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Abstract

Deep reinforcement learning agents can learn to solve a wide variety

of tasks, but they are vulnerable to adversarial threats. Previous work

has shown that one agent can develop an adversarial policy against

another by training with the objective of making it fail. However, the

extent to which these adversaries pose threats and opportunities is

not well understood. To explore more sophisticated attacks from

adversarial policies, this thesis introduces methods for training

efficient adversaries which require few or no queries to the victim and

insidious adversaries which are difficult to distinguish from benign

agents. These methods each hinge on imitation learning and/or

inverse reinforcement learning, and they include a the introduction of

a new algorithm, Black-box Adversarial Q Estimation (BAQE), for

inferring an agent’s Q function from non-interactive demonstrations.

Though preliminary, findings show potential for effective attacks,

reveal directions for continued work, and suggest a need for caution

and effective defenses in the continued development of deep

reinforcement learning systems.
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Why learn when you can exploit an unintended
regularity?

Lehman et al., 2018

1
Background

1.1 Introduction

In recent years, there has been a striking amount of progress in
machine learning and artificial intelligence (AI). Difficult tasks in
domains such as image recognition, natural language processing,
reinforcement learning, and unsupervised learning are now routinely
accomplished using modern methods, often at par-human or
superhuman levels. In addition to improvements in computing power
and the availability of data, this has largely been thanks to the
versatility of deep1 neural networks which are capable of learning
nonlinear functions which generalize well even in difficult tasks.

1Here, “deep” refers to a network having many internal layers that assist in the
development of hierarchical representations.
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However, these deep networks often converge to curious solutions,
sometimes with unexpected flaws.

1.1.1 Adversarial Threats to Deep Learning Systems

In 2013, Szegedy et al. [67] found that a variety of networks trained
for image classification were vulnerable to mislabeling images whose
pixels were given small perturbations that were specifically designed
to fool the network yet were too small to be perceptible to humans.
Szegedy et al. [67] termed these images “adversarial” examples.
Whereas the typical process of training a network involves treating a
dataset as fixed and performing gradient-based optimization on the
network’s parameters with a classification objective, an adversarial
image can be generated from a benign one by treating the network’s
parameters as fixed and performing gradient-based optimization on
the image’s pixels with a misclassification objective.

Since 2013, it has been found that vulnerability to adversarial
inputs is extremely common in deep networks [73]. In addition to
lending insight into the delicate nature of the solutions that are
learned, adversarial examples also demonstrate a concerning
weakness. A malicious actor who knows a victim’s internal
parameters can often easily create inputs that cause predictable
misbehavior despite being extremely similar to a benign input –
perhaps even indistinguishable to a human.

While past research into adversaries has been valuable for
understanding threats to supervised learners, the conventional context
in which they have been studied is limited. The bulk of research has
focused on pixel perturbations to the inputs of image classifiers and
uses methods that require white-box access to a victim in which the
network parameters are visible to the attacker. However, outside this
context, smaller literatures have emerged around other types of
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“adversarial” attacks against deep learning systems which notably
include black-box attacks (e.g. [30, 31]), feature-level adversaries (e.g.
[3, 10, 43, 49, 71]), attacks against natural language models [74], and
as is the focus of this thesis, adversaries in reinforcement learning
[29, 63]. However, additional work is needed to more fully understand
the broad range of threats posed by adversaries and what measures
can be taken to detect and defend against them.

1.1.2 Adversarial Policies in Reinforcement Learning

Although more formal details will be discussed in the following
section, a simple way to understand reinforcement learning (RL) is as
the process by which an agent can learn via experience how to act
inside of an environment in order to optimize for the attainment of
some reward. Deep reinforcement learning systems have the potential
for numerous innovative uses including in safety-critical settings such
as healthcare, transportation, and human-machine interfaces.
Interestingly, despite the fact that adversaries are less thoroughly
studied in RL than in supervised learning, the notion of what an
“adversary” can be is greatly expanded in the RL domain. In addition
to perturbations to a network’s input, RL agents can have adversarial
environments, adversarial reward perturbations, and as is the focus of
this thesis, adversarial policies from other agents [29]. A thorough
discussion of what makes a policy “adversarial” can be found in
Appendix A.1.

One reason why RL is a powerful general method for problem
solving is that training reinforcement learners does not necessarily
require advanced domain knowledge about how the task at hand
should be performed.2 So long as a suitable reward function can be
provided for a task, an RL agent can develop innovative solutions on

2Though using such knowledge to shape the reward function is often extremely
helpful.
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its own. On one hand, this ability poses risks from perverse
optimization and deception [28, 41]. On the other, this often allows
agents to learn powerful and creative solutions to problems. For
example, this famously allowed the AlphaMu [59] system (and its
predecessor AlphaZero [64]) to achieve superhuman performance in
the games of Chess, Go, and Shogi without data or direct guidance
from humans.

This ability for RL agents to learn innovative solutions given only a
reward function has been utilized for training adversarial policies in a
way that only requires black-box access to a victim agent. Several
closely-related works [5, 17–19, 54, 70] have trained adversarial
policies by (1) beginning with a victim whose environment includes
other actors, (2) “freezing” the victim so that it acts in accordance
with its policy without performing new learning updates, and (3)
training an adversarial agent whose reward function is
(approximately) the negative of the victim agent’s. Notably, in this
type of attack, the victim need not be a reinforcement learner, rather
simply an agent implementing a policy whose behavior can be
associated with the attainment of some reward. This approach has
been effective for inducing failure in a victim. However, the literature
on these attacks remains limited, and to the best of this author’s
knowledge, previous works have used brute-force techniques to train
these adversaries absent hard limitations on query access to the victim
or a requirement of avoiding detection. However, unless the victim can
be inexpensively queried many times and detection methods are not in
place, these approaches would be unlikely to pose substantial threats.

1.1.3 Motivation

In order to better understand threats from adversarial policies and
train more robust agents in reinforcement learning, this thesis
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introduces a set of techniques for training adversarial policies which
are (1) sample efficient and (2) difficult to detect from observation of
the attacker. Each of these methods hinges on the use of specification
learning algorithms in which an agent either learns to copy the policy
of another agent, known as imitation learning, and/or learns an
estimate of another agent’s objectives from observing their actions,
known as inverse reinforcement learning (IRL).

Although this thesis focuses on developing more effective methods
for attacking RL systems, its purpose is to improve our understanding
of the threats that reinforcement learners in multiagent environments
face. Additionally, training robust models (e.g. through adversarial
training) has been shown to improve performance on novel but non
adversarial inputs as well [18, 54, 70]. This author hopes that this and
related works will encourage the more cautious deployment of RL
systems and additional research into effective training, defense, and
detection methods to reduce threats.

Much is at stake with adversarial attacks in RL. For example,
major changes to transportation infrastructure from autonomous cars
are imminent, yet it has been found that small pixel perturbations to
visual inputs from a Tesla autopilot system were able to cause the
model to send a signal to swerve into oncoming traffic [40]. Other
adversarial threats to autonomous vehicles are possible as well [55]
such as adversarial stickers on street signs and, of course, adversarial
behavior from another agent on the road.

1.1.4 Outline

The remainder of Chapter 1 provides technical background, discusses
related work, and introduces the new contributions made by this
thesis. Chapter 2 provides in-depth details on the threat model,
environments, and algorithms used here in preparation for Chapter 3
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on results. While-preliminary, these suggest a potential for effective
adversaries that are sample efficient and difficult to detect. Finally
Chapter 4 concludes with a discussion of findings and plans for
continued work. For a brief, high-level explanation of this project
written for a lay-reader who may not be familiar with machine
learning, see Appendix A.3.

1.2 Technical Background

This section presents definitions and a framework for understanding
Reinforcement Learning that will be used in the remainder of this
thesis. It draws largely from standard convention in the literature as
presented in [42, 66].

1.2.1 Markov Decision Processes and Reinforcement Learn-
ing

This thesis focuses on Reinforcement Learning as the process of
learning to extract reward from a Markov Decision Process (MDP).
An MDP is defined as a 6-tuple (S,A, T, d0, r, γ) where S is a set of
states, A a set of actions, T : S ×A× S → R a state transition
probability (mass or density) function, d0 an initial state distribution,
r : S ×A → R a reward function,3 and γ a temporal discount factor.

Although reinforcement learning can be broadly understood as a
process for learning in a variety of decision problems including ones
that cannot be formulated as MDPs (e.g. [6, 11]), this paper will use
“reinforcement learning” or “RL” to refer to the process of learning a
stochastic policy πθ : S ×A → R parameterized by some vector of
parameters θ which specifies a distribution over the actions in A
conditioned on some state s ∈ S. The notation πθ(s) will be used to

3In many MDPs including the RL environment used for experimentation here,
r is only a function of state.
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denote an action sampled from the distribution over actions specified
by the policy at state s, and πθ(a|s) will be used to give the
probability mass or density of the policy taking action a from state s.
RL algorithms represent a formalized process of learning from
experience to maximize the objective

J(πθ) = Eπθ

(
∞∑
t=0

γtr(st, at)

)
(1.1)

conditional on T, d0, for states st ∈ S, actions at ∈ A, and with t a
time index. RL algorithms learn to optimize this objective via
interaction with the MDP using a behavior policy which may or may
not match πθ. A sequence of visited states and chosen actions
(s0, a0, s1, a1, ...) will be referred to as a trajectory, and for MDPs with
a terminal state send, a trajectory from s0 to send will be referred to as
an episode.

