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Context-Robust Object Recognition via Object Manipulations
in a Synthetic 3D Environment

Abstract

The remote control is a small object that does not fly in the air and is generally found on a ta-
ble, not in the sink. Such contextual regularities are ingrained in our perception of the world and
previous research suggests that they can even influence human and computational models object
recognition ability. However, the exact effects of contextual information on object recognition are
still unknown for both humans and machine learning models. Here, we introduce a novel way of
studying the effects of different contextual cues in a qualitative and systematic way. We present a
diverse synthetic dataset created via a 3D simulation engine that allows for complex object modifica-
tions. Our dataset consists of more than 15000 images across 36 object categories and it is designed
specifically for studying the effects of gravity, object co-occurrence statistics, and relative size reg-
ularities. We conduct a series of psychophysics experiments to assess human performance and es-
tablish a benchmark for computational models on the dataset. Additionally, we test state-of-the-art
deep learning models on the same dataset and study how contextual information influences their
object recognition accuracy. Finally, we propose a context-aware recognition transformer network
that integrates contextual and object information via multi-head attention mechanism. Our model
captures useful contextual information that allows it to achieve human-level performance and sig-
nificantly better robustness in out-of-context conditions compared to baseline models across our
dataset and another existing out-of-context natural image dataset. Moreover, our model performs in
a way that is consistent with human object recognition and shows similar recognition artefacts.
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1
Introduction

When you see a remote control, how do you know that you are looking at a remote control? Visual

object recognition in its general form is computationally an incredibly hard task. Still, humans are

extremely good at telling objects apart in all sorts of lighting conditions, on different backgrounds,

and from various distances and angles. Object recognition feels instantaneous and effortless: it takes

less than 300 ms to assimilate an image and happens involuntarily (Potter, 1976) (Thorpe et al.,

1996). It is no surprise that such complicated and well optimized behavior is still an open problem
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for both computer science and neuroscience.

In the rest of this section, we hope to (1) give a brief summary about what we know about object

recognition in the brain, (2) offer a historical overview of the problem from a computer vision per-

spective, and (3) discuss some of the limitations of modern object recognition architectures and give

a short summary of our approach to making a context-robust model.

1.1 Object Recognition in the Brain: The Visual System

Before diving into the details of how the brain recognizes objects, it is worth noting that the visual

system performs many different tasks beyond object recognition. These tasks do not happen in

isolation of each other and they very often are needed as prerequisites for one another – e.g. light

photons need to be registered by the brain, the brain then identifies all of the objects in an image, it

determines their sizes, relative positioning, movement etc., before recognizing the objects themselves

(Sáry et al., 1993) (Adelson and Bergen, 1985) (Logothetis and Sheinberg, 1996). Therefore, here

we will define object recognition specifically as the task of naming a single given object in an image.

Note that we will assume that the boundaries of the object are already known, forming a distinction

from tasks such as image detection (detect and identify any object in an image) and image caption-

ing (describe what is happening in an image).

Some of the first more complete descriptions of the visual system come from Felleman and

Van Essen and their famous experiments on macaque monkeys (1991). Felleman and Van Essen

describe several different areas in the visual system organized in a hierarchical manner. All of these

areas can be roughly split into two parts: the ventral stream, known as the “what” pathway, and the

dorsal stream, known as the “where” or “how” pathway (Fig. 1.1). The difference between these

streams can be explained by the “perception/action” dichotomy (Goodale andMilner, 1992). The

ventral stream is often associated with perception of the stimulus, and thus it is involved in repre-
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senting and recognizing objects. The dorsal stream is responsible for more “action-based” tasks such

as avoiding an obstacle, eye movements, and grasping the object (Jeannerod et al., 1995). Note, that

while we often talk about the ventral and dorsal streams as two distinct and independent areas, they

still communicate with each other and recent evidence suggests that the connection between the

streams is involved in complex object-oriented hand movements (van Polanen and Davare, 2015).

While we still do not know everything about the visual system, we have good hypotheses about

the specific functions of the small areas within it. Kruger et al. (2012) summarize the role of each

area in the visual system. The photoreceptors in the retina pass information about the image to the

retinal ganglion cells and the lateral geniculate nucleus. The latter two areas play multiple roles in

processing information – cells there detect both spatial and temporal changes and therefore they are

often described as edge detectors. Other cells play the role of low-pass filters which helps the robust-

ness of the system by reducing noise (Merigan and Eskin, 1986). After the retinal ganglion cells and

the lateral geniculate nucleus, the information is forwarded to the primary visual cortex (V1) where

neurons respond to a wider variety of stimuli such as more edges, motion, color, depth, etc. The

next area is V2 which has all of the features seen in V1 but also adds contour representation which

helps with image segmentation. After V2, the visual system splits into the ventral and dorsal path-

ways which eventually end in the inferior temporal areas and in the intraparietal areas respectively

(Kruger et al., 2012).

In order get a better insight about how the brain resolves object recognition, we need to concen-

trate on the ventral pathway. Even though we have a relatively good understanding of lower visual

processing areas (retinal ganglion cells, lateral geniculate nucleus, V1, and V2), our understanding

of higher stages still remains limited. We know that V4 combines inputs mostly from V2 to create

more complex stimuli which are harder to interpret. It has been hypothesized that V4 and higher

areas encode invariant representations which helps us recognize objects in various conditions (Or-

ban, 2008). One example of such invariance is luminance invariance in V4 – color coding cells in V4

5



Figure 1.1: Hierarchical map of the visual system in macaque monkeys. Taken from Felleman and Van Essen, 1991.
Visual input is at the bottom, starting with retinal ganglion cells (RTC) and lateral geniculate nucleus (LTN); the visual
system culminates at the top where it makes connections with the entorhinal cortex (EC) and the hippocampus (HC).
The ventral stream is depicted on the right, ending in the inferior temporal (IT) areas (PIT, CIT, AIT). The dorsal stream is
depicted on the left, ending in the intraparietal (IP) areas (LIP, VIP).
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are different than color coding cells in V2 since they respond to hue rather than color opponency

(Rentzeperis and Kiper, 2010). This invariance representation allows the brain to concentrate on

important features of the image and generalize better when making object recognition decisions in

the later stages of visual processing – a dark green lime is still a lime but a yellow lime might look

more similar to a lemon.

Invariant coding is even more prominent at the final stages of visual processing – the inferior

temporal (IT) areas. Historically, the IT has been seen as being composed of two parts: the posterior

IT (also known as TEO) and the anterior IT (also known as TE)(von Bonin, 1947) (Boussaoud et

al., 1991) (Saleem et al., 2000). Some researchers have also considered parsing the IT into three parts

and adding a central IT area (Felleman and Van Essen, 1991) (Fig. 1.1). However, new evidence

shows that most likely the IT is comprised of four distinct functionally biased regions (Kravitz et

al., 2013) (Conway, 2018). Determining the exact structure of the IT has proven to be a very hard

task. The neurons in this region have much more complex activation stimuli than V4 and the overall

processing in the area is still not well understood (DiCarlo et al., 2012). Nevertheless, there is some

evidence showing that cells in IT are activated by a wide range of stimuli from simple oriented 2D

shapes (Brincat and Connor, 2004) to more complicated 3D objects (Yamane et al., 2008) and even

forms similar to hands and faces (Tanaka, 1996). More strikingly, it has been shown that neurons

preserve their activation preference over changes in luminance, clutter, position, size, etc. (Kreiman

et al., 2006) (Brincat and Connor, 2004), (Rust and DiCarlo, 2010), (Zoccolan et al., 2005), (Vogels

and Biederman, 2002).

In order to perform object recognition, the visual system has to complete two seemingly contra-

dictory requirements: selectivity and invariance (Kruger et al., 2012). The visual system needs to

respond to small differences in stimuli, so that it can differentiate between objects and detect small

changes in object appearance. At the same time, the visual system needs to represent many invariant

features, so that it can classify seemingly different visual stimuli as the same object. What makes the
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visual system so complex and interesting is not necessarily its ability to perceive different images but

the added ability to treat completely different visual stimuli like changes in object’s size, color, posi-

tion, illumination, etc. as the same object. All of this is achieved by neurons in V4 and in the IT that

respond to invariant stimuli.

All of these findings support the hypothesis that objects are represented in a distributed man-

ner in the brain, meaning that no single neuron is responsible for recognizing an object but it is

the combined activation of a group of neurons. Additionally, previous research has found that the

IT is sufficient to support core object recognition (Hung et al., 2005). Some results indicate that

very simple statistical classifiers such as support vector machines can be trained to recognize objects

only based on responses from IT neurons (Kiani et al., 2007) (Tompa and Sáry, 2010) (Rust and

DiCarlo, 2010). All of these neuronal responses have been shown to be present in passively look-

ing subjects that received no explicit training and therefore are likely the neural correlates for object

recognition (Hung et al., 2005).

Note that in our discussion so far, we have simplified many of the complications of the visual

system. We talked about the ventral stream as a stream of feed-forward connections, starting at V1

and ending at IT, but that is not necessarily the case. There is much evidence suggesting that there

are feedback connections between all different visual areas (feedback connections are not made only

on the retina) (Bullier, 2001) (Roelfsema et al., 2000). New research shows that feedback compu-

tations might be highly advantageous in areas like perceptual groupings based on long-range spatial

dependencies, visual reasoning, generalization, plasticity, and others (Kreiman and Serre, 2020).

Furthermore, not every connection is made between two “neighbouring” areas. There is evidence

suggesting that there are also some number of “jumping” connections between V2 and IT (Naka-

mura et al., 1993) and between V4 and IT (Saleem, 1992). These features of the visual system are

still poorly understood and more research is needed to investigate their role in object recognition.

To summarize, the visual system consists of ventral and dorsal streams, but it has been hypoth-
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esized that the ventral stream plays a more crucial role in object recognition. The ventral stream

consist of V1, V2, V4, and IT, and each area processes the visual information in a unique way before

passing it to the next. Object recognition requires neurons to compute invariant features, which is

a non-trivial task still not well understood by scientists. Since early visual neurons do not exhibit

invariance to the same extent as neurons in the IT, it is postulated that IT cells solve the problem of

object recognition in a distributed manner.

