropy between logits and labels cost function, a

batch size of 100, and no dropout.

The model demonstrated the same effects as the human participants, showing increased

performance for the same-noise condition compared to the no adapter condition or different-

noise condition (Fig. S10B). Thus, adapting to a prevailing noise pattern improved the

ability to recognize test images and this effect could be accounted for by activation-based,

intrinsic suppression in a feedforward neural network. To visualize the effect of adaptation

for the same-noise condition on the representation of noisy doodles, we plotted each noisy

doodle image in a space determined by the first 3 principal components of the fc8 outputs.

Before adaptation (at time step 0), the colored dots representing the doodle images were not

well separated, because the noise obscures the relevant features of the doodles (Fig. S10C,

left). After exposing the network to the same-noise adapter for 40 time steps, adaptation

decreased the salience of interfering noise features and the representations of the doodle

images migrated into distinctly separable clusters (Fig. S10C, right). We quantified this

separation in feature space by computing dissimilarity matrices for all possible pairs of

images (Fig. S10D). Adaptation led to increased differentiation of the between-category

comparisons (off diagonal squares) and increased similarity between images within each

category (diagonal squares) from the initial conditions (left) to the final time step (right).

6 Equalizing the number of parameters for the trained intrinsic

suppression and recurrent networks (Fig. S11 and S12)

In Fig. 7 we showed that a network with intrinsic adaptation state could generalize well

to different adapter noise conditions, whereas a recurrent network failed to do so. Here, we

investigate whether this difference in generalization performance can be explained by the



Fig. S11 A trained network with intrinsic adaptation is more robust than a
recurrent neural network with the same number of parameters (expanding on
Fig. 7). (A-D), Results for the default network sizes shown in Fig. 7. The network with
intrinsic adaptation has 8 adaptation parameters: one α and one β per layer. The recurrent
network has 1,051,648 recurrent parameters: within each layer, each channel (convolutional
layers) or unit (fully connected layer) projects to all channels/units at the next time step, with
no weight sharing. (E-H), Results for networks with 8 adaptation/recurrent parameters.
The network with intrinsic adaptation is the same as in (A-D). The recurrent network is
reduced in size: within each layer, each channel/unit projects to two channels/units at the
next time step, and those two weights are shared across channels/units within a layer. (I-L),
Results for networks with 2240 adaptation/recurrent parameters. The network with intrinsic
adaptation is increased in size and has one α and one β per channel (convolutional layers) or
unit (fully connected layer). The recurrent network is reduced in size: within each layer, each
channel/unit projects to two channels/units at the next time step, with no weight sharing.
(B-D), Average generalization performance of the networks (pink: with intrinsic adaptation;
green: recurrent) under noise conditions that differed from training (the vertical line in (B)
indicates the Gaussian noise with SD = 0.32 that was used during training). Chance level is
at 20%, indicated by the black marker. Shaded bounds indicate standard error of the mean
(for 30 random initializations per network). Same conventions for (F-H) and (J-L).



difference in the number of parameters used to implement intrinsic adaptation (N = 8, i.e.,

one α and one β per layer) versus lateral recurrence (N = 1, 051, 648 recurrent weights), by:

(i) reducing the number of recurrent weights to N = 8, (ii) increasing the number of intrinsic

adaptation parameters and reducing the number of recurrent weights to N = 2240.

In the default size recurrent network, each channel (convolutional layers) and each unit

(fully connected layer) received lateral input from all within-layer channels/units at the

previous time step. To reduce these recurrent weights to 8, we designed an architecture

with only 2 recurrent weights per layer: each channel/unit only received lateral input from

2 other channels/units, and the input weights were shared across channels/units within a

layer (Fig. S11E). Despite the drastic reduction in recurrent weight parameters, the network

could generalize well when the adapter noise matched the training noise (Fig. S11F, dashed

line), but failed to generalize to different adapter noise conditions (Fig. S11F-H).

Next, we increased the number of parameters for the intrinsic adaptation network by us-

ing a different α and β for each channel (convolutional layers) or each unit (fully connected

layer), resulting in a total of 2240 adaptation parameters. For comparison, we created a

recurrent network with the same number of parameters: each channel/unit received lateral

input from 2 other channels/units, with no sharing of input weights across channels/units

(Fig. S11I). The intrinsic adaptation network with 2240 parameters showed impaired gen-

eralization to uniform noise, yet still performed better than the same-size recurrent network

in all noise conditions (Fig. S11J-L)). These results suggest that the intrinsic adaptation

mechanism provided a less complex solution that generalizes better regardless of the number

of parameters.