A class of RL tasks related to the approach in this thesis is known
as multiagent reinforcement learning (MARL)[14] in which multiple
reinforcement learners share an environment and learn simultaneously.
This represents a more complex type of problem than single-agent RL
due to the fact that an agent’s environment contains another agent
whose internal state is both unknown and changing over time yet
which is part of the input for T . This could be represented as a
Partially-Observable MDP (POMDP) which also includes a set of
observations O which πθ takes as input and a lossy, potentially
stochastic function o : S → O which maps states to observations. In
this setting, the presence of an external agent which is actively
learning results in a lack of stationarity in the MDP that causes many
common RL algorithms to lose convergence guarantees [25, 53].
Although this thesis considers RL problems in environments that have
multiple agents in a colloquial sense, in all of the experiments
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performed here, only one agent at a time is actively learning. Thus,
this is not a work involving MARL. See Section 2.1 for a more
detailed discussion of the threat model.

1.2.2 Policy Gradients

Policy gradient methods are a powerful approach to RL that are
commonly used in modern research due to their versatility and ability
to learn quickly. A policy gradient algorithm known as Proximal
Policy Optimization (PPO) is used for training agents in this thesis
and is explained in detail in section 2.3.1. Given a trajectory
(s0, a0, s1, a1, ...), the gradient of J(πθ) from equation (1.1) as derived
in [66] is given by

∇θJ(πθ) = Ed0,T

(
∞∑
t=0

γt∇θ log πθ(at|st)Âπθ
(st, at)

)
(1.2)

where
Âπθ

(st, at) =
∞∑
t′=t

γt′−tr(st′ , at′)− bπθ
(st) (1.3)

is an estimate of what is known as the Advantage function, and bπθ
(st)

is an estimate of the total baseline discounted reward achieved in a
trajectory from st onward under πθ. RL algorithms in the policy
gradient family are characterized by the use of gradient-based
optimization on θ. These algorithms are known as on-policy because
they require that the data from which they learn come from πθ

interacting with the MDP as opposed to some other policy. This
contrasts with off-policy algorithms which do not require this and are
not used for training agents in this thesis. It is worthy of note that in
practice, estimating ∇θJ(πθ) from equation 1.2 from experience is a
high-variance process, and optimization steps are typically taken with
batch sizes in the thousands.
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1.2.3 Actor Critic Methods, Temporal Difference Learn-
ing, and Bootstrapping

Given the basic form of a policy gradient from equations (1.2) and
(1.3), it remains to be determined how bπθ

should be estimated. The
simplest way to do so, known as a Monte Carlo method, is to
calculate the empirical discounted sum of rewards for a rollout of n
steps (or until send) from st as

∑t+n
t′=t γ

t′−tr(st′ , at′). However, an
alternative method for estimating bπθ

that incorporates past
experience rather than a single trajectory at a time involves training a
separate model specifically for its estimation. This is known as an
actor-critic approach where the actor refers to πθ and critic refers to
the estimator of bπθ

(st). This estimator is known as the Value or State
Value function Vπθ

(st) and is defined as

Vπθ
(s) = Eπθ,

(
∞∑
t=0

γtr(st, πθ(st))

)
. (1.4)

Importantly, the optimal value function V ∗
πθ

has a temporal recursive
nature which satisfies

V ∗
πθ
(s) = Eπθ

(
r(s, πθ(s)) + γ

∑
s′∈S

T (s, πθ(s), s
′)V ∗

πθ
(s′)

)
(1.5)

known as a Bellman equation.
A function closely related to the value function is the

state-action-value function denoted by Q:

Qπθ
(s, a) = r(s, a) + γEπθ

(∑
s′∈S

T (s, πθ(s), s
′)Vπθ

(s′))

)
. (1.6)

And given Q, the advantage function from equation (1.3) can be

9



expressed as:
Aπθ

(s, a) = Qπθ
(s, a)− Vπθ

(s). (1.7)

Due to the temporal recursive nature of the value function,
actor-critic methods which involve the estimation of the
closely-related functions V,Q, or A are known as temporal difference
methods. In practice, these methods also involve bootstrapping in
which the current estimate of one of these temporal-recursive
functions is used for its own update based on a Bellman equation.
Despite this fact, however, these methods each have convergence
guarantees in well-behaved MDPs [66].

1.2.4 Specification Learning

One reason why reinforcement learning is a powerful problem solving
method is that a practitioner need only specify a suitable reward
function for an agent to learn how to accomplish a task.
Incorporating domain knowledge into a strategic reward specification,
known as reward shaping, can greatly improve learning in many cases.
However, RL agents ultimately learn their own solutions to the task
at hand, and advanced domain knowledge is often not required from
the user. As discussed earlier, RL can often learn creative [41] and
even superhuman policies [59, 64] due to this capability.

While the ability of RL agents to learn effective policies given only
a reward function is highly useful, it poses two challenges: (1) How
can we train an RL agent when we know what behavior we want it to
exhibit but do not know what reward function best encourages it?
And (2) how can we avoid giving agents reward functions which cause
them to learn unexpected and potentially dangerous solutions to
problems? Concerning (2) in particular, [41] compiles dozens of
examples of systems learning undesired solutions to problems when
given naive reward specifications, and [7, 12, 57, 68] each argue that
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dangers from perverse optimization are a paramount challenge for
safety in the continued development of advanced AI systems.

The field of specification learning is principally motivated by these
two problems. Specification learning refers to learning behavior,
known as Imitation Learning, and/or learning a reward function
estimate, known as Inverse Reinforcement Learning (IRL), from an
expert. Notably, there are numerous ways in which information can
be extracted from the expert for specification learning [34] including
but not limited to demonstrations [50], comparisons [12, 72],
corrections [2], cooperation [21], language [44, 47, 65], interpreting the
reward specification as an observation [22], auxiliary rewards [20], and
analysis of d0 [62].

Algorithms for imitation and IRL are central to this thesis. One
straightforward method used here for imitation focuses on directly
imitating an expert by training it to output a policy with a small
Kullback-Leibler (KL) divergence4 from the expert’s. Another method
known as generative adversarial reinforcement learning (GAIL) [26] is
modified for both imitation learning and estimating a victim’s value
function. Additionally, this thesis also introduces a new algorithm,
Black-box Adversarial Q Estimation (BAQE) meant to both learn an
imitator and an estimate of a victim’s Q function from non-interactive
demonstrations. GAIL and BAQE are closely related and both
involve training an imitator from demonstrations in order to fool a
separate discriminator which is trained to distinguish between the
imitator and expert’s actions. Full details on these algorithms and
how they are adapted for this thesis are in Sections 2.3.3 and 2.3.4.

4KL(π, π′|s) =
∑

a∈A π(a|s) log
(

π(a|s)
π′(a|s)

)
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1.3 Brief Overview of Methods

This thesis introduces three methods for developing adversarial
policies that pose more potent threats. Specification learning is key to
all three. Details for each will be expounded upon and presented in
the following chapters.

Transfer from an Imitative Proxy (section 3.1): While the ability to
interactively train against an intended victim may be limited, benign
and non-interactive data from the victim may be more readily
available. In this type of attack, (1) an imitator of the victim is
trained, (2) an adversary is trained against the imitator, and (3)
optionally, the adversary is fine-tuned against the actual victim for a
small number of timesteps. This allows for adversarial behavior to be
learned for a similar agent before being transferred to the intended
victim, thus allowing for the training of an adversarial policy with
little or no query access to the victim.

Observation Augmentation via Victim Modeling (section 3.2): The
standard approach to training an adversarial policy is a black-box
process which need not require access to a victim’s internal state.
However, having access to a proxy for it can be valuable. In
particular, an estimate of a victim’s Value or Q function can allow for
rapid learning of the adversary’s Value function because, up to
normalization, Vadversary(s) = −Vvictim(s) = −E (Qvictim(s, πθ(s))). In
these experiments, (1) an imitator and Value/Q function estimator for
the expert are jointly trained, and (2) during training, the adversary’s
observations are augmented with the imitator’s action and Value/Q
model outputs.

Insidious Attacks via Expert Imitation (section 3.3): While
adversaries can be highly effective at thwarting an individual victim,
they may develop easily-detectable policies or policies that do not
transfer to successful behavior in an environment without the victim.
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To test how well this can be avoided, insidious adversaries are trained
with a composite objective of thwarting the target victim and
imitating a separate non-adversarial expert who is adept at
performing the task in a non-adversarial way. Victim models as
discussed above are used in several of these experiments as well.