1.2 Object Recognition in the Computer: Machine Learning

The field of computer science has always been fascinated with the task of object recognition. One

of the first efforts in designing a computational model for the purposes of image recognition was

done as early as 1958 with the invention of the perceptron. The perceptron was first designed as a

mathematical model of the biological neuron (McCulloch and Pitts, 1943). The pioneering neural

architecture consisted of a single layer of output nodes connected with weighted edges another layer

of input nodes. Constructed for image recognition, it acted as a binary classifier based on a linear

activation function. It was the first supervised learning model – that is, an architecture that improves

its performance based on labeled input data (Rosenblatt, 1958).

Even though the perceptron on its own had very limited learning capabilities, it gave the foun-

dations on which the field of machine learning is standing. The invention of backpropagation

(Rumelhart et al., 1986) allowed scientists to combine multiple layers of neurons together and train

them on all sorts of tasks including object recognition.

In 1989, Yann LeCun demonstrated the power of backpropagation by applying it to the problem

of recognizing handwritten zip codes (LeCun et al., 1989). In his paper, LeCun used covolutional

networks which played a key role in recognizing the handwritten digits. Inspired by receptive fields

in the primate visual system (Fig. 1.1), convolutional neural networks (CNNs) have been used to
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Figure 1.2: An example of a convolutional layer. A convolution is performed with a kernel of size 3 × 3 on an input of
size 4× 4.

capture spatial and temporal dependencies in an image. They work by applying a number of filters

on the target image that extract high-level information such as the presence or absence of edges,

shapes, and patterns.

Convolutional networks typically have pooling layer and convolutional layers. Pooling layers can

be max pooling, average pooling, ROI pooling (e.g. see Fig. 2.1), etc., and they are usually used for

decreasing computational power and/or extracting dominant features. Pooling layers do not have

weights and they are not trainable. Convolutional layers (Fig. 1.2) on the other hand can be trained.

They are mainly used for feature extraction and finding patterns (Albawi et al., 2017). Nowadays,

both pooling layers and convolutional layers are used in every object recognition model due to

their powerful feature extraction capabilities and fast computations. However, their full capabili-

ties were not fully utilized by machine learning models until 2012, when AlexNet (Krizhevsky et

al., 2012) won one of the biggest object recognition annual competitions – ImageNet Large Scale

Visual Recognition Challenge (Russakovsky et al., 2015) by a large margin.
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AlexNet is sometimes considered to be the founding network of modern object recognition

(Alom et al., 2018) due to its revolutionary for its time approach to the problem. The network was

inspired by more than a decade-old LeNet (LeCun et al., 1998) that was one of the first networks

to use layers of CNNs to extract a feature map from an image. AlexNet build off LeNet by intro-

ducing more CNNs and thus making the network even deeper and wider. To be able to train such

big network efficiently, the authors used a Graphic Processing Units (GPU) implementation which

started the everlasting practice of using GPUs for training machine learning models. This combina-

tion of using a big number of convolutional layers in a network trained on a GPU proved to be very

successful as AlexNet achieved lower error rate than any state-of-the-art model at the time (15.3%

versus 26.2% (second place) error rates).

More specifically, the architecture of AlexNet consists of 5 convolutional layers followed by 3

fully-connected layers (see Fig. 1.3). The first 2 convolutional layers are also followed by local nor-

malization and max pooling layers, whereas the first 2 fully-connected layers are used with dropout.

The last layer is a softmax layer. All layers are followed by ReLU non-linearity (Krizhevsky et al.,

2012). Due to using GPUs for training, AlexNet was also able to be much larger than other net-

works at the time. The total number of parameters in AlexNet is on the order of 61M and the total

number of connections is over 600M (Alom et al., 2018).

It is safe to say that AlexNet had a big impact on the field of object recognition and machine

learning as a whole. Currently, most machine learning models designed for any task use at least some

number of convolutional layers and are typically trained on a GPU.Most state-of-the-art architec-

tures also have much more than 61M parameters and 600M connections (Alom et al., 2018).
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Figure 1.3: A diagram of the architecture of AlexNet. AlexNet consists of 5 convolutional layers, followed by 3 fully‐
connected layers. The diagram shows all of the layers and the size of the feature map after every layer.

1.3 Out-of-context Object Recognition

Some of the more popular architectures that were designed after AlexNet include the R-CNN fam-

ily (Girshick et al., 2014) (Girshick, 2015) (Ren et al., 2015), VGGNet (Simonyan and Zisserman,

2014), the YOLO network (Redmon et al., 2016), ResNet (He et al., 2016), and DenseNet (Huang

et al., 2017). While all of these networks have proven themselves to be incredibly powerful tools

for recognizing objects, they still have not matched human recognition performance on a variety of

tasks. Additionally, all of these networks have been shown to produce many non-human like errors

– like being fooled by changes of a few pixels in an image (Serban et al., 2020) or by changes in the

contextual information of an image (Rosenfeld et al., 2018) (Zhang et al., 2020).

Such mistakes happen due to the fact that neural networks are incredibly powerful association

machines. They learn co-occurrence statistics not only between the object’s appearance and its label

but also between the object’s background and its label (Divvala et al., 2009) (Sun and Jacobs, 2017)
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(Beery et al., 2018). Previous research has shown that context plays a major role in object recogni-

tion in both humans and machines (Torralba et al., 2003) (Choi et al., 2012) (Zhang et al., 2020).

Deep networks trained on natural image datasets like ImageNet (Krizhevsky et al., 2012) have been

demonstrated to rely strongly on context (Geirhos et al., 2018), (Brendel and Bethge, 2019), (Singh

et al., 2020). While, intuitively relying on context might seem beneficial due to having more visual

information to work with, when a model relies too much on context it can be detrimental to its

performance. Indeed, research shows that such models often fail when objects are placed in an in-

congruent context (Rosenfeld et al., 2018) (Zhang et al., 2020).

Most work in the literature has represented context in an oversimplified way - just as the back-

ground of an image. This includes testing the generalization to new backgrounds (Beery et al.,

2018), incongruent backgrounds (Zhang et al., 2020), exploring impact of foreground-background

relationships on data augmentation (Dvornik et al., 2018), and replacing image sub-regions by an-

other sub-image i.e. object transplanting (Rosenfeld et al., 2018). However, we still do not under-

stand how other more complex contextual irregularities affect object recognition. To the best of our

knowledge, there is no existing work exploring aspects of object context such as gravity and object

size regularities.

Here we develop a novel way to systematically and quantitatively study the effects of context on

object recognition. We leverage the power of a 3D simulation engine that allows for complex ob-

ject manipulations to create a new out-of-context image dataset. The dataset is designed to help us

rigorously study the effects of 6 contextual conditions - normal context, gravity violation, object co-

occurrences violation, size regularities violation, combination of gravity and object co-occurrences,

and no context.

We used the generated images to gain insight into how these particular contextual irregularities

affect object recognition performance in both humans and state-of-the-art computer vision mod-

els. To do that, we conducted a series of human psychophysics experiments which allowed us to
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establish a benchmark for the task. We also tested three state-of-the-art machine learning models and

assessed the effects of context violations on these models.

Finally, in an effort to create a more biologically plausible neural architecture that produces more

robust object recognition predictions, we propose the Context-aware Recognition Transformer

Network (CRTNet). CRTNet consists of two streams - a context stream and a target stream. The

context stream processes and integrates contextual and target cues via multi-head transformer de-

coding layers. The target stream processes only the target object and uses a confidence estimator to

combine the information from both streams.
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2
RelatedWork

In this section, we will review some of the state-of-the-art object recognition models that will also

appear later in our analysis in constructing baseline performance. Namely, we will review Faster R-

CNN (Ren et al., 2015), DenseNet (Huang et al., 2017), and CATNet (Zhang et al., 2020). We

chose these models because of their high levels of acceptance and impact on the field (Faster R-

CNN and DenseNet have been cited more than 14000 times each) or their direct applicability to

the task of out-of-context object recognition (CATNet has shown promising human-like object
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recognition features).

The goal of this section is not teach the reader everything there is to know about Machine Learn-

ing nor to present all of the details connected to these state-of-the-art models. This would have

taken many pages and it is not in the scope of this senior thesis. Instead, we hope to provide the

reader with some context about what state-of-the-art object recognition architectures look like and

how their shortcomings have informed the design of our novel model introduced in Section 3.

2.1 Faster R-CNN

One of the most popular and best performing deep learning architectures is Faster R-CNN. It

was designed in 2015 inspired by a series of “Region-Based Convolutional Neural Networks” (R-

CNNs) (Ren et al., 2015). The most popular members of the R-CNN family include R-CNN

(Girshick et al., 2014), Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015), and

as the names suggest the evolution between versions has been mainly concentrated on improving

computational efficiency.

Here we will quickly describe the structure of Faster R-CNN and explain how we modified it for

the purposes of the project. Faster R-CNN consists of the following regions:

1. Region Proposal Network: A region that generates plausible segmentations of the image

identifying the location of different objects within it. This stage is used for object detection

(i.e. when the location of the object of interest in the image is unknown).

2. CNN for Feature Extraction: A region that processes the different parts of the image and

generates features used for recognizing the object. This is the main part of the network re-

sponsible for object recognition.

3. Classification Stage: A final stage used to predict the label for the target object and/or im-
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prove bounding box prediction.

Note that Faster R-CNNwas first designed for the task of object detection, so in its original ver-

sion it contains a network that allows for generating guesses about the location of the objects in the

image (i.e. generating bounding boxes). However, for the purposes of this project, we will ignore

that stage and will assume that the location of the object of interest is known to us. Thus, our imple-

mentation of the model replaces the region proposal network with the ground truth bounding box

that comes with our data (Fig. 2.2).

A crucial part of object recognition is the process of feature extraction. Just like all other state-of-

the-art models, Faster R-CNN achieves this feature extraction through the use of a convolutional

neural network. The architecture first resizes the input image to 1000 × 600 and then it feeds the

resized image into a pretrained deep CNN such as VGG-16 (Simonyan and Zisserman, 2014) or

ZF-Net (Zeiler and Fergus, 2014). The CNN, in the case of VGG-16, extracts features of the image

through a series of 13 convolutional layers with stride 1 and 4 max pooling layers with stride 2. The

end result of the feature extraction is a feature set of size 60 × 40 × 512 (since the maxpooling

layers half the size of the image every time and there are 512 channels in the last convolutional layer

(Simonyan and Zisserman, 2014)). This step is crucial since it provides the network with plenty of

useful features that can be used for object recognition.