Finally, we assessed for each of these trained networks whether they also demonstrated

repetition suppression for doodle images (without noise), a hallmark property of neural adap-

tation. We compared the amount of response suppression for a repeated doodle (repetition)

with the amount of suppression for a doodle preceded by a different doodle (alternation). In

all networks, the response for a doodle repetition was lower than the response for a doodle

alternation (Fig. S12). However, in contrast with neural repetition suppression, the third



Fig. S12 Adaptation learnt by the recurrent network did not necessarily lead to
repetition suppression (expanding on Fig. 7). Average adaptation index per layer for
stimulus repetitions and alternations for the trained networks of Fig. S11 (error bars are
standard error of the mean for 30 random initializations per network). Repetition (purple):
the same doodle (no noise) was presented on time step 1 and time step 3, with blank input
at time step 2. Alternation (yellow): a different doodle was presented on time step 1 and
3. Y-axis: adaptation index, based on the average activation for the second (S2) versus first
(S1) stimulus presentation: (S2 − S1)/(S2 + S1). A negative value indicates suppression
for the second stimulus presentation, whereas a positive value indicates enhancement. To
replicate repetition suppression in the brain, the adaptation index for stimulus repetitions
should be negative on average.

and fourth layers of the default size recurrent network showed response enhancement for the

second stimulus, regardless of whether it was a repetition or alternation (Fig. S11A), sug-

gesting that this recurrent network solution differs in a critical way from neural adaptation

in the brain.

7 Adaptation maintains population homeostasis (Fig. S13)

Benucci et al.(55) showed that adaptation in cat V1 enforces a tendency toward equality

in time-averaged responses and independence in neural activity across the population. The

authors showed that, to achieve this, adaptation followed a simple multiplicative rule which

depends on stimulus attributes as well as neuronal preference, possibly resulting from intrin-

sic suppression at an earlier cortical stage. To evaluate whether intrinsic suppression in a

feedforward network could indeed capture their results, we simulated the main experiment

of (55) in the proposed computational model using the tilted gratings from Fig. S4 and the

face stimuli from Fig. 3.

Briefly, the gratings(/faces) were presented in random sequences of 220 presentations,



Fig. S13 Intrinsic suppression reduces time-averaged responses and decorrelates
responses for biased stimulus ensembles. (A), Time-averaged responses for each orien-
tation bin (i.e., units with the same preferred orientation), normalized by the time average
of each orientation bin for the homogeneous population in the uniform ensemble. First row:
time-averaged responses for the homogeneous population in the uniform stimulus ensemble
(each bin is normalized to 1). Middle row: time-averaged responses for the homogeneous
population in the biased stimulus ensemble. When the network is adapted to the uniform
ensemble (homogeneous population), time-averaged responses in the biased ensemble show a
strong peak around the more frequent orientation. Bottom row: time-averaged responses for
the adapted population in the biased stimulus ensemble. The higher response for the biased
stimulus is much attenuated when the network is allowed to adapt to the biased ensemble.
(B), Top row: covariance matrices for the homogeneous population in the uniform stimulus
ensemble. Diagonals are scaled to 1. Middle row: covariance matrices for the homogeneous
population in the biased stimulus ensemble (using the same scaling factors as the top row
panels). Population responses are highly correlated for orientation bins with a preferred
orientation similar to the more frequent orientation (central peak in covariance matrices).
Bottom row: covariance matrices for the adapted population in the biased stimulus ensemble
(using the same scaling factors as the top row panels). Adaptation decorrelates population
responses for orientation bins with a preferred orientation similar to the biased stimulus
(central peak in covariance matrices is much reduced compared to the middle row). (C,D),
Same as (A,B), but for the face stimuli (created with: webmorph.org) from Fig. 3.

webmorph.org


with one stimulus presentation per time step. In uniform ensembles, the probability of

each orientation(/face gender morph-level) was equal. In biased ensembles, the vertical

oriented grating(/gender neutral face) was presented at a higher probability of P = 0.5.

The network started in an unadapted state at the beginning of each sequence and adapted

throughout the sequence, resulting in a homogeneous population for uniform ensembles and

an adapted population for biased ensembles (terminology was chosen to match (55)). As

a control condition, we also simulated the experiment with biased sequences, but with the

network adapted to a uniform ensemble (i.e., homogeneous population). Before simulating

the experimental conditions, we ran a separate uniform ensemble to determine the preferred

orientation(/morph-level) of each unit and divided the population of each layer into bins

pooling units with the same preferred orientation(/morph-level).

Like the experimental results in cat V1 (55), adaptation in deeper layers of the proposed

computational model reduced time-averaged responses (Fig. S13A,C) and decorrelated pop-

ulation responses (Fig. S13B,D) for frequent stimuli in biased ensembles, in accordance with

the claim that adaptation enforces "a tendency toward equality and independence in neural

activity across the population" (55).
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