1.4 Related Work

RL agents can be vulnerable to a diverse set of adversarial threats
including input perturbations, rewards perturbations, environments,
and agents. Ilahi et al. [29] offer a broad survey of threats and
defenses. For adversarial policies in particular, the training process is
typically simple. The basic approach is to fix a victim in a multiagent
environment so that it is not actively learning and to then train an
adversarial agent with the goal of making the victim fail. This type of
adversarial behavior was observed unintentionally by both [4] and [56]
who found that when training multiple agents in competitive RL
environments, it was key to rotate players in a round-robin fashion to
avoid agents overfitting against a particular opponent. Notably, in
this setting, there are multiple “agents” in a colloquial sense, but the
problem is not a multiagent reinforcement learning one because no
two agents learn at the same time.

Simple Adversarial Policies: Overall, this simple
“overfit-to-the-victim” approach has been the basic strategy of a
number of recent works investigating adversarial policies
[5, 17–19, 54, 70]. These works have made valuable contributions for
understanding threats and opportunities from adversarial policies. A
number of these demonstrate that training a victim against an
adversary, known as adversarial training is a reliable way to promote
robustness [18, 54, 70]. Aside from adversarial training, [19] also
demonstrated reasonably effective detection of adversarial policies and
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the ability to defend against them by obfuscating observations from
an attacker. Both of these findings from [19] relate to an additional
finding that when an adversary overfits to its victim, it may learn to
use specific actions that thwart the victim but do not make for a
reasonable policy in general. This suggests a need for investigating
threat models in which an adversary is trained not only to beat a
victim, but to do so in a way that is difficult to detect from
observations alone.

Adversaries Outside the Environment: Although this thesis
focuses on adversarial attacks in environments which have multiple
agents embedded inside of them, a number of previous works have
trained adversarial policies which act outside of the environment. In
this setting, the adversary’s actions involve perturbing the victim’s
observations or the MDP’s transition function T . These allow for any
type of environment to be used, whether naturally multiagent or not.
The primary motivation in the literature for training these has been
to improve the robustness of the victim via training on the
adversarially-perturbed environment. The authors of [54], who
introduced this paradigm refer to this as Robust Adversarial
Reinforcement Learning (RARL). Since, several works have expanded
on this approach for developing robust policies, notably including ones
which demonstrate robust transfer from simulation to the real world
[1], the use of an ensemble of adversaries [70], and methods for
generating certified robustness guarantees [45].

Adversarial Transfer from Proxy: In the more well-studied
domain of supervised learning, it has been found that adversarial
examples often transfer from one victim to another, even if the other
was independently trained [32, 46, 51, 69]. Additionally, [27] found
that adversarial attacks in RL could transfer between independently
trained agents as well, although unlike this work, they only tested
adversarial perturbations to observations as opposed to policies. A
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work which took a related approach to one of the key experiments in
this thesis is [5] who trained an imitator to serve as a proxy for a
victim, trained an adversarial state-perturbing policy against the
proxy, and tested how well that policy transferred to the original
victim. While successful, this remains limited because the adversary
was outside the environment, and the experiments were restricted to
an elementary “CartPole” environment [9]. However, this approach
using transfer from an imitative proxy shows promise given high
performance specification-learning algorithms such as GAIL [26].

Victim Modeling: Another key related work is [38]. Its authors
only investigated adversarial observation perturbations as opposed to
policies. However, they demonstrated the effective use of a victim’s
internal state for scheduling maximally-effective adversarial
perturbations. Under their threat model, the insertion of an
perturbation was assumed to be costly, and to to overcome this, they
found that inserting them when the victim’s value function was above
a certain threshold was helpful for maximizing damage while on a
budget. This success suggests potential benefits from using a learned
victim model for generating more effective and insidious adversarial
policies. Similar to the solution used here, He et al., 2016 [23]
experiments with the use of a learned victim model’s action and Q

estimates. Though conceptually similar to the approach used here,
their focus was not on efficiency or insidiousness, and their work
predates the more modern imitation and IRL algorithms used here.
Instead, their experiments were limited to simple environments and a
Q-learning5 approach for training a victim-model off-policy.

5Though not discussed in Section 1.2, Q learning methods are a family of RL
algorithms that contrast with policy gradients. See [66].
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1.5 Contributions

Despite this notable progress from previous work, there exist several
gaps in the research which this work begins to explore.

First, to the best of this author’s knowledge, there are no previous
works which develop adversarial policies with sample efficiency as a
central goal. Previous works have used simple and “brute force”
approaches in which an adversary is trained, often for many millions
of timesteps (e.g. [19]) until it has developed a sufficiently detrimental
policy. However, inefficient attacks could be easily defended against if
either the victim were not in-silico (such as an autonomous vehicle) or
query access to the it were costly/limited. This thesis makes the
development of attacks with as few queries to the victim as possible a
primary focus. In doing so, this thesis utilizes a useful variant of
GAIL and introduces BAQE, a novel algorithm for inferring an
expert’s Q function from non-interactive demonstrations. This is a
considerably more restricted set of permissions than required by
related IRL algorithms.

Second, while the use of a victim model has proven helpful for
attacking reinforcement learners (e.g. [38]), little work has focused on
black-box methods [23] which is key to more germane threat models
because in real systems, black-boxifying models is simple, typically
done by default, and entirely thwarts white-box attack algorithms.
Methods are introduced in this thesis to circumvent this problem by
exploiting learned victim models and/or independently-trained agents
as opposed to using direct access to the victim itself. Though related
to [23], this work uses more state of the art IRL algorithms, including
BAQE, and experiments with a more sophisticated RL environment.
In the experiments here, these black-box attacks are also compared
against white-box baselines, and another incidental but novel
contribution of this work is investigating these white-box attacks.
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Third and finally, findings such as those from [19] suggest that even
if an adversarial policy cannot be precluded or defended against, it
may still be very easy to detect. This thesis makes training insidious
adversarial policies an explicit focus which to the best of this author’s
knowledge, no prior works to date have made a goal.

Experiments are ongoing, but this thesis marks a milestone toward
better understanding threats and opportunities from more potent
adversarial attacks in RL.
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2
Approach

This chapter presents the framework and methods used for exploring
sample-efficient and insidious adversarial attacks. This is in
preparation for the following chapter which covers how these methods
are used and presents results. Additional minor details about
training, hyperparameters, and network architectures are reserved for
Appendix A.2.

2.1 Threat Model

Like adversarial examples for supervised learning models,
observation-perturbation-based adversaries for reinforcement learners
(e.g. [27, 38]) are most often studied under a white-box threat model
in which the adversary has access to the victim’s internal parameters.
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Threat Model Permissions Restrictions

Related works -Victim reward function -Black-box accesse.g. [18, 19, 54, 70] -Cheap query access

Efficient attacks

-Black-box access
-Victim reward function -Expensive/no query access
-Benign victim demonstrations to victim or similar agent

-Demonstrations non-interactive

Insidious attacks
-Victim reward function -Black-box access-Cheap query access -Detector of form D(a|s)-Grey-box access to benign expert

Table 2.1.1: Key permissions and restrictions of threat models for pre-
vious works and the two paradigms in this thesis.

This allows for gradients to be calculated via propagation through the
victim’s policy network and used for developing the adversarial input.
However, these attacks can be easily precluded by black-boxifying the
victim. In a departure from this threat model, related works such as
[18, 19, 54, 70] have trained adversaries under the more restricted
setting in which access to the victim is limited to that of a black-box.
This approach takes advantage of the ability for reinforcement
learning to learn via experience to achieve a reward function, even
absent access to internal information about their victim.

In this thesis, three methods are presented for training more potent
adversaries. First and second, transfer from an imitative proxy and
observation augmentation via victim modeling are used for training
efficient adversaries. Third, insidious attacks are developed via expert
imitation. Table 2.1.1 outlines the key permissions and restrictions for
the threat models used here and in related work.

Efficiency and insidiousness will often be necessary for developing
attacks against real world systems because limiting query access and
monitoring for threats are very simple defensive measures. However,
they are by no means sufficient for genuine threats as other defensive
measures could be in place such as adversarial training, limiting
demonstrations, observation preprocessing, action postprocessing,
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human overrides, or others. Nonetheless, this work will help us to
better understand threats from adversaries and opportunities from
adversarial training in more limited and realistic contexts than
previous works have.