Next, the feature set is forwarded toRegion of Interest (ROI) pooling layer. The ROI pooling

layer works by taking the bounding box corresponding to the target object and dividing it into a

fixed number of roughly equal sized regions (in the case of Faster R-CNN that is 49 regions orga-

nized in a square 7 × 7). Max pooling is performed to obtain the largest number from each region.

Thus, we obtain an output of 7 × 7 × 512 from the ROI pooling layer. This stage has proven to

be incredibly useful for the network since it reduces the computational complexity of the model and

allows it to concentrate on the target object. For an example of ROI pooling, see Fig. 2.1.
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Figure 2.1: An example of ROI pooling. An example of ROI pooling that takes 7× 5 table and outputs 2× 2 table. The
bolded cells represent the region of interest (i.e. the location of the target object in Faster R‐CNN) over which we are
performing max pooling.

Image

1000 x 600px CNN 
(e.g. VGG-16)

feature set
(60 x 40 x 512) ROI

Pooling
FC

layer
FC

layer
FC

layer
classification

(softmax)

feature set
(7 x 7 x 512)

4096
units

4096
units

N
units

N
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Figure 2.2: A diagram of our modified Faster R‐CNN. The model takes an image, extracts a set of features from it and
finally classifies it. We omit the region generation stage described in the original Faster R‐CNN (Ren et al., 2015) since
the location of the target object is known in our problem setup. Here, N denotes the number of possible object classes.

Lastly, the output of the ROI pooling is fed into three fully connected layers, and finally in a

softmax layer, allowing the model to classify the target object. For more details about the sizes of

each layer, refer to Fig. 2.2.

Through its use of state-of-the-art CNN for feature generation and ROI pooling for reducing

complexity, Faster R-CNNmanages to integrate both power and speed in tackling object recogni-

tion. An interesting artefact of the CNN processing is the integration of contextual information

in the feature set. In our further analysis, we will explore how that use of contextual information

affects the performance of the model on various image datasets.
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2.2 DenseNet

Arguably, one of the most recent big advances in the field of object recognition was made by the

paper given Best Paper Award in the 2017 Conference on Computer Vision and Pattern Recog-

nition: “Densely Connected Convolutional Networks” (Huang et al., 2017). There, Huang et al.

present their novel neural network architecture titled Dense Convolutional Network (DenseNet).

DenseNet can be seen as a logical extension of ResNet (He et al., 2016), another very influential

deep learning architecture. Both models make use of the idea that deeper networks and more fea-

tures means more predictive power but DenseNet organizes its features in a more effective way, as

we are going to see in this section.

One of the biggest improvements that DenseNet introduced in the field is the concept of dense

blocks (Fig. 2.3). Dense blocks represent series of a batch norm (Santurkar et al., 2018), a ReLU ac-

tivation, and a 3 × 3 convolution layers. Historically, layers in neural networks were almost always

connected in a feedforward fashion without any jumping connections. However, in dense blocks,

the layers are fully connected, meaning that every layer uses the outputs of the previous layers to

compute a feature set. This strategy of reusing feature sets has showed a lot of promising benefits

such as overall reduction of the number of parameters, strengthened feature propagation, and re-

solving problems such as the vanishing gradient problem (Hochreiter, 1998) and overall making it

easier to train the network (Huang et al., 2017).

A crucial component of the dense block is its growth rate k. The growth rate indicates howmany

new feature sets are created after each layer. Since dense blocks effectively concatenate all of the

generated feature sets, and no feature is wasted, the output of a dense block is its input combined

with all of the generated features (Fig. 2.3). Huang et al. recommend using a growth rate of k = 32.

However, if the number of feature sets increase by 32 after every layer, how does DenseNet main-

tain a low number of parameters? To achieve this, the authors employ two strategies: the use of
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Figure 2.3: A diagram of a dense block. This figure presents a 3 layer dense block with a growth rate of k = 3. Each
layer typically consists of a batch normalization, a ReLU activation, and a 3 × 3 convolution. The layers use all previous
feature sets to produce a new one. The output of the denseblock is the concatenation of all feature sets.

narrow layers and bottlenecks. DenseNet exhibits lower need for wide layers due to its densely con-

nected blocks and the reuse of features. Thus, before every dense block, an average pool with stride

2 is used to sample down the number of parameters in the feature sets. This reduces the size of the

feature sets and allows the model to be more efficient. The second optimization involves the use of

1 × 1 convolution bottlenecks after every dense block which reduce the number of feature sets. The

authors also perform compression to further improve the performance of the model.

Putting all of this together, the entire structure of DenseNet is shown in Fig. 2.4. The model uses

a cropped image of the target object; it processes initial features with one convolutional and one max

pool layer, after which it uses 4 dense blocks with their corresponding 1 × 1 convolutional bottle-

necks and average pooling layers; and the model makes a final prediction in its fully connected layer

with softmax activation. There are different versions of DenseNet depending on the total number

of parameterized layers that they use. In our further analysis, we used DenseNet-169 which contains

12 convolutional layers in its first dense block, 24 in its second, and 64 in its third and fourth dense

blocks (plus 4 other convolutional layers and one fully connected one, for a total of 169).

By integrating dense blocks, convolutional bottlenecks, and multiple different pooling layers,

DenseNet managed to improve state-of-the-art results on ImageNet, CIFAR-10, CIFAR-100, and
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Figure 2.4: A diagram of DenseNet that we used. The model takes a cropped image of the target object resized to
224 × 224. Processing begins by extracting some features from the image via a set of convolutional layers and a
max pool layer. After that the feature set goes through series of a dense block, a convolutional layer, and an average
pool layer. After the last dense block, the feature map goes trough a global average pool layer. Finally, the model ends
with a fully‐connected layer and uses a softmax activation to classify the image. Here, N denotes the number of possible
object classes.

SVHN, whilst requiring less computational power. An interesting artefact of the model is that,

it does not use any contextual information, since it takes a cropped image of the target object. In

our further analysis, we will aim to explore how that design choice affects the performance of the

algorithm on in and out-of-context image recognition and how we can improve it.

2.3 CATNet

One of the recent models designed specifically for human-like object recognition is the Context-

aware Two-stream Attention Network (CATNet) (Zhang et al., 2020). CATNet has shown promis-

ing results on object recognition tasks, but more importantly, it has also exhibited more human-like

performance on these tasks (i.e. being able to recognize objects in conditions that are easy for people,

and having difficulties recognizing the object when people also fail to do so). Unlike other object

recognition algorithms, CATNet is able to implicitly incorporate contextual information in pro-

ducing label predictions. Similar to how the human-eye processes information, CATNet treats the

foveal (object) and peripheral (contextual) information separately, here labeled Io and Ic, respec-

tively, and then aggregates the information to produce a class label.

Here, we describe CATNet’s structure, consisting of three regions (also depicted in Fig. 2.5):

1. CNN Feature Extraction: This is similar to Feature extraction in Faster R-CNN (see Sec.
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Figure 2.5: A diagram of CATNet. This diagram depicts CATNet’s three regions: feature extraction, attention modulation,
and recurrent memory. The first two regions process the object and context streams separately, whereas the third
region produces a class label from their concatenation. These regions are repeated for a set number of time steps, the
first two of which are illustrated here. Image taken with permission from Zhang et al., 2020.

2.1). The difference is that CATNet performs feature extraction for the object stream and

context stream in parallel to produce an object and a context feature map.

2. AttentionModulation: This region mimics human cognitive attention by using a soft-

attention mechanism (Ba et al., 2014) to enhance the important parts of the object and con-

text information and fade the less important parts. This is done at each time step for the

context and object streams in parallel and the outputs are “the context gist” and “the object

gist.”

3. Recurrent Memory: This final region uses a Long Short-TermMemory (LSTM) (Hochreiter

and Schmidhuber, 1997) network to predict a class label for the target object at each time

step from the attention region results.

Similarly to Faster R-CNN, CATNet also uses a feed-forward CNN such as VGG16 (Simonyan

and Zisserman, 2014) pre-trained on ImageNet (Deng et al., 2009) to extract object and context

feature maps. The context feature map, ac, consists of feature vectors aci of dimensionD. These
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feature vectors represent the context input image Ic at the location i = 1, ...,W × H, whereW and

H are the width and height of the feature map, respectively.

ac = {ac1, ..., acW×H}, aci ∈ RD

The object feature map ao is of the same form but instead takes the input Io.

The next region is the attention modulation, which specifically focuses on the important parts

of the object and context information. This is done for both streams at each time step, ti. Here, we

will explain only how the context gist is calculated from the context feature map, but the object gist

follows the same steps.

A soft-attention module (Ba et al., 2014) is used to compute a scalar acti for each location in ac,

that indicates the relative importance of that location in capturing the context gist. All attended

regions are not necessarily useful for context reasoning, so the soft-attention module is also used to

predict a gating vector that represents the relative importance of each contextual observation (Xu et

al., 2015). The model uses the context attention map combined with the previous hidden state of

a recurrent neural network, labeled αcti, and the gating vector, labeled Βc
ti to calculate ẑct, the context

gist, as follows:

ẑct = ΣW×H
i=1 Βc

tiαctiaci

ẑot is calculated in a similar manner.

The final region, the recurrent memory, combines both streams and uses an LSTM network

(Hochreiter and Schmidhuber, 1997) to predict the class label yt for target objects at each time step

(Zaremba et al., 2014). The LSTM uses the overall gist vector, ẑt, which is a concatenation of the

context gist and object gist, ẑct and ẑot . The label yt is predicted by computing a classification vector

given the hidden state of the LSTM network. The most probable class from the classification vector
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is used as the predicted label yt at the current time step.