Efficient Attacks: Leveraging RL to generate adversarial policies
with only black-box access to a victim is a powerful technique.
However, works such as [18, 19, 54, 70] have assumed that the victim
can be freely, cheaply queried interactively for many timesteps to
train adversaries. The methods introduced here for efficient attacks
aim to train them under a more restrictive threat model in which
query access to the victim is limited/expensive. However, for both of
these methods, it is assumed that while the victim can’t be queried
interactively, the attacker has access to demonstrations in which the
victim is performing in a benign (non-adversarial) setting.
Furthermore, it is assumed that (1) these demonstrations are not
interactive, i.e. that an attacker cannot simulate what would have
happened if the expert had taken some action a′t instead of at and (2)
that no similarly-trained proxies are available with cheap query
access. To understand why these are realistic assumptions, consider
an autonomous vehicle. While query access to any physical model will
be inherently expensive and limited, copious amounts of data from
benign driving settings may be available, though not likely in the
form of an interactive simulation.

Insidious Attacks: For training insidious attacks via expert
imitation, the adversary is not assumed to have limitations on query
access to a victim. In fact the threat model is very similar to that of
related works except that in these experiments, the adversary has
additional access to the outputs of an independently trained,
non-adversarial agent which the adversary learns to imitate at the
same time as it learns to beat the victim. Rather than generating
attacks under a limited threat model, this method simply aims to
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make an adversary more resemble a benign agent when detection
methods may be in place.

In supervised learning, adversaries are typically made to be
insidious in the sense that they only differ from a benign input by a
small-norm perturbation. However, the notion of detectability is more
complicated for adversarial RL. In RL, any observer with access to
the rewards for a victim agent can determine exactly how well it is
performing. But there are two ways in which an adversary being
difficult to detect via observations alone would make for a more
dangerous threat. First, in deployment, an adversary may need to do
more than simply interact with the victim. Consider one autonomous
vehicle with a policy adversarial to another. Here, a realistic
adversarial agent would need to perform reasonably well on roads
with other agents or none at all. Imitating a benign agent would aid
in this and help to avoid detection before interacting with the victim.
The second reason why avoiding observation-based detection would
make for more potent threats is by making the cause of a failure more
difficult to detect. For example, this could lead to more uncertainty
about whether a victim’s failure is due to an adversarial agent or
other minutiae of the particular setting in which it finds itself.

2.2 Environment and Agents

Experiments are conducted using the The Google Research Gfootball1

[39] environment which was selected for being a free, accessible,
advanced, and naturally-multiagent setting in which to study
adversarial policies. Each agent in the environment controls a team of
football (soccer) players in play against another with the objective of
scoring goals and preventing the opponent from scoring them. Each
team has 11 teammates in play, but all are controlled by a single

1https://github.com/google-research/football
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Figure 2.2.1: A visual rendering from a Gfootball game. Note that this
was not the same type of rendering used for observations. From [39].

agent who actively controls one teammate at a time and is able to
toggle between them to switch the active player. Inactive players
perform simple, rule-based actions. Each game lasts for a total of
3,000 timesteps or 5 minute of play at 10 frames per second.

The Gfootball software optionally allows for observations to be used
which consist of a 115-length vector of extracted features. However,
here visual observations were extracted which were 72× 96× 4 pixels.
The four channels encoded the left team positions, right team
positions, ball position, and active player position. Due to the fact
that observing a single frame does not allow for the inference of useful
information such as velocities, observations were stacked from the
previous four timesteps to yield inputs that were 72× 96× 16 pixels.
The action space was discrete with 19 distinct actions.2 Although the
objective of the game is to score more goals than the opponent, agents

2These were idle, left, top-left, top, top-right, right, bottom-right, bottom,
bottom-left, long-pass, high-pass, short-pass, shot, sprint, release-direction, release-
sprint, sliding, dribble, and release-dribble.
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were given a shaped reward to improve the efficiency of learning as
done in [39]. In addition to rewards of +1 and −1 when goals were
scored by or against an agent, a reward of 0.1 was given for
successfully advancing the ball an additional one-tenth of the way
down the field while maintaining possession. As a result, the rewards
were not zero-sum, but still strongly linked to the zero-sum measure
of the difference between scores.

The agents processed the 72× 96× 16 inputs via a deep
convolutional residual network (ResNet), a type of architecture
introduced by [24]. The network consisted of four modules, each with
two residual blocks followed by a flattening layer and two densely
connected layers. Batch normalization was used between
convolutional layers. These layers led to a 256 dimensional output
from which the value and policy were computed each with their own
dense layer. Because the policy was discrete, a softmax layer was used
to compute the distributions over outputs. All activations were ReLU,
and the architecture differed for experiments investigating observation
augmentation via victim modeling. Full architectural details are in
Appendix A.2.

2.3 Algorithms

This section outlines the RL, imitation, and IRL algorithms used in
the experiments that will be the focus of the next chapter. This
includes the introduction of BAQE, a new IRL algorithm used for
inferring a victim’s Q function from non-interactive demonstrations.

2.3.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a reinforcement learning
algorithm in the policy gradient family. Since its introduction by [61]
in 2017, it has become common due to its simplicity, tendency to
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require little to no hyperparameter tuning, and excellent empirical
performance. Recall the policy gradient formula from equations (1.2)
and (1.3) in Section 1.2.2:

∇θJ(πθ) = Ed0

(
∞∑
t=0

γt∇θ log πθ(at|st)Âπθ
(st, at)

)

Âπθ
(st, at) =

∞∑
t′=t

γt′−tr(st′ , at′)− bπθ
(st).

This calculates the gradient with respect to the parameters of πθ. The
simplest approach to optimization would be to take gradient steps in
this parameter space, however this tends to be an imprecise way to
tune a policy because the size of an optimization step in the
parameter space does not reliably predict the degree to which the
policy is changed. Another challenge with this approach is that in
practice, taking multiple optimization steps for an on-policy algorithm
based on the same trajectory, while appealing, tends to cause sporadic
and too-large updates. These problems have motivated a family of
algorithms known as natural policy gradients [36] which take
optimization steps of a size not determined by a learning rate on the
parameters but rather by limits on the change imposed on the policy.

One solution to this in the natural policy gradient family is Trust
Region Policy Optimization (TRPO) [60] which was a predecessor to
PPO. This algorithm introduces a surrogate objective subject to a
constraint on the KL divergence between the old, pre-update policy
and the new, post-update policy:

max
θ

Êt

[
πθ(at|st)

πθold
(at|st)At

]
subject to Êt [KL (πθold , πθ|st)] ≤ δ

(2.1)

where KL(π, π′|s) =
∑

a∈A π(a|s) log
(

π(a|s)
π′(a|s)

)
denotes the
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Kullback-Leibler (KL) divergence between two distributions at a state
s, and δ is a limit on the allowable KL divergence which defines a
region of “trusted” policies at a given step – hence the name Trust
Region Policy Optimization. TRPO tends to perform well, however it
is relatively complicated to implement in practice. An additional
challenge is that the theoretical basis for TRPO justifies a penalty
rather than a constraint on the KL divergence, but penalty-based
TRPO methods are empirically difficult to tune.

Proximal Policy Optimization was developed as solution to these
problems. It comes in two variants. The first known as PPO-penalty
introduces an adaptive coefficient to a penalty on the KL divergence
between the old and new policy. The surrogate objective is given by

max
θ

Êt

[
πθ (at | st)

πθold (at | st)
At − βKL (πθold , πθ|st)

]
(2.2)

where after each step, β is up- or down-weighted for the next step
based on whether the change in the KL divergence is less than or
greater than a target level d which may optionally undergo decay
during training.

However, the adaptive penalty version of PPO often has inferior
performance in practice to a second and more commonly used version
of PPO known as PPO-clip [61] which is used to train agents in this
thesis. Rather than adding a penalty, this version of PPO simply clips
the surrogate objective in order to eliminate the incentive for moving
the new policy too far from the old one:

max
θ

Êt

[
min

(
πθ (at | st)

πθold (at | st)
At, clip

(
πθ (at | st)

πθold (at | st)
, 1− ϵ, 1 + ϵ

)
At

)]
(2.3)

In this case, regardless of whether the advantage function estimate is
positive or negative, clipping the ratio in the second argument to the
min function from both above and below constrains the size of the
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step in policy space. Using this proxy objective, the version of PPO
used here is given in Algorithm 1. In experiments here, an entropy
regularization term was also added to the reward function to
encourage exploration as done in [39].

Algorithm 1 Actor-Critic Proximal Policy Optimization - Clip [61]
1: Input: Untrained actor πθold and critic Aϕold .
2: Output: Trained actor and critic.
3: for iteration in 1, 2, . . . , n do
4: Run actor πθold for T timesteps to collect state, action, and

reward data.
5: Obtain advantage estimates Â1, . . . , ÂT using critic Aϕold(s, a).
6: Train actor πθ from θold to maximize surrogate objective (2.3)

over K epochs.
7: Train critic Aϕ from ϕold over K ′ epochs via bootstrapping.
8: (θold, ϕold)← (θ, ϕ)
9: end for

2.3.2 Behavioral Cloning

Learning to imitate from demonstrations is a simple specification
learning technique used to create insidious adversaries in this thesis.
The most straightforward approach to imitation is behavioral cloning
which refers to training an imitator to copy an expert’s actions. A
simple method for this would be train a model to classify or regress
on an expert’s actions given a dataset of observation, action pairs as if
it were a supervised learning problem.

For training insidious victims, a method for behavioral cloning that
is only slightly more complicated was used here. Here, insidious
adversaries were created by training an agent who is rewarded jointly
for mimicking a benign agent and thwarting its intended victim.
Hence, this is an approach based on reinforcement learning rather
than supervised learning. Unlike the intended victim, the expert used
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here was not assumed to be a black box, so under this threat model, a
richer reward signal was extracted from expert’s output distribution
over discrete actions. Here, the environment-based rewards for playing
against the adversary along with the imitation-based reward based
from the KL divergence between the expert and imitator were each
normalized to have mean zero and variance one before being
combined with a weight of β ∈ [0, 1] on the environment reward and
(1− β) on the imitation reward to calculate the final joint reward.
For these experiments, β was set to 0.75. This process is outlined in
Algorithm 2.

Algorithm 2 Insidious Adversary Training
1: Input: Trained expert πex and untrained insidious adversary πold.

Victim embedded in the MDP.
2: Output: Trained insidious adversary.
3: for iteration in 1, 2, . . . , n do
4: Run πold for T timesteps to collect state, action, action distribu-

tion, and reward data s1, . . . , sT , a1, . . . , aT , πold(s1), . . . , πold(sT ),
and r1, . . . , rT .

5: Collect expert action distributions πex(s1), . . . , πex(sT ).
6: Obtain imitation rewards r̂1, . . . , r̂T in the form of r̂i =

KL(πex(si), πold(si)).
7: Obtain training rewards by normalizing and combining the ad-

versarial and imitative rewards with weights of β ∈ [0, 1] and (1−β).
8: Train imitator πθ from θold using any actor-critic method on

training rewards.
9: θold ← θ

10: end for

2.3.3 Generative Adversarial Imitation Learning (GAIL)

A powerful strategy often used for training machine learning systems
including imitation learners is a generative adversarial scheme. This
approach hinges on the use of a generator which is trained to produce
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some desired output by pitting it against a discriminator. The
generator is given the objective of fooling the discriminator while the
discriminator is given the objective of correctly distinguishing
generator outputs from natural references. Both are trained
simultaneously. For example, image generators have been trained to
produce fake but photorealistic images by fooling a discriminator
which is trained to distinguish generator outputs from natural images
(e.g. [8]).

Generative adversarial imitation learning (GAIL) [26] is such an
approach to imitation learning. The generator/imitator is a
reinforcement learner who is trained to mimic an expert, and the
discriminator is trained to distinguish the generator’s trajectories
from the expert’s. A version of GAIL in which the discriminator takes
state/action pairs as input is formally presented in Algorithm 3.

Algorithm 3 Generative Adversarial Imitation Learning (GAIL) [61]
1: Input: Trained expert πex, untrained imitator πold, and untrained

discriminator Dϕold .
2: Output: Trained imitator and discriminator.
3: for iteration in 1, 2, . . . , n do
4: Run expert πex for T timesteps to collect state/action data

s1, . . . , sT , a1, . . . , aT .
5: Collect imitation actions â1, . . . , âT from s1, . . . sT using imita-

tor πθold .
6: Obtain imitation rewards r1, . . . , rT from Discriminator Dϕold in

the form of ri = logit(Dϕold(si, âi))
7: Train imitator πθ from θold on imitation rewards.
8: Train discriminator Dϕ from ϕold to identify expert from imita-

tor actions via binary logistic regression.
9: (θold, ϕold)← (θ, ϕ)

10: end for

The first approach here for training efficient adversaries involves
pretraining against an imitative proxy, and the second involves
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augmenting the attacker’s observations with action and value
estimates for the victim. However, by itself, a simple actor-critic
GAIL imitator will tend to perform poorly for both of these tasks.
First, under this threat model, only demonstrations are available, so
when a GAIL imitator inevitably makes errors and drifts off the state
distribution for the policy it is trying to imitate, it will be less useful
as a proxy victim. Second, the critic from an actor-critic GAIL
imitator will not make for a useful Value function estimate because
the imitation objective will not learn to reflect how the expert values
a given state – only how imitatable the expert is at that state.

As a solution to both of these problems, a variation on GAIL is
used in which the imitator is trained jointly to imitate via rewards
based on the GAIL discriminator and to accomplish the expert’s
objective via the expert’s rewards. In this variant of GAIL which will
be referred to here as GAIL-RL, the imitation-based rewards and the
expert’s environment-based rewards for GAIL were normalized and
then combined with weights β ∈ [0, 1] and 1− β respectively to create
rewards for training. Here, β = 0.75 was used. The process is shown
in Algorithm 4 which is very similar to Algorithm 3. Although the
expert’s rewards are not necessarily consistent with the rewards that
the victim’s policy would achieve, as training progresses, the expert’s
rewards become progressively closer to being on-policy. As a result of
incorporating the expert’s rewards, this method encourages the
imitator to both learn a policy that keeps the agent in a reasonable
state distribution and to learn a value function which reflects the
expert’s. Afterward, the actor was used for imitation, and the critic
for value function estimation.

When training GAIL imitators for experiments here, a crucial
strategy to avoid the imitators simply learning to output the most
common actions taken by the experts was to train the discriminator
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Algorithm 4 GAIL-RL
1: Input: Trained expert πex, untrained imitator πold, and untrained

discriminator Dϕold .
2: Output: Trained imitator and discriminator.
3: for iteration in 1, 2, . . . , n do
4: Run expert πex for T timesteps to collect state, action, and

reward data s1, . . . , sT , a1, . . . , aT , and r1, . . . , rT .
5: Collect imitation actions â1, . . . , âT from s1, . . . sT using imita-

tor πθold .
6: Obtain imitation rewards r1, . . . , rT from Discriminator Dϕold in

the form of ri = logit(Dϕold(si, âi))
7: Obtain training rewards by normalizing and combining the

imitation-based expert rewards with weights of β ∈ [0, 1] and
(1− β).

8: Train imitator πθ from θold on training rewards.
9: Train discriminator Dϕ from ϕold to identify expert from imita-

tor actions via binary logistic regression.
10: (θold, ϕold)← (θ, ϕ)
11: end for

only on examples which it predicted incorrectly. Additionally, a small
amount of weight decay was also used to improve the performance of
the discriminator.

2.3.4 Black-box Adversarial Q Estimation (BAQE)

While combining rewards based on imitation and the expert’s
interaction with the environment in GAIL-RL alleviates the
aforementioned problem of learning a fully irrelevant Value function,
the resulting value function estimate will still fail to fully represent
the victim’s actual Value function. As a more principled solution to
the problem of learning a faithful victim model, one can use a similar
generative adversarial strategy but learn the victim model inside the
discriminator rather than the imitator. In GAIL, the discriminator
D(s, a) need only learn to distinguish between expert and imitator
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actions given a state and can take on any form that allows it to do so.
Contrastingly, [15] propose using a discriminator for performing
binary logistic regression which takes the form

Dϕ(τ) =
exp {fϕ(τ)}

exp {fϕ(τ)}+ πθ(τ)

and learns to distinguish expert from imitator trajectories, represented
by τ . However, a considerably simpler but similar approach would be
to use state/action pairs rather than entire trajectories:

Dϕ(s, a) =
exp {fϕ(s, a)}

exp {fϕ(s, a)}+ πθ(s, a)
.

For a given expert πex, the optimal f will be
f ∗(s, a) = log πex(a|s) = Aπex,T (s, a) where Aπex,T gives the optimal
advantage function induced by T , πex, and some reward function r∗

for which πex is optimal [16]. Unfortunately, simply learning f directly
would be of very little use to an attacker because the Advantage
function does not convey any information about the victim that isn’t
redundant with its policy, and an estimate of the policy is already
used in the victim modeling attacks here. However, the Advantage
function can be expressed in terms of the reward and Value function
as such

Aπθ
(s, a) = Qπθ

(s, a)− Vπθ
(s)

= r(s, a) + γEπθ
[Vπθ

(s′)]− Vπθ
(s),

and the victim’s reward function is known under this threat model.
This motivates using a new approach for learning f as a function of
the state, action, and successor state

f(s, a, s′) = r(s, a) + γh(s′)− h(s). (2.4)
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Such that at optimality, h(s) = Vπθ,T (s). In fact, another algorithm
known as Adversarial Inverse Reinforcement Learning (AIRL) uses a
discriminator based on a similar function in order to learn estimates
of the reward and value functions [16].