One of the most important novel contributions of CATNet includes the utilization an attention

modulation, combined with a recurrent memory used for processing both object and context in-

formation. By attenuating to contextual cues, CATNet has shown promising results in the field of

out-of-context object recognition. It has exhibited high accuracy but even more importantly more

human-like recognition when it comes to which images are easier or harder to recognize. In our

further analysis, we will build off CATNet’s attention module and explore how it can be improved.
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3
Context-aware Recognition Transformer

Network

Inspired by the robustness of human object recognition and by previous work in the field of com-

puter vision, we developed the Context-aware Recognition Transformer Network (CRTNet).

CRTNet combines advantages from Faster R-CNN (integrated contextual information) (Ren et al.,

2015), DenseNet (powerful feature map) (Huang et al., 2017), and CATNet (the use of attention)
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(Zhang et al., 2020) to recognize objects in a more accurate, more robust, and more human-like way.

In this chapter, we aim to describe the model and offer the motivation behind our design choices.

We will start by giving an overview of how CRTNet works and then we will discuss each part of the

network in depth.

3.1 Overview andMotivation

Contextual information matters. Multiple studies have shown that context can be both benefi-

cial and detrimental to the performance of neural networks (Rosenfeld et al., 2018) (Singh et al.,

2020) (Zhang et al., 2020). However, this fact is not utilized in some state-of-the-art networks like

DenseNet which processes only the target object while ignoring all contextual information. We

designed CRTNet that utilizes DenseNet’s powerful feature extraction and improves upon it by

integrating contextual information in the model. To achieve that, we decided to use a two-stream

network that processes contextual information in one stream and the isolated target object in the

other stream (see Fig. 3.1).

Therefore, our model needs to take two images: the target object image with no contextual in-

formation It, and the original image containing all of the contextual information Ic. Note that It is

the original image cropped around the bounding box of the target object. Similarly to DenseNet,

both It and Ic are resized to 224 × 224 before they are passed to the network. After the images are

passed to CRTNet, they are independently and simultaneously processed by DenseNet-like feature

extractor networks. These networks produce feature maps ac and at that are further processed in the

two steams of the model.

The context stream of CRTNet uses both feature maps ac and at, and it passes them through a

transformer decoder (Vaswani et al., 2017). The transformer decoder consists of 6 layers and follows

the original structure described by Vaswani et al., 2017. Every layer of the transformer decoder at-
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Figure 3.1: A diagram of CRTNet. Image created jointly with Mengmi Zhang. The diagram depicts the architecture of
CRTNet. The network consists of 3 main modules: feature extraction, context stream that integrates context and target
information via a transformer decoder, and the target stream which consists of a confidence estimation and classifica‐
tion. CRTNet takes the cropped target object It and the entire context image Ic as inputs and extracts their respective
features. These feature maps are then tokenized and the information of the two streams is integrated over multiple
transformer decoding layers. CRTNet also estimates a confidence score of recognizing the target object based on object
features alone, which is used to modulate the contributions of yt and yt,c to the final prediction yp. The dashed lines in
a backward direction denote gradient flows during backpropagation. The two black crosses denote where the gradient
updates stop.

tenuates to parts of the context while also processing the target object at the same time. The output

of the last layer is put through a classification layer with a softmax activation to give us a prediction

vector.

The target stream only uses the target image feature maps. Without further processing, the

stream passes at through a classification layer which produces another prediction vector. The model

estimates how confident it is that prediction, after which it combines the prediction vectors ob-

tained from both streams in a weighted sum and makes a final decision about the object’s identity.

3.2 Feature Extraction

As discussed above, CRTNet takes Ic and It and passes them through 2D-CNN feature extractors.

The feature extractors are implemented by using a DenseNet-like architecture pre-trained on Ima-
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geNet (Deng et al., 2009). More concretely, we use a modification of DenseNet-169 containing only

the convolutional layers without the last fully connected layer.

The outputs of the feature extractors are ac and at. Both ac and at are of sizeD×W×H, whereD

is the final number of channels,W is the width, andH is the height of the feature maps. Consistent

with the original implementation of DenseNet-169, our final feature maps are of size 1664× 7× 7.

Note that in both ac and at, the spatial organization of the features is preserved, so the following lay-

ers can make use of the contextual information as it appears in Ic. Furthermore, we do not enforce

parameter sharing, so when we finetune the network, the weights in the two feature extractors will

be different. This is consistent with our assumption that contextual information might contribute

in different ways to recognizing the object than direct information about the target object.

3.3 Tokenization and Positional Encoding

After obtaining the feature maps from the feature extractors, CRTNet needs to tokenize them be-

fore passing them to the transformer decoder. To tokenize ac, we follow a simple procedure de-

scribed by (Dosovitskiy et al., 2020). We createW × H tokens, where token i contains all of the

channels at location i from the feature map. Therefore, all of our tokens are of sizeD. Note that

since ac preserves the spatial organization of Ic, each token will represent exactly one location of the

image.

In order to tokenize at, we repeat the same procedure but after obtaining all of theW×H tokens,

we aggregate them through average pooling. We end up with one token Tt of sizeD.

Tt =
1

W ·H
∑

i=1,...,W·H
ait (3.1)

To identify the location of each token in the original image, CRTNet learns a positional embed-

ding aip ∈ RD for each location i of the image (see Fig. 3.2). For the target token Tt, we use the
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Figure 3.2: CRTNet learns reasonable positional embeddings for feature tokens. The figure shows the similarity of posi‐
tion embeddings of CRTNet. Each tile shows the cosine similarity between the position embeddings of the patch with
the indicated row and column and the position embeddings of all other patches. We can see that in general, the posi‐
tional embeddings are more similar if they are closer to each other. See the color bar on the right for cosine similarity
values. Figure generated by Philipp Bomatter.

positional embedding corresponding to the location, within which the bounding box midpoint is

contained. We denote the positionally-encoded context and target tokens by zc and zt respectively.

zc = ac + ap ap ∈ R(W·H)×D (3.2)

zt = Tt + alp alp ∈ RD (3.3)

The new positionally-encoded tokens are then forwarded to the transformer decoder.

3.4 Transformer Decoder

The transformer decoder that we used followed very closely the original architecture proposed by

Vaswani et al., 2017. It consists of 6 layers, where each layer takes as input all of the context tokens:
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zc and the output of the previous layer (or zt, if it is the first layer). The transformer decoder layers

use zc to compute keys and values, and zt or the output of the previous layer to generate queries in

the transformer encoder-decoder multi-head attention layer.

The structure of every layers is as follows. It starts with a typical encoder-decoder attention layer

(EDA), the output of which is passed through a dropout layer (DROP) and a layer normalization

(LN). This is followed by a feed-forward multi-layer perceptron network (MLP), the output of

which is also passed through a dropout and layer normalization. The encoder-decoder attention

layer allows the network to attenuate to different contextual information within the image, while

the feed-forward network allows it to integrate that information. The dropout and layer normal-

ization help to reduce overfitting, smooth gradients, and make training easier. The multi-layer per-

ceptron network consist of two layers with a ReLU non-linearity. All of this is summarized in the

following equations:

zt,c = LN(DROP(EDA(zt, zc)) + zt) (3.4)

z′t,c = LN(DROP(MLP(zt,c)) + zt,c) (3.5)

Each of the 6 layers performs the calculations above and passes the result (z′t,c) to the next layer

(and becomes the new zt). We use 8-headed selective attention as suggested in the original trans-

former (Vaswani et al., 2017) to ensure that the model will concentrate on different contextual in-

formation. We provide an example visualization of the transformer attention in Fig. 3.3.

3.5 Label Prediction

The context stream of CRTNet ends with classification layer (Gz) which consists of a fully-connected

layer and a softmax layer. The classification layer takes as an input the output of the last transformer
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Figure 3.3: Visualization of attention maps over all transformer decoding layers. We show the attention map averaged
over all attention heads within the same layer. The original image is shown in the first column (the top two rows show
examples from the COCO‐Stuff dataset (Caesar et al., 2018) and the bottom two rows show examples from our Virtu‐
alHome dataset. We can see that the transformer decoder ultimately pays attention to important parts of the image
(e.g. the toilet in the bathroom contains more information about the room than the wall). Figure generated by Philipp
Bomatter.
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decoder layer z′t,c and predicts a label yt,c:

yt,c = Gz(z′t,c) (3.6)

Similarly, the target stream uses the target feature map at to make a prediction yt with a classifica-

tion layerGt that has the same structure asGz, but potentially different weights. However, the target

stream also calculates a confidence estimation p for yt through a feed-forward multi-layer perceptron

confidence estimatorU. Additionally, a sigmoid function is used to normalize the confidence score

to [0, 1].

yt = Gt(at) (3.7)

p =
1

1+ e−U(at)
(3.8)

The main purpose of p is to inform the network to what extend it should use the prediction from

the target stream yt versus the prediction from the context stream yt,c. To express that, we calculate a

final prediction yp that is a confidence-weighted average of yt,c and yt:

yp = pyt + (1− p)yt,c (3.9)

Here it is worth noting a few consequences of the confidence estimation. If p = 1, then CRT-

Net would have been essentially the same as DenseNet. While this can be very beneficial when the

network clearly recognizes the object, it can also be detrimental if the context is useful. On the other

hand, if p = 0, then we rely on the entire image including context. While this allows us to use

all of the available information, it can also be detrimental if the model relies too much on faulty

context. Therefore, we introduced a way to learn to assign p, so that CRTNet relies on contextual

information only if it cannot recognize the object on its own. This way, we can both benefit from
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contextual information when it is useful and learn to ignore it when we do not need it.

3.6 Training

Finally, we will discuss how the network was trained. We used three different cross-entropy losses:

with respect to yt, yp, and yt,c (see Fig. 3.1).

1. We trainedGt with respect to yt. This allowsGt to concentrate on improving its classification

of at and does not add other unknowns that might have been introduced if we trained on yp.

2. We trainedUwith respect to yp. Similarly, as above, the confidence estimator affects only yp,

and thus it makes sense for it to be trained only with respect to it. Intuitively, this allowsU to

increase p if at on its own was responsible for that prediction.

3. We trained the rest of the network with respect to yt,c.

Note that the feature extractors are also trained with respect to yt,c, even though the target feature

extractor influences bothU andGt (in Fig. 3.1 this gradient detachment is denoted by the two black

crosses). We made this decision because we did not want the accuracy of the transformer decoder to

be affected by the target stream and yt. Further testing with and without detachment of the gradient

in the target stream proved that CRTNet indeed performs better when the gradient is detached.
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4
Datasets

The main goal of this project is to study how context influences object recognition. To do that, we

need image datasets that allow us to change only the features of the context that we want to study,

and control for all other unintended effects. Here we describe two datasets that we used for our fur-

ther analysis: (1) the VirtualHome dataset, which is our original dataset created via manipulations in

a 3D synthetic environment, and (2) the Cut-and-paste dataset, which is a dataset of natural images

created by Zhang et al., 2020 and designed for studying the effects of context.
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4.1 VirtualHomeDataset

To create our original dataset, we decided to use VirtualHome – a platform that allows for simula-

tion of complex household activities and control over a variety of properties of everyday objects in

a 3D environment (Puig et al., 2018) (Liao et al., 2019) (Puig et al., 2020). VirtualHome strikes a

perfect balance between being a powerful platform that allows for complex object manipulations

and being easily controlled through a Python API.

VirtualHome supports 225 different objects and offers 7 different virtual apartments each con-

sisting of 5 rooms that include furnished bedrooms, kitchens, study rooms, living rooms and bath-

rooms. VirtualHome allows users to programmatically add, remove and modify objects through

the environment graph. The environment graph is a way to describe the state of the apartments. It

represents objects as nodes and spatial relationships as edges. The graph can be used to query in-

formation about the apartments but also change their states. We used the environment graph to

modify properties of the objects in the apartments, and then we took series of pictures from differ-

ent angles of the modified objects to be used in our datasets. For the rest of this section, we proceed

with description of the methods used to create the six context conditions that we used: in-context,

gravity violation, co-occurrence statistics violation, size violation, a combination of co-occurrence

statistics and gravity violation, and a no context condition (see Fig. 4.1).

4.1.1 In-context Objects

First, we needed to generate a dataset that would be used as a control condition when studying con-

text. To do that, we generated images of objects in their natural context. Note that defining “natural

context” is not a trivial task since there are often multiple ways to do this. To determine what “natu-

ral context” means in this scenario, everyone working on this project filled a matrix indicating which

locations are natural for which objects. The average of everyone’s responses can be seen in Table A.1
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in-context gravity violation

co-occurrence statistics violation size violation

co-occurrence statistics violation
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no context

Figure 4.1: Examples of a toothpaste placed in all six contextual conditions.
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and Table A.2.

To generate the images, we placed every object in each of the locations that are considered natural

for it (e.g. a remote control on a TV stand or a toothpaste on the bathroom counter). For every ob-

ject placement, we took pictures of the object from a maximum of 9 fixed view angles. The azimuth

angles ranged from 0 to 320 degrees in steps of 40 degrees, fixed elevation angle of 19.5 degrees and

radius of 1.5 meters; in some special cases, the elevation angle was set to−19.5 degrees to prevent the

camera from penetrating the ceiling.

After filtering, the code produced 2,309 unique images. Refer to Fig. 4.2 for example images in

this condition.

Here and in all other experimental conditions, we used the following 36 object categories: apple,

bar soap, book, candle, cellphone, cereal, Chinese food, chocolate syrup, coffee maker, condiment

bottle, condiment shaker, cupcake, cutlery knife, cutlets, dish bowl, dishwashing liquid, keyboard,

lime, microwave, milkshake, mouse, mug, peach, pie, pillow, plate, plum, pound cake, pudding,

remote control, slippers, toothbrush, toothpaste, towel, washing sponge, wine glass. For example

images of every category, refer to Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.6, Fig. 4.7, and Fig. 4.8.

Generating pictures of in-context objects served a dual purpose. On one hand, we were able to

obtain a neutral dataset that we could use for a control condition. On the other hand, we were able

to obtain many different natural positions for the objects which were used as a base for generating

the contextual irregularities in our other conditions (with the exception of the co-occurrence viola-

tion condition). Note that this allows us to change the context in the images in a controlled manner

– one element at a time.

4.1.2 Gravity Violation

Intuitive physics is the hypothesis that humans understand Newtonian physics on an intuitive level

and are able to predict a wide variety of physical events (McCloskey, 1983). There is a growing
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plate towel

peach pillow

dishwashing liquid mouse

Figure 4.2: Examples of in‐context images.
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amount of literature suggesting that intuitive physics plays a crucial role in a wide variety of tasks

such as mass approximation, estimating the projection of a falling object, and is even inversely corre-

lated with our ability to understand other people’s intentions (Baron-Cohen et al., 2001) (Kubricht

et al., 2017). There is even some effort to create computational models of intuitive physics and in-

troduce it in neural networks (Battaglia et al., 2012) (Agrawal et al., 2016).

Following the discussion on intuitive physics in the field, we wanted to see if violating a law of

physics such as gravity will have any effects on object recognition in both humans and machines. To

do that, we lifted the in-context objects up by 1 meter and proceeded to take multiple pictures of

them from different angles in a similar manner as described in the previous subsection.

After filtering, the code produced 1,453 unique images. Refer to Fig. 4.3 for example images in

this condition.

4.1.3 Co-occurrence Statistics Violation

Objects do not exist in isolation – they co-occur with backgrounds, other objects, and various scene

properties. You will probably never see an oven in the ocean or coral reefs in your kitchen but swap-

ping oven and coral reef yields much more likely combinations. It has been shown that humans

recognize an object faster and more accurately if the object is presented in a typical context (e.g. an

oven in the kitchen) (Bar and Ullman, 1996) (Bar, 2004). Similar and even more drastic results have

been shown for various object recognition models that are often much more sensitive to contextual

changes than humans (Rosenfeld et al., 2018) (Zhang et al., 2020).

We wanted to study how exactly these contextual changes affect the performance of humans and

state-of-the-art neural networks on object recognition tasks. To do that, we placed objects in atypical

locations for them as described in Section 4.1.1 and in accordance to Table A.1 and Table A.2 (e.g. a

remote control in the sink). As before, we took pictures from different angles around the object.

After filtering, the code produced 2,363 unique images (see Fig. 4.4 for example images).
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cutlets

keyboard toothbrush

toothpaste

coffee maker

washing sponge

Figure 4.3: Examples of gravity violated images.
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microwave pudding

cutlery knife lime

book cellphone

Figure 4.4: Examples of co‐occurrence statistics violated images.
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Figure 4.5: Size matters for object recognition. Even though the objects in these images look exactly the same, most
people will recognize the object in the first picture as a beach ball and the objects in the second picture as candy. Pic‐
tures obtained from Shutterstock under Standard License. Authors: Feng Yu and Oguzhan Ayvazoglu.

4.1.4 Size Regularities Violation

It is safe to say that size matters to some extent when it comes to object recognition. For example,

in Fig. 4.5, the small circular object on the table is most likely candy whereas the big identical one

is most likely a beach ball. Intuitively, smaller objects should typically be harder to recognize than

bigger objects due to the fact that visually small objects hold less information. This intuition is

confirmed by various studies (Tong et al., 2020) (Zhang et al., 2020). However, still little is known

about changing the expected size of an object (i.e. the relative size to other objects in the scene) and

how that would affect object recognition accuracy.

To get a better insight of how size affects object recognition, we modified the in-context objects

from Section (4.1.1) by increasing their size. We increased their size by a factor of 2, 3, and 4 in order

to study the effects of size as the multiplier increases.

After filtering, the code produced 5,858 unique images. Refer to Fig. 4.6 for example images in

this condition.
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chocolate syrup condiment bottle

pie plum

pound cake remote control

Figure 4.6: Examples of size regularities violated images.
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4.1.5 Co-occurrence and Gravity Violation

We also decided to generate images in a condition that simulates both co-occurrence statistics vi-

olation and gravity violation in order to study how the negative effects of two unnatural context

conditions add-up. The code produced 910 images for this condition (see Fig. 4.7 for example im-

ages).

4.1.6 No Context Objects

The no context condition presents the objects on a gray “salt and pepper” background and allows us

to obtain an estimate of how humans and machines perform when there is no contextual informa-

tion in the image. There are 2,309 images for this condition (see Fig. 4.8).

4.1.7 Filtering out Bad Images

One of the hardest parts about the data generation was filtering out the “bad images”. Due to the

exhaustive nature of the data generation process, many low quality images were generated and fell in

one of the following scenarios:

1. The camera was outside of the room or the apartment.

2. The virtual environment was too dark due to bad lighting caused by bugs in VirtualHome.

3. The target object was completely occluded by a different object.

4. The target object was partially occluded by a different object.

5. The target object collided with another object (in the size and gravity conditions).

We were able to programatically filter out images that fell in scenarios 1-3. However, scenarios

4-5 were much more challenging due to difficulty defining howmuch occlusion is too much and
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milkshake mug

Chinese food cupcake

bar soap cereal

Figure 4.7: Examples of co‐occurrence statistics violation and gravity violation images.
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slippers wine glass

condiment shaker dish bowl

apple candle

Figure 4.8: Examples of no context images.
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VirtualHome not supporting collision detection. Therefore, we needed to manually remove all

images that were deemed bad which in some cases meant going through more than 10000 images.

To assist with the manual work, we designed a graphical user interface that allows the user to

quickly go through many images and label them as either “good” or “bad”. The graphical user inter-

face logs all of the labeling decisions made by the user and it also supports functions to preview all

images with certain label. Please find the complete code, written in Python 3, in Appendix B.

4.2 Cut-and-paste Dataset

In addition to our VirtualHome data, in our further analysis we will also use the cut-and-paste

dataset created by Zhang et al., 2020. Zhang et al. modified a popular dataset of images placed in

natural context – the MS COCODataset (Lin et al., 2014). The resultant dataset contained im-

ages grouped into 16 conditions – combinations of 4 object sizes and 4 context conditions: normal,

minimal, congruent, and incongruent.

The normal context condition is just the original image without any further modifications. The

minimal context condition includes only the target object and all pixels that happen to be in its

bounding box while everything else is grayed-out (note that this is different than the no context

condition that we used in the VirtualHome dataset). The congruent and incongruent conditions

were created by cutting the target objects and placing them in the same location in different images

(thus the name of the dataset). A congruent context is when the target object is placed in an image

that contains an object with the same class label (see Fig. 4.9 c), whereas an incongruent context is

when the target object is placed in an image that does not contain that object (see Fig. 4.9 d).