Unfortunately, although in this case the rewards are known, a
discriminator of this form is still not a viable approach under the
threat model used here. To successfully learn to discriminate between
an expert and imitator with a function of the same form as equation
(2.4), one needs to have different s, s′ pairs from the expert and
imitator, especially because in many reinforcement learning MDPs,
the reward r(s) is only a function of state. However, here it is only
assumed that demonstrations from the victim are available in the
form of non-interactive trajectories, so using different s, s′ pairs to
learn to distinguish between the expert and imitator is not assumed
to be possible. The expert and the imitator must then only be
distinguished based on the actions they take given states visited by
the expert. This motivates learning f from r(s) as a state-only
function, two states, and two actions as such:

f(s, a, s′, a′) = r(s) + γh(s′, a′)− h(s, a).

An f of this form would then be tractable under this threat model
because h is now a function of state and action. And given that
Eπθ

[Qπθ
(s, πθ(s)] = Vπθ

(s), at optimality h(s, a) = Qπex(s, a). Thus,
for learning an estimate of an expert’s Q function when r(s, a) is
known and only non-interactive demonstrations are available, this
thesis proposes a generative adversarial method in which an imitator
and discriminator are trained against each other much like in GAIL,
but where the discriminator has the form

D(s, a, s′, a′) =
exp{f(s, a, s′, a′)}

exp{f(s, a, s′, a′)}+ πθ(a|s)
(2.5)
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f(s, a, s′, a′) = r(s) + γh(s, a)− h(s′, a′). (2.6)

So that at optimality, h(s, a) = Qπex(s, a), allowing h to be used as an
estimate of the victim’s Q function. This algorithm is termed here as
Black-box Adversarial Q Estimation (BAQE). Though similar to
AIRL [16], BAQE can operate under the considerably more-restricted
setting in which demonstrations are non-interactive. BAQE is
outlined in full in Algorithm 5 which differs only from GAIL-RL in
algorithm 4 by a single step.

Algorithm 5 BAQE-RL
1: Input: Trained expert πex, untrained imitator πold, and untrained

discriminator Dϕold .
2: Output: Trained imitator and discriminator.
3: for iteration in 1, 2, . . . , n do
4: Run expert πex for T timesteps to collect state, action, and

reward data s1, . . . , sT , a1, . . . , aT , and r1, . . . , rT .
5: Collect imitation actions â1, . . . , âT from s1, . . . sT using imita-

tor πθold .
6: Obtain imitation-based rewards from Discriminator Dϕold

of the structure given in (2.5) and (2.6) in the form of
logit(Dϕold(st, ât, st+1, at+1)).

7: Obtain training rewards by normalizing and combining the
imitation-based expert rewards with weights of β ∈ [0, 1] and
(1− β).

8: Train imitator πθ from θold on training rewards.
9: Train discriminator Dϕ from ϕold to identify expert from imita-

tor actions via binary logistic regression.
10: (θold, ϕold)← (θ, ϕ)
11: end for

In experiments here, the imitator was trained jointly on imitative
rewards and the expert’s rewards in the same manner as in GAIL-RL
with β = 0.75 in order to encourage the imitator to stay on a more
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reasonable distribution of states than it otherwise would.
Consequently, this approach will also be referred to as BAQE-RL,
though unlike with GAIL-RL, the imitator’s critic was not used as the
victim model.

Importantly, under this threat model, the action distribution
πex(a|s) is not available for the expert, so that of the victim is always
used in the discriminator. Although this will be a poor proxy for the
expert’s policy early in training, it will approach the expert’s behavior
as the imitator improves. Moreover, to reduce variance and simplify
the structure of the discriminator, the successor action a′ given to the
discriminator was always that of the expert. So on two dual calls to
the discriminator D(s, a, s′, a′) for the expert and imitator, only a was
ever different.

Unlike GAIL, this approach learns the victim’s Q function rather
than its value function. For the Gfootball environment, the action
space was discrete and the adversary’s observations were augmented
with the Q estimate for all possible actions. When paired with a good
action estimate, this is strictly richer than the value estimate alone.
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3
Experiments

This chapter presents results for training efficient and insidious
adversarial policies. These experiments involve training a number of
different reinforcement learning “characters” which each play a unique
role in experiments. These characters are outlined in Table 3.0.1.

All adversaries are trained for a total of 15 million timesteps
against basic victim agents which were trained in two stages for a
total of 20 million timesteps. The efficient and insidious adversaries’
learning curves over time are compared to a baseline from adversarial
agents who had unmitigated access to the victim. Additionally, for
experiments with insidious adversaries, output similarity to the
benign expert over time is also presented.

Due to limited compute1, results from only two
1Each agent took days to train.
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Character Purpose Details
Victim -Training adversaries against

Efficient -Attacking victim with -Trained w/ proxies and

Adversary few/no queries victim modeling
-Threat model in Table 2.1.1

Imitator/ -Training efficient adversaries -Trained w/ GAIL-RL
Victim Model -Pretraining or BAQE-RL-Victim modeling

Insidious -Attacking victim and -Trained w/ imitation of

Adversary avoiding detection benign expert
-Threat model in Table 2.1.1

Benign -Training insidious attacks -Grey-box access requiredExpert -Adversaries imitate

Table 3.0.1: Reinforcement learning “characters” used in experiments.

identically-configured adversaries are shown in each experiment. Both
the individual and averaged results from these trails are displayed
with light and dark curves respectively in plots. In future
experiments, a greater number of replicates will be trained.

Figure 3.0.1(a) shows training curves for the agents using which all
subsequent victim models and adversaries were trained. When
discussed in context of training IRL models with GAIL-RL and
BAQE-RL, these agents will be referred to as “experts” and when in
context of training adversaries against them, they will be referred to
as “victims.” This and all other curves plotted in this chapter were
created by storing batch-averaged values and smoothing with a kernel
whose size was 1/50th the number of total batches. Recall that agents
are rewarded 1 for scoring, -1 for being scored on, and 0.1 for
advancing 1/10th of the way down the field (thus, the reward was not
zero-sum). These victims were trained in two stages: first against a
simple rule-based “bot” agent and second against a more difficult
pretrained agent from [39], each for 10 million timesteps. The
increased difficulty of the second stage of training is reflected in
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Figure 3.0.1: Training curves for base agents and control adversaries:
Average reward per timestep for individual trials (light) and mean average
reward per timestep across both trials (dark). (a) Performance for training
the victims that were used in all subsequent experiments. Training was done
first against a simple ”bot” and second against a pretrained agents from [39].
(b) Performance for non-insidious control adversaries trained with unmitigated
access to the victim. On a testing evaluation over 150,000 timesteps, these
adversaries averaged 11.9 and 10.8 points over the victims per game.

3.0.1(a) by the fact that training performance decreases after 10
million timesteps at the switch to the more difficult training
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opponent. Additional details are in the Appendix.
Figure 3.0.1(b) shows the training curves from the control

experiments for training adversaries against these victims. These
basic adversaries were non-insidious and had unmitigated black-box
access to the victim which fits the type of threat model used in
[18, 19, 54, 70]. The training curves show average reward per
timestep, and at final evaluation over 150,000 timesteps, these
adversaries averaged 11.9 and 10.8 more points than the victims per
game. Note that there is not a direct relationship between average
reward per timestep and average net points scored per game because
of the shaped reward which also rewarded agents for successfully
advancing the ball down the field while maintaining possession. As a
result, an agent who nets an average of zero points over its opponent
per game will still tend to have an average reward per timestep
greater than zero.

Most of the subsequent experiments for training efficient and
insidious adversaries involve victim imitation or modeling learned via
either GAIL-RL or BAQE-RL. After a total of 3 million training steps,
the GAIL-RL imitators shared a modal action with the experts 67%
and 67% of the time, while the BAQE-RL agents fared significantly
worse at 36% and 27% of the time. Figure 3.0.2 additionally shows
the averaged KL divergences (KL(πimitator, πexpert)) over time for the
GAIL-RL and BAQE-RL imitators for imitating the victims/experts.
Importantly, these imitators are trained to maximize agreement with
the expert’s actions rather than to minimize the KL divergence, and
there are signs that the measurements in Figure 3.0.2 were decoupled
from the imitation objective. See Box 3 for a further discussion.
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Box 3: On the difficulty of using KL-Divergence to measure
successful imitation: The KL divergence between two discrete poli-
cies π, π′ at a state s is given by KL(π, π′|s) =

∑
a∈A π(a|s) log

(
π(a|s)
π′(a|s)

)
.