All images are also grouped based on the size of the target object in order to quantify how object

size affects accuracy. There are four size bins based on the degrees of visual angle (dva): Size 1 dva

[16-32 pixels], Size 2 dva [56-72 pixels], Size 4 dva [112-144 pixels], and Size 8 dva [224-288 pixels].
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a) full context

c) congruent context

b) minimal context

d) incongruent context

Figure 4.9: Examples of the four contextual conditions in the cut‐and‐paste dataset.

The final dataset contains 2,259 unique in-context images spanning 55 object categories which gives

us more than 9,000 images across the four context condition described above.

In our further experiments, we use a subset of the cut-and-paste dataset containing 7,772 im-

ages. All images in our dataset participate with their 4 versions (i.e. a full context image, a minimal

context images, a congruent image, and an incongruent image). This allows us to study context in

a controlled manner by ensuring that all of the recognition effects we see are caused by changes in

contextual information and not by chance.
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5
Human psychophysics experiments

A lot of prior studies exist on how humans recognize objects and how successful they are on var-

ious image datasets (Thorpe et al., 1996) (Grill-Spector andMalach, 2004) (DiCarlo et al., 2012)

(Geirhos et al., 2017). However, we wanted to test humans on our new VirtualHome dataset for

two main reasons (1) to assess human performance on the task of out-of-context object recognition

specifically in the case of our dataset, and (2) to create a benchmark for our computational models

and potentially to assess which models behave in a more human-like way.
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Figure 5.1: Experiment Design. Human participants were presented with series of trials, where each trial consisted
of four stages. First, participants were presented with a fixation cross for 500 ms. Then, the location of the object of
interest was revealed (as indicated by the red bounding box) for 1 second. After that, the entire image was flashed for
200 ms. Finally, the subjects were prompted to enter the name of the object that they saw.

We evaluated human recognition in the six contextual conditions described above: normal con-

text, gravity violation, co-occurrence statistics violation, size regularities violation, gravity and co-

occurrence statistics violation, and no context. We conducted psychophysics experiments on Ama-

zonMechanical Turk, an online crowdsourcing tool that is often used for data validation (Turk,

2012). We exposed the subjects to each image for 200 ms, after which we asked them to identify the

target object encapsulated by a red bounding box. The full experimental setup can be seen in Fig.

5.1.

Four hundred participants took part in each experiment, for a total of around 67, 000 trials. To

avoid any other confounding factors, we took the following precautions: (1) only one target object

from each class category was selected; (2) each subject saw only one room in every apartment once;

(3) the trial order was randomized.

To determine whether the subject gave the correct answer in each trial, we used a technique in-
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troduced by previous studies (Zhang et al., 2020) to obtain a set of correct responses for each object

class. We conducted an initial ground-truth experiment with images from our in-context condi-

tion where participants were given infinite viewing time. Answers in our further experiments were

deemed correct if they matched any of the ground truth responses (e.g. other correct answers for the

object presented in Fig. 5.1 include box, Chinese food, and container). This allowed us to account

for synonyms without enforcing anN-way categorization commonly used by computational models

and other human object recognition experiments. Finally, to avoid biases, we did not allow Amazon

Mechanical Turk subjects that participated in the ground truth study to also participate in any of

the other studies.
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6
Results

6.1 Human Recognition in VirtualHome

We performed the experiments described in Section 5. Figure 6.1 summarizes our findings. As ex-

pected, humans achieve very high accuracy on the task of object recognition in VirtualHome: 71%

on average across all conditions. Here, it is worth noting that if the participants had infinite viewing

time, we would expect them to have close to perfect recognition accuracy on the dataset. Therefore,
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Figure 6.1: Human Psychophysics Results on All Object Categories. Results of the human psychophysics expriments (see
Sec. 5) on all conditions from our VirtualHome dataset. We split the results in two bins based on the size of the target
object (less and more than 2 degrees of visual angle). Here and in all future figures, the error bars represent standard
error of the mean.

we hope that the effects of this study are mainly due to the different conditions that the objects are

placed in.

We can notice the following facts about human recognition from our results:

1. Recognizing smaller objects is harder than recognizing bigger objects. Consistent with

previous studies (Tong et al., 2020) (Zhang et al., 2020), we found that objects that are

smaller than 2 degrees of visual angle are significantly harder to recognize (66% accuracy)

than objects that are bigger than that (76% accuracy). This is also true for all computational

models as we are going to see in the next subsections (see Figs 6.3, 6.5 and Table 6.2).

2. Recognizing unnaturally big objects is harder than recognizing objects of a typical size.

While bigger objects are generally easier to recognize, artificially enlarged objects are harder

to recognize. Figure 6.2 summarizes the results from the experiment on size regularities viola-

tion. We can see that accuracy drops as we increase the size of the object.
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Figure 6.2: Human Psychophysics Results on the Size Experiment. Human recognition accuracy decreases as objects
become artificially bigger. A log‐linear regression line is fitted.

3. Context matters less for big, easily recognizable object. The difference in accuracy be-

tween normal context and the other conditions on average is 19.5% for small objects versus

10.7% for big objects. Intuitively, we can explain this difference by the fact that as object

size increases, there is more visual information available, which means that the object will be

more easily recognizable. Once the object is easier to recognize, context matters less, and thus

the difference between normal context and the other conditions is smaller when the object is

bigger.

4. Context can help recognition. In all of our results in-context objects are much easier to

recognize than out-of-context objects, which suggests that normal context helps human

object recognition. This is particularly apparent when we compare the no context condition

54



with normal context. We can also see this trend by the increase in accuracy from no context

in the gravity and co-occurrence conditions. We hypothesize that that increase occurs due to

the fact that even partially unusual context might help recognition (e.g. people can still infer

that the target objects are household items by the fact that they see them in an apartment).

5. Context can hurt recognition. Even though context can be helpful, it can also hurt recog-

nition. For both small and big objects, we can see that the gravity and co-occurrence viola-

tion condition has significantly lower accuracy than the no context condition. This indicates

that if the context is too unusual, it can be misleading and it can result in lower accuracy.

6.2 ComputationalModel Recognition in VirtualHome

Figure 6.3: Recognition accuracy of humans and CRTNet on our VirtualHome dataset. All results shown are only for the
16 overlapping categories between VirtualHome and COCO‐Stuff.

In order to assess CRTNet’s performance, we decided to compare it against a set of baseline mod-

els - Faster R-CNN (Ren et al., 2015), DenseNet (Huang et al., 2017), and CATNet (Zhang et al.,

2020) (see Sec. 2 for more information on the models). We start by testing the computational mod-

els on our VirtualHome data. To do that, we trained all of them on the 16 overlapping categories

from COCO-Stuff (Caesar et al., 2018). We tested the models on all 12 VirtualHome conditions (6
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contextual ones, split into 2, based on object size) as described in Section 4.1. Human and CRTNet

performances on the 16 overlapping categories are summarized in Figure 6.3, while the performance

of the baselines is summarized in Figure 6.4. We note the following facts about CRTNet’s perfor-

mance:

1. Normal Context helps recognition. Consistent with previous research and our findings in

Sec. 6.1, in-context objects are significantly easier to recognize then out-of-context objects.

This is especially true for smaller objects, since contextual information matters more for

them (see Sec. 6.1).

2. No context is better than misleading context. CRTNet relies on contextual cues to rec-

ognize objects, and thus when it is presented with misleading context, it generally performs

worse than if there is no context. That being said, CRTNet exhibits a lot of robustness when

compared to other models (see Sec. 6.3) and that is particularly apparent when recognizing

big objects.

3. CRTNet exhibits human-like recognition patterns. All of the patterns of human recog-

nition that we discussed in Sec. 6.1 are also apparent in CRTNet. Interestingly, the relative

accuracy between conditions is highly preserved between human and CRTNet recognition.

The model performs the worst at the combination of gravity and co-occurrence violation

condition, followed by the other out-of-context conditions showing little to none difference

in accuracy. Both humans and CRTNet recognize big objects much more easily than smaller

ones (even though the difference between those conditions is much larger in CRTNet). Re-

markably, the linear correlation between human and CRTNet performance is the highest

out of all baselines - 0.89 (Table 6.1).

4. CRTNet performs generally worse than humans. CRTNet shows lower accuracy on
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Figure 6.4: Recognition accuracy of the baseline models ‐ Faster R‐CNN, DenseNet, and CATNet on our VirtualHome
dataset. All results shown are for the 16 overlapping categories between VirtualHome and COCO‐Stuff.

VirtualHome Dataset Overall
CRTNet (ours) 0.89

Faster R-CNN (Ren et al., 2015) 0.73
DenseNet (Huang et al., 2017) 0.66
CATNet (Zhang et al., 2020) 0.36

Table 6.1: Linear correlations between human and model performance over the 12 contextual conditions.

all conditions even though it performs almost on par with humans when recognizing big

objects. Humans are still much better at recognizing small objects.

5. CRTNet surpasses baseline accuracy on most conditions. CRTNet achieves significantly

higher accuracy then Faster R-CNN and CATNet when tested on big objects. The model

also performs much better than DenseNet when tested on small objects. That being said,

Faster R-CNN and CATNet still outperform CRTNet on the combination of gravity and

co-occurrence condition.

6.3 ComputationalModel Recognition in Cut-and-paste Data

We also wanted to determine how the computational models perform on the cut-and-paste dataset

(Zhang et al., 2020) and gain insight into how they deal with different types of contextual informa-

tion. To do that, we again trained all of them on the 55 overlapping categories from the COCO-
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Figure 6.5: CRTNet’s performance on cut‐and‐paste data. This figure shows top‐1 accuracy on all 16 conditions from
the cut‐and‐paste dataset. Full context improves CRTNet’s accuracy while incongruent context impairs it. Congruent
context helps model’s recognition more than minimal context.

Stuff dataset (Caesar et al., 2018). We tested the models on all 16 conditions in the cut-and-paste

dataset as described in Section 4.2.

CRTNet’s accuracy on all of the conditions is summarized in Figure 6.5. Complete results of

humans and baseline models can be seen in Table 6.2 (alternatively, see Fig. 6.6 for the same data

organized as barplots). We can make the following observations about CRTNet’s performance:

1. Congruent context improves performance. Unsurprisingly, full contextual information

helps recognition for all models that integrate some contextual information when making

a label prediction. The same effect can also be seen in the congruent condition which is a

little bit less helpful than the original context as one might expect. We see similar results in

humans and in all computational models.

2. Less context is better than misleading context. All models perform worse on incongru-

ent context than on any other condition, including minimal context. This is even seen in
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DenseNet which does not explicitly use contextual information even though when the target

object is cropped, some background pixels are also being processed with it (due to cropping

the bounding box of the target and not necessarily the target object itself). This suggests that

even a few misleading pixels might hurt the model’s performance.

3. CRTNet often performs better than humans. CRTNet achieves higher accuracy than

humans in almost every condition. Moreover, in many conditions it beats the human perfor-

mance by more than 10%. However, humans are still better at recognizing small objects. It

is also worth noting that in these experiments, the human subjects had very limited viewing

time which contributed to their lower results, while the models were not time capped.

4. CRTNet has a superior performance compared to baselines. CRTNet has a significantly

higher accuracy than other models. The only condition in which other baseline model per-

forms better is on incongruent context where DenseNet achieves higher accuracy for two

of the size bins. This makes sense, since the best strategy when recognizing objects in incon-

gruent context would be to completely ignore the context which is exactly what DenseNet

does.

5. CRTNet’s attention module helps recognition even in the absence of contextual infor-

mation. Originally, we included the attention module in order to improve integration of

contextual and target information. However, when comparing DenseNet and CRTNet on

the minimal context condition, it is apparent that the attention module helps recognition

even in the absence of context, since that is the only difference in the models (see Sec. 3.5 for

discussion).
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Size [0.5, 1] dva Size [1.75, 2.25] dva Size [3.5, 4.5] dva Size [7, 9] dva

FC CG IG MC FC CG IG MC FC CG IG MC FC CG IG MC

Humans
(Zhang et al., 2020) 56.0 18.8 5.9 10.1 66.8 48.6 22.3 38.9 78.9 66.0 38.8 62.0 88.7 70.7 59.0 77.4

(2.8) (2.3) (1.3) (1.7) (2.7) (2.8) (2.4) (2.8) (2.4) (2.7) (2.6) (2.8) (1.7) (2.6) (2.8) (2.3)
CRTNet
(ours) 50.2 43.9 10.6 17.4 78.4 81.4 41.2 56.7 91.5 87.3 51.1 76.6 92.9 87.7 66.4 83.0

(2.8) (2.8) (1.7) (2.1) (3.0) (2.8) (3.5) (3.6) (1.1) (1.3) (1.9) (1.6) (0.9) (1.2) (1.7) (1.4)
Faster R-CNN
(Ren et al., 2015) 24.9 10.9 5.9 7.2 44.3 27.3 20.1 16.5 65.1 53.2 39.0 42.9 71.5 64.3 55.0 64.6

(2.4) (1.7) (1.3) (1.4) (3.6) (3.2) (2.9) (2.7) (1.8) (1.9) (1.9) (1.9) (1.6) (1.7) (1.8) (1.7)
DenseNet

(Huang et al., 2017) 13.1 10.0 11.2 12.5 45.4 42.3 39.7 46.4 67.1 62.3 55.4 67.1 74.9 67.2 63.5 74.9
(1.9) (1.7) (1.8) (1.8) (3.6) (3.5) (3.5) (3.6) (1.8) (1.9) (1.9) (1.8) (1.6) (1.7) (1.7) (1.6)

CATNet
(Zhang et al., 2020) 37.5 29.2 3.6 6.1 53.0 46.5 10.9 22.1 72.8 71.2 24.5 38.9 81.8 78.9 47.6 74.8

(4.0) (2.4) (1.0) (2.0) (4.1) (2.5) (1.6) (3.6) (3.6) (2.4) (2.2) (3.9) (3.0) (2.1) (2.6) (3.5)

Table 6.2: Recognition accuracy of humans, our model (CRTNet, and baselines), Faster R‐CNN, DenseNet, and CATNet
on the cut‐and‐paste dataset (Zhang et al., 2020). All images are split into 4 bins based on size and there are 4 condi‐
tions for each size: full context (FC), congruent context (GC), incongruent context (IC) and minimal context (MC) (see
Sec. 4.2). Bold highlights the best performance. Numbers in brackets denote standard error of the mean.

Figure 6.6: Barplots of the cut‐and‐paste results for Faster R‐CNN, DenseNet, and CRTNet.
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7
Discussion

7.1 Comparison between CRTNet and BaselineModels

In this section, we aim to continue the discussion from Sec. 6.3 and examine how the novel model

CRTNet compares to our state-of-the-art deep learning baseline models.
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7.1.1 Faster R-CNN

Faster R-CNN has the simplest architecture out of our baseline models, consisting only of a feature

extractor, ROI pooling layer, and multiple fully-connected layers (Ren et al., 2015). However, the

model manages to integrate some global contextual information in its feature maps through the

processing done in its CNNwhich we hypothesized to be useful in normal or congruent context.

Nevertheless, its performance falls short when compared to CRTNet. From the two experiments

that we designed, Faster R-CNNmanaged to beat CRTNet only in one condition - the combina-

tion of gravity and object co-occurrences contextual condition for small objects in VirtualHome.

We hypothesize that the worse results of Faster R-CNN can be attributed to its relatively weak fea-

ture extractor. Even though it manages to incorporate some contextual information, a feature ex-

tractor such as VGG16 (Simonyan and Zisserman, 2014) has been shown to be less effective than

ResNet (He et al., 2016) and DenseNet (Huang et al., 2017).

7.1.2 DenseNet

DenseNet has shown very promising results on the task of object recognition (Huang et al., 2017).

Its main strength lies in its powerful feature extractor that allows for a variety of wanted qualities

such as bigger feature maps, recycled features, and easier training. However, DenseNet crops the tar-

get image before processing, removing (almost) all contextual information, which we hypothesized

to be a weakness (Huang et al., 2017).

Due to these qualities of DenseNet, we can see that the model is unaffected by most of our con-

ditions in both datasets. In the cut-and-paste dataset, DenseNet achieves the same accuracy for both

minimal and full context, while in the VirtualHome dataset, it achieves even higher results in co-

occurrence condition than in the normal one. While this allowed the model to have higher accuracy

than CRTNet in two of the incongruent conditions, DenseNet’s performance was worse in all other
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conditions where a model could benefit from some contextual information (e.g. DenseNet scored

more than 20% lower in the full context conditions; see Table 6.2).

7.1.3 CATNet

CATNet integrates contextual information in a human-like way by using attention mechanisms

and a recurrent memory (Zhang et al., 2020). The model uses the same feature extractor as Faster R-

CNN (i.e. VGG16 (Simonyan and Zisserman, 2014)), which we identified as a potential weakness.

Similarly to Faster R-CNN, the model’s accuracy fell short when compared to CRTNet. Surpris-

ingly, CATNet was also least correlated with human performance (Table 6.1).

7.2 Conclusion

We quantitatively and systematically studied the role of context in visual recognition in humans and

computational models. We introduced a novel dataset based on the VirtualHome engine (Puig et

al., 2018) that consists of 15,773 images of synthetic 3D indoor scenes. The VirtualHome dataset

allowed us to systematically study 6 contextual conditions - normal context, gravity violation,

object co-occurrences violation, size regularities violation, combination of gravity and object co-

occurrences violation, and no context. We also used the cut-and-paste dataset (Zhang et al., 2020) of

real photographs designed specifically for studying the effects of contextual information on object

recognition.

We proposed an original supervised machine learning model - the Context-aware Recognition

Transformer Network (CRTNet) that integrates contextual and object information in a novel ro-

bust way. CRTNet consists of two streams - a context stream and a target stream. The context

stream processes and integrates contextual and target cues via multi-head transformer decoding

layers. The target stream processes only the target object and uses a confidence estimator to combine
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the information from both streams.

To assess our model’s performance we implemented 3 baseline architectures - Faster R-CNN

(Ren et al., 2015), DenseNet (Huang et al., 2017), and CATNet (Zhang et al., 2020). Additionally,

as an essential benchmark, we also measured human’s performance on the task in a series of psy-

chophysics experiments. Our model showed superior performance over competitive baselines and

even over humans in a wide range of conditions. Despite this great success, we also have to note that

humans still achieve significantly higher accuracy when recognizing small objects.

Ultimately, we discussed various ways in which context influences object recognition and we ex-

amined what parts of a computational model seem to be most useful for robust object recognition.

However, there is still a lot more work in the field of out-of-context object recognition that needs

to be done. Future studies might focus on learning more about other contextual conditions that

we did not study in this thesis such as luminescence, color, and material of objects. Future compu-

tational models should focus on finding more accurate ways of recognizing small objects, whereas

further neuroscience studies may use the human recognition artefacts that we listed in Section 6.1 in

order find neural correlates for contextual reasoning in the brain.
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A
Tables for Generating In-Context Objects

Table A.1: Defining Natural Context for Objects: Surfaces. On what surfaces would you expect to see the given objects
(e.g. the bathroom counter is unnatural location for apples, but not for bar soaps). A natural location is indicated by
“True” in the table; An atypical location is indicated by “False”.

object

bathroom

counter bench

book

shelf

coffee

table desk

dish

washer

kitchen

counter

kitchen

table

night

stand stove

tv

stand

washing

machine

apple False True True True True False True True False True True False
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Table A.1: Defining Natural Context for Objects: Surfaces. On what surfaces would you expect to see the given objects
(e.g. the bathroom counter is unnatural location for apples, but not for bar soaps). A natural location is indicated by
“True” in the table; An atypical location is indicated by “False”.