In GAIL-RL and BAQE-RL experiments here, KL(πimitator, πexpert) was
measured such that it could be interpreted as an expectation over the
imitator’s policy. Additionally, when training insidious adversaries in
Section 3.3, a portion of the reward was based on the KL divergence.
Note that the KL divergence is not symmetric, and it is sensitive to
π′(a|s) values that are close to zero. However, this sensitivity is not
shared with the action-agreement objective with which the imitators
were trained. For example, even if π(a|s) and π′(a|s) are almost iden-
tical over all actions, for any single action, a, if π′(a|s) → 0, then
KL(π, π′|a)→∞.
Empirically, it seems that this measure was significantly decoupled from
the training objective. Recall that the GAIL-RL imitators obtained fi-
nal modal action agreements with the experts of 67% and 67% while
the BAQE-RL ones achieved 36% and 27%. However, the final KL
divergences for the GAIL-RL imitators is almost identical to one of
the BAQE-RL agents. Moreover, while one BAQE-RL agent was a
significantly better imitator according to the modal agreement mea-
sure, it was the one with the higher final KL divergence in Figure
3.0.2. As a result, the curves in Figure 3.0.2 should be taken only
as a loose measure of imitation effectiveness. Additionally, in exper-
iments with insidious adversaries, the KL-divergence was often very
high and seemed to adversely shape the reward as will be discussed in
Sections 3.3. Future work will experiment with using the L1 distance,∑

a∈A |π(a|s)− π′(a|s)|, between two policies instead.
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Figure 3.0.2: GAIL-RL and BAQE-RL imitation KL Divergences over
training: Trial (light) and mean (dark) batch-averaged KL divergences over 3
million training timesteps for imitators. See Box 3 for additional comments.

3.1 Transfer from an Imitative Proxy

These experiments are motivated by the simple idea that learning to
attack victim and a proxy which imitates it ought to be similar. An
analogous type of black box attack method was introduced for
attacking supervised learning models by [52] based on developing an
adversary against a model trained on the labels produced by an
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intended victim and then transferring those adversaries against the
victim. Meanwhile, the finding from [27] that adversarial inputs in
RL, though not adversarial policies, often transfer between
independently trained victims further suggests that transfer from an
imitative proxy to the intended victim may work effectively and
efficiently.

Two types of pretraining-based adversaries are tested here. First
adversaries trained only against the GAIL-RL imitators for 10 million
timesteps, and second those same adversaries finetuned against their
intended victims for an additional 5 million timesteps. Here, only the
GAIL-RL imitators were used because they had better imitative
performance based on their modal action agreement with the experts.
Notably though, the BAQE-RL imitators may still learn a more useful
victim model for model-based attacks as is investigated next in
Section 3.2. The fine-tuned adversaries are compared to the first 5
million timesteps of the baseline adversaries which were given
unrestricted query access to the victim in Figure 3.0.1(b). The
number of training steps for the baseline adversaries was kept equal to
the number of total training steps for the finetuned adversaries from
both pretraining and finetuning.

Figure 3.1.1 plots the pretraining and fine-tuning performances of
these adversaries using the GAIL-RL imitators. The high initial
performance of the adversaries at the beginning of the fine-tuning
stage suggests that through the use of only non-interactive
demonstrations, useful proxies can be developed for pretraining both
zero and few-shot adversaries. However, it remains an open question
whether similarly good transfer would occur if a stronger
expert/victim were used. This is discussed further in Section 4.3
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Figure 3.1.1: Training curves for pretraining adversaries against GAIL-
RL proxies and and fine-tuning against the intended victim: Trial (light)
and across-trial mean (dark) batch-averaged training reward per timestep.
Curves are aligned such that the number of training timesteps on the intended
victim for both the pretrained and control agents are aligned for t ≥ 0. Train-
ing performances against the proxies are plotted at timesteps t < 0.

3.2 Observation Augmentation via Victim Mod-
eling

Whereas pretraining on an imitative proxy only requires the imitators
learned by GAIL-RL, the next set of experiments for training efficient
adversarial policies hinged on using the learned imitators as action
models plus the Value estimates for GAIL-RL or the Q estimates
across all 19 actions for BAQE-RL as models of the victim’s internal
state. At each timestep, the state was observed by the adversary and
given to the victim action and value/Q models. Then these estimates
were used to augment the adversary’s observations. As a result, these
approaches are related to those used in [23] and fall into the broad
category of model-based RL [48] algorithms. There are three principle
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motivations for using this strategy to learn more sample efficient and
effective adversarial policies.

First, having predictions for the victim’s action is useful for
choosing adversarial actions. As a simple example, consider an
adversarial kicker and victim goalie playing football. The adversary
being able to anticipate whether the goalie would next move left or
right would be useful for knowing what action would allow it to evade
the goalie.

Second, having an estimate of the victim’s Value or Q function at a
given timestep may help the adversary make strategic planning
decisions. Consider again the example of an adversarial kicker against
a victim goalie. In this case, the Value or Q estimate will convey
information about whether the goalie “thinks” it is likely to be scored
on soon. One concrete example of when this could be useful is that a
low Value or Q estimate could then signal to the adversary that they
should attempt to score within the next several timesteps because the
goalie seems to be in a vulnerable state.

Third, the value or Q function estimate can help the adversary
learn its own Value function efficiently. If a good estimate is obtained
and added to the adversary’s observations, then only the simplest of
relations would need to be learned between the input and adversary’s
Value function as opposed to a more complicated one in which the
Value must be inferred from the state alone. To aid in this process,
the Value and Q estimates were concatenated into to the adversaries’
network twice: once in the first dense layer of the network and once in
the last so that the network could both learn a complex function of
the Value or Q estimate over time and quickly learn a simple
relationship between the estimate and its own value function.

An additional helpful fact about training adversaries via
augmenting their observations with victim Value or Q estimates is
that these estimates can be biased or even systematically biased in
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different ways across the state space with little consequence. So long
as the estimates are low-variance, the adversary’s network can learn
from experience to compensate for the bias.
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Figure 3.2.1: Training curves for white-box, GAIL-RL, and BAQE-RL
victim-model adversaries compared to a control: Trial (light) and across-
trial mean (dark) batch-averaged training rewards per timestep. Training
curves against the intended victim are plotted over 5 million timesteps for
each adversary.

Figure 3.2.1 shows training curves for adversaries using white-box,
GAIL-RL, and BAQE-RL victim models over 5 million timesteps of
training compared to the control adversary also shown in figure
3.0.1(b). Only 5 millions steps were run to reduce the computational
load of these experiments which required the separate victim model
(or two in the case of BAQE-RL) to be queried at each timestep.
There is a significant amount of variance in performance involved in
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training adversaries over this timescale. However, these results
provides some evidence of victim-modeling being useful for developing
more adversarial behavior more quickly for the white-box and
BAQE-RL victim models. However, future experiments with more
replicates will be needed to more clearly see trends. Future
experiments will also investigate victims which are more difficult to
train against in which these victim models may prove to be more
useful. See Section 4.3 for details and future plans.

While not one of the principal goals of this thesis, training the
adversaries who had white-box access to the intended victim as a
baseline for comparison with the black box adversaries in Figure 3.2.1
demonstrates a viable white-box attack method. Though an
algorithmically simple approach, to this author’s knowledge no prior
works have trained RL-based adversaries by augmenting observations
with the victim’s actor and/or critic outputs. However, this is a
natural strategy to potentially improve on the black-box methods
used here and in related works when white-box access to the victim is
available. Pending future experiments with more difficult victims will
help to further investigate the potential of this method to improve
attacks.

3.3 Insidious Attacks via Expert Imitation

The final key experiments presented here focus on insidious
adversaries without constraints on efficiency. As discussed in Section
2.1, this approach is motivated by the fact that an adversary may
need to be difficult to detect to be be viable at all in some
environments, and undetectability makes diagnosing the cause of a
failure more difficult for the operators of the victim. Here, the
assumption from the previous two sections that queries to the victim
are expensive or limited is relaxed, but it is assumed that a detector
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of the form D(a|s) may be in place.
First, a simple approach was used in which the adversary was

jointly trained to beat the victim and to imitate an
independently-trained benign agent as outlined in Section 2.3.2. The
benign-experts used here were the other victims: i.e. victim A was
used as a benign expert for training an insidious attack against
victim B and vice versa. This was simple to do in the Gfootball
environment by horizontally flipping the observations and actions of
an agent trained to play on one side of the field such that it could also
play on the other.
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Figure 3.3.1: Training reward and KL-divergence curves for insidious
adversaries: Trial (light) and across-trial mean (dark) batch-averaged training
reward per timestep (left), and average KL divergence between the expert and
imitator per timestep (right). Experts used here were independently trained
but identically configured to the victims. See Box 3 for comments on the use
of KL divergence as a training objective.

In addition to the straightforward behavioral cloning approach
above, it was tested whether using a victim model as done previously
in Section 3.2 would also help an adversary to be more insidious.
Recall the finding from [38] that using a victim’s value function to
schedule a small number of allowable adversarial perturbations
resulted in an improved ability to thwart a victim under a budget for
how many perturbations could be introduced. For a similar reason,
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allowing the adversary to observe the estimate of the victim’s actions
and Value/Q function may allow for more strategically insidious
adversaries.

To gain intuition for this, note the fact that to be insidious, an
agent needs to maintain a balance between acting adversarial to beat
the victim and acting benign to avoid detection. One way to
accomplish this would be to only act in a characteristically adversarial
way at opportune moments while otherwise imitating the benign
agent. Knowing an estimate of a victim’s actions and Value/Q
function would aid in this because crucial states in a trajectory are
most likely to happen when the victim’s Value or Q function is high or
low. These adversaries were trained here with the same dual objective
as in the experiments without victim modeling in Figure 3.3.1 and
with the same observation augmentations used in Section 3.2.