object

bathroom

counter bench

book

shelf

coffee

table desk

dish

washer

kitchen

counter

kitchen

table

night

stand stove

tv

stand

washing

machine

barsoap True False False False False False False True False True False True

book False True True True True True True True True True True False

candle True True False True True False False True True True True True

cellphone True False False True False False False True True True True True

cereal False True False True True False True True True True True False

chinesefood False True False True True False False True True True True False

chocolatesyrup False True True True True False False True False True True False

coffeemaker False True False False False False True True False False False False

condimentbottle False True True True True False True True False True True False

condimentshaker False True True True False False True True True True True False

cupcake False True True True True False True True False True True False

cutleryknife False False False True True False False True False True True False

cutlets False False False False False False True True False True False False

dishbowl False False True True True False True True True True True False

dishwashingliquid True True False False False False False True False True False True

keyboard False False False True True False False False True False True False

lime False False True True True False True True True True True False

microwave False True False True True False True True False False True False

milkshake False True True True True False True True True True True False

mouse False False False True True False False False True False True False
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Table A.1: Defining Natural Context for Objects: Surfaces. On what surfaces would you expect to see the given objects
(e.g. the bathroom counter is unnatural location for apples, but not for bar soaps). A natural location is indicated by
“True” in the table; An atypical location is indicated by “False”.

object

bathroom

counter bench

book

shelf

coffee

table desk

dish

washer

kitchen

counter

kitchen

table

night

stand stove

tv

stand

washing

machine

mug True True True True True False True True True False True True

peach False False True True False False True True True True True False

pie False False True True True False True True False True True False

pillow False False False True False False False False False False False False

plate True False False True True False False True True True True True

plum False False True True True False True True True True True False

poundcake False True True True True False False True False True True False

pudding False False True True True False True True True True True False

remotecontrol False False False True True False False False True False True False

slippers True False False True False False False True True False True True

toothbrush True False False False False False False False False False False True

toothpaste True False False False False False False False False False False True

towel True True True True True False True True True True True True

washingsponge False True False False False False True True False True False False

wineglass False True True True True False False True True False True False
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Table A.2: Defining Natural Context for Objects: Rooms. In what rooms would you expect to see the given objects (e.g.
the bathroom is unnatural location for apples, but not for bar soaps). A natural location is indicated by “True” in the
table; An atypical location is indicated by “False”.

object bathroom bedroom kitchen livingroom

apple False True True True

barsoap True False True False

book False True True True

candle True True True True

cellphone True True True True

cereal False False True True

chinesefood False True True True

chocolatesyrup False False True True

coffeemaker False False True False

condimentbottle False False True True

condimentshaker False False True True

cupcake False True True True

cutleryknife False False True True

cutlets False False True False

dishbowl False True True True

dishwashingliquid True False True False

keyboard False True False True

lime False True True True

microwave False False True True

milkshake False True True True

mouse False True False True
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Table A.2: Defining Natural Context for Objects: Rooms. In what rooms would you expect to see the given objects (e.g.
the bathroom is unnatural location for apples, but not for bar soaps). A natural location is indicated by “True” in the
table; An atypical location is indicated by “False”.

object bathroom bedroom kitchen livingroom

mug True True True True

peach False True True True

pie False False True True

pillow False True True True

plate True True True True

plum False True True True

poundcake False True True True

pudding False False True True

remotecontrol False True False True

slippers True True True True

toothbrush True False False False

toothpaste True False False False

towel True True True True

washingsponge False False True False

wineglass False True True True
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B
Graphical User Interface for Filtering

Images

1 from PIL import Image
2 from easygui import *
3 from tkinter import Tk
4 import os.path
5 import glob
6 import sys
7

8 msg = ”What do you want to do?”
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9 title = ”Image Selector GUI”
10 choices = [”Classify Images”, ”See Good Images”, ”See Bad Images”]
11 choice = choicebox(msg, title, choices)
12

13 if choice == ”See Good Images”:
14 # Choose an apartment
15 msg = ”Which apartment do you want to see?”
16 title = ”Choose an apartment”
17 choices = [”0”, ”1”, ”2”, ”3”, ”4”, ”5”, ”6”, ”other”]
18 choice = choicebox(msg, title, choices)
19 apartment_name = ”apartment_” + str(choice)
20

21 # Load all good images from that apartment
22 file_good = open(apartment_name + ”_good.txt”, ”r”)
23 good_images = file_good.readlines()
24

25 if good_images == []:
26 msg = msgbox(”You need to have a file named ” + apartment_name + ”_good.txt in order to use this

option.”, ”Warning”)
27 sys.exit()
28

29 # Remove newlines
30 good_images = map(lambda s: s.strip(), good_images)
31 good_images_list = list(good_images)
32

33 # Show all of the images
34 i = 0
35 while i < len(good_images_list):
36 filename = good_images_list[i]
37

38 output = buttonbox(””, ”Good Images: ” + filename, image = filename, choices = [”Back”, ”Next”, ”
Copy”, ”Cancel”])

39 if output == ”Cancel”:
40 break
41 elif output == ”Back”:
42 i -= 1
43 continue
44 elif output == ”Next”:
45 i += 1
46 continue
47 elif output == ”Copy”:
48 r = Tk()
49 r.withdraw()
50 r.clipboard_clear()
51 r.clipboard_append(filename)
52 r.update() # now it stays on the clipboard after the window is closed
53 r.destroy()
54

55 elif choice == ”See Bad Images”:
56 # Choose an apartment
57 msg =”Which apartment do you want to see?”
58 title = ”Choose an apartment”
59 choices = [”0”, ”1”, ”2”, ”3”, ”4”, ”5”, ”6”, ”other”]
60 choice = choicebox(msg, title, choices)
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61 apartment_name = ”apartment_” + str(choice)
62

63 # Load all bad images from that apartment
64 file_bad = open(apartment_name + ”_bad.txt”, ”r”)
65 bad_images = file_bad.readlines()
66

67 if bad_images == []:
68 msg = msgbox(”You need to have a file named ” + apartment_name + ”_bad.txt in order to use this

option.”, ”Warning”)
69 sys.exit()
70

71 # Remove newlines
72 bad_images = map(lambda s: s.strip(), bad_images)
73 bad_images_list = list(bad_images)
74

75 # Show all of the images
76 i = 0
77 while i < len(bad_images_list):
78 filename = bad_images_list[i]
79

80 output = buttonbox(””, ”Bad Images: ” + filename, image = filename, choices = [”Back”, ”Next”, ”Copy
”, ”Cancel”])

81 if output == ”Cancel”:
82 break
83 elif output == ”Back”:
84 i -= 1
85 continue
86 elif output == ”Next”:
87 i += 1
88 continue
89 elif output == ”Copy”:
90 r = Tk()
91 r.withdraw()
92 r.clipboard_clear()
93 r.clipboard_append(filename)
94 r.update() # now it stays on the clipboard after the window is closed
95 r.destroy()
96

97 elif choice == ”Classify Images”:
98 # Choose an apartment
99 msg =”Which apartment do you want to review?”
100 title = ”Choose an apartment”
101 choices = [”0”, ”1”, ”2”, ”3”, ”4”, ”5”, ”6”, ”other”]
102 choice = choicebox(msg, title, choices)
103 apartment_name = ”apartment_” + str(choice)
104

105 # Load all of the images from that apartment
106 all_images = glob.glob(apartment_name + ’/*.png’)
107

108 if all_images == []:
109 msg = msgbox(”You need to have a folder named ” + apartment_name + ” in order to use this option.”,

”Warning”)
110 sys.exit()
111
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112 # Prepare the buttonbox
113 text = ”Should this image be included in the dataset”
114 title = ”Image Selector”
115 button_list = [”Good”, ”Bad”, ”Cancel”]
116 total, good_cnt, bad_cnt = 0, 0, 0
117

118 # create apartment_name_good.txt and apartment_name_bad.txt if they don’t exist
119 file_exists = os.path.isfile(apartment_name + ”_good.txt”)
120 if not file_exists:
121 file_good = open(apartment_name + ”_good.txt”, ”w”)
122 file_good.close()
123

124 file_exists = os.path.isfile(apartment_name + ”_bad.txt”)
125 if not file_exists:
126 file_good = open(apartment_name + ”_bad.txt”, ”w”)
127 file_good.close()
128

129 # Make a set of all of the images that have already been processes
130 file_good = open(apartment_name + ”_good.txt”, ”r”)
131 file_bad = open(apartment_name + ”_bad.txt”, ”r”)
132

133 already_processed = set()
134 for filename in file_good:
135 already_processed.add(filename.strip())
136 for filename in file_bad:
137 already_processed.add(filename.strip())
138

139 file_good.close()
140 file_bad.close()
141

142 num_img = 0
143

144 # Go through all of the images in the chosen apartment
145 for filename in all_images:
146

147 num_img += 1
148 print(”Processing image: ” + str(num_img) + ”/” + str(len(all_images)))
149

150 # Don’t process if it has been already filtered
151 if filename in already_processed:
152 continue
153

154 button_not_clicked = True
155 cancel = False
156

157 # Open files to write the results in
158 file_good = open(apartment_name + ”_good.txt”, ”a”)
159 file_bad = open(apartment_name + ”_bad.txt”, ”a”)
160

161 while(button_not_clicked):
162 # Resize in order to be able to always fit on the screen
163 im = Image.open(filename)
164 newsize = (600, 400)
165 im = im.resize(newsize)
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166 im = im.save(”resized.png”)
167

168 # Open button box and wait for user response
169 output = buttonbox(””, ”Classify Images: ” + filename, image = ”resized.png”, choices =

button_list)
170 button_not_clicked = False
171 if output == ”Good”:
172 good_cnt += 1
173 file_good.write(filename + ’\n’)
174

175 elif output == ”Bad”:
176 bad_cnt += 1
177 file_bad.write(filename + ’\n’)
178

179 elif output == ”Cancel”:
180 cancel = True
181

182 else:
183 button_not_clicked = True
184 msg = msgbox(”Please select one of the buttons!”, ”Try again”)
185

186 # Save whatever is written
187 file_good.close()
188 file_bad.close()
189

190 if cancel:
191 break
192 else:
193 total += 1
194

195 # Show summary statistics after going through all of the images
196 title = ”Summary Statistics”
197 message = ”Total number of images processed: ” + str(total) + ”\n” + ”Number of good images: ” + str(

good_cnt) + ”\n” + ”Number of bad images: ” + str(bad_cnt) + ”\n” + ”Ratio accepted: ” + str(good_cnt/
total)

198 msg = msgbox(message, title)
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