The adversaries shown in both Figures 3.3.1 and 3.3.2 failed to
learn policies that either were effective against the victims or imitated
the experts well. A likely cause for this failure as mentioned in Box 3
is that the KL divergences is sensitive to small action-probabilities in
the second action distribution it receives as an argument. Here, unlike
with experiments involving training the GAIL-RL and BAQE-RL the
imitators’ rewards were directly based on KL divergences, and it was
observed that they would sometimes be extremely high.2 To alleviate
this, they were clipped at 10, but they may have nonetheless resulted
in an irregular distribution that caused a misshaping of the reward
when the adversarial and imitative rewards were normalized and
combined. To fix this problem, proceeding work will experiment with
rewards based on the L1 distance,

∑
a∈A |π(a|s)− π′(a|s)|, instead

which better reflects the goal of action-matching between an insidious
adversary and a benign expert. See Section 4.3 for further discussion.

2Some values over 1025 were observed.
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Figure 3.3.2: Training reward and KL-divergence curves for insidious
victim-modeling adversaries: GAIL-RL (top) and BAQE-RL (bottom) victim
models. Trial (light) and across-trial mean (dark) batch-averaged training
reward per timestep (left), and average KL divergence between the expert and
imitator per timestep (right). Compare to Figure 3.3.1.
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4
Discussion

4.1 Implications and Impact

With recent rapid advances in AI have come unprecedented
opportunities for new applications, including in safety-critical
domains, and this work makes progress toward an understanding of
more sophisticated threats from adversaries in reinforcement learning
than have been investigated before. This thesis has introduced and
tested new methods for creating efficient and insidious attacks against
deep reinforcement learning systems. These also include a new
algorithm, BAQE, for inferring an agent’s Q function only from
noninteractive demonstrations. This thesis also argues for the
importance of continuing to study more realistic threat models in
order to develop a germane understanding of threats from adversaries.
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Though work is still ongoing, these preliminary results suggest that
pretraining against an imitative proxy to develop adversarial policies
seems to be a promising approach when access to the victim (or
similar agents) is limited but when non-interactive, benign
demonstrations are available. There is also evidence of
victim-modeling being helpful for more efficiently developing
adversarial behavior. However, these findings will benefit from further
testing against more advanced victims. Finally, the methods
introduced here for developing insidious adversaries seemed to be
unsuccessful for either learning behavior that was adversarial or
imitating the intended expert. New experiments here are needed and
forthcoming.

Overall, the positive results demonstrated thus far suggest that
attacks under significantly more limited threat models than have been
demonstrated in previous works are viable. This underscores a need
for caution in the further deployment of RL systems, especially for
safety-critical applications in environments that are difficult to control
such as those of self driving cars [55]. In addition to the direct
benefits of avoiding failures in these contexts, deploying robust
systems will also be crucial for building trust between humans and AI
systems in domains where the responsible incorporation of AI may
lead to large benefits to safety and efficiency.

In addition to black-boxifying models and limiting query access,
additional defense and detection methods should be developed
alongside more progress in deploying deep RL systems. These should
include adversarial training [18, 54, 70], ensembling, post-processing
of network outputs, and the use of sophisticated detectors. Given that
the attack methods introduced here all pivot on specification learning
from demonstrations, limiting the availability of even benign data will
also be crucial.

When working to develop robust RL systems, it is key to bear in
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mind that an adversarial policy need not be implemented against nor
by a reinforcement learning system. On one hand, so long as a victim
acts according to a policy that can be associated with some reward,
they can be subject to black box attacks from reinforcement learners
like the ones developed here. On the other hand, an adversarial policy
against a victim need not be developed by a reinforcement learner.
For example, human players of video games constantly develop
strategies optimized to exploit the weaknesses of computer-controlled
competitors to great effect. The possibility of adversarial behavior of
humans against RL-based agents could pose dangers in domains
involving human interaction.

Broadly, this thesis can be understood in context of the field of AI
safety. As AI systems become more advanced and widely-used, it is
increasingly important to ensure that they are well-aligned with
human goals and values. Of particular concern should be AI systems
that have par-human or superhuman intelligence in a given domain
[7, 12, 57, 68]. In addition to the goal of better understanding more
imminent threats, this author hopes that this thesis and related work
will contribute to the broader goal of developing an AI safety toolbox
that will help to guide the beneficial development of AI. In future
research concerning adversaries or other technical challenges toward
developing aligned AI, focusing on more realistic threat models will be
key. Hopefully, continued work will help to guide the positive
development of AI systems with an emphasis on safety, reliability, and
trust.

4.2 Limitations

Concerning efficiency, it is key to note that even if a method for
producing efficient adversarial policies is effective at reducing sample
complexity, simply more efficient may not be efficient enough to pose
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genuine threats against many real systems. The experiments here
involving victim modeling suggest that benefits from model-based
attacks against reinforcement learners may be limited. As a result,
additional work beyond the transfer from proxy experiments in this
thesis focusing on zero-shot generation of adversarial policies will be
useful.

A concern involving the experiments with insidious adversaries is
that they were only trained to make their action outputs given a state
similar to a benign expert’s. This approach is only designed to fool a
simple type of detector which discriminates based on actions
conditional on a state. However a more sophisticated detection
method could additionally focus on an agent’s state visitation
distribution. Subsequent work should take more sophisticated
detection methods than are considered here into account.

Another limitation which applies to all experiments presented here
is that besides relatively simple limitations on query access or
relatively naive detectors, no other defense and detection methods
were assumed to be in place under the threat models used here. In
addition to efficiency and insidiousness, another prerequisite to more
realistic attacks will be overcoming other practical defense methods.
For instance, many autonomous systems incorporate mechanisms that
guard against erratic actions such as PID assistance [35, 58].

4.3 Ongoing Work

The work presented here is ongoing, and future experiments will
involve a number of new strategies to produce more robust results. In
addition to running a greater number of trials for each experiment,
three major methodological changes are planned. After expanding the
set of experiments used to investigate these threats, a paper will be
submitted for publication.
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Using Stronger Victims: All adversaries in experiments here
were trained to beat the victims whose training curves are shown in
Figure 3.0.1(a). However, as suggested by the initial performance of
the adversaries in Figure 3.0.1(b), these victims were not particularly
high-performing, and they would only tend to net approximately 3
points over untrained victims per game. The two-stage training
process was intended to result in superior final performance but may
have caused more poorly performing adversaries than using the first
stage alone. In early exploratory experiments, victims were only
trained against a “bot” agent without being finetuned against the
pretrained deep-learning based agent from [39] yet seemed to have
superior initial performance against adversaries. An issue with using
weak victims is that policies which are adversarial to them may
require little (over)fitting to the specific victim’s strategy and instead
simply execute actions that are generically good for accumulating
reward when playing against a weak opponent. When tested against
each other’s victims, the adversaries in Figure 3.0.1(b) had similar
performance compared to their own which suggests that this may be
the case for the adversaries here.

One problem with using weak adversaries is that the benefits from
pretraining against an imitative proxy may be largely due to
pretraining against any agent at all as opposed to an imitator of the
particular intended victim. A second problem involves the fact that if
learning an adversarial strategy doesn’t require (over)fitting to the
particular victim in question, then one would expect to see few or no
benefits from training with a victim model. This may explain why
there were not greater improvements from victim-modeling
adversaries over the control adversaries shown in Figure 3.2.1. Future
experiments will use victims who are trained in multiple stages
against “bots” of increasing difficulty rather than against any
pretrained deep RL agents.
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Measuring Imitation with the L1 Distance: Despite the fact
that KL divergence is commonly used in RL as a measure of distance
between policies (e.g. in TRPO [60]), it seems to be a poor measure
for successful imitation for experiments here. As discussed in Box 3,
and Section 3.3 the KL divergence is non-symmetric, sensitive to low
π′(a|s) values, and likely caused ill-shaped rewards for experiments
with insidious adversaries. Unlike what the KL divergence measures,
standard implementations of imitation/IRL algorithms like behavioral
cloning, GAIL [26], AIRL[16], and BAQE reward the imitators based
on how often their actions are consistent with the expert’s. To better
match this objective, future experiments will use the L1 loss,
L1(π, π

′|s) =
∑

a∈A |π(a|s)− π′(a|s)| as a measure of successful
imitation.

Using a Learned Reward with the BAQE Discriminators:
While the GAIL-RL imitators learned to imitate the experts relatively
well with modal action agreements of 67% and 67%, the BAQE-RL
discriminators performed more poorly with modal action agreements
of only 27% and 36%. One cause of this may be the use of a
non-learned reward inside the discriminator. As shown in equations
(2.5) and (2.6), the discriminator used the ground truth reward from
the MDP in order to learn an estimate of the expert’s Q function.
One concern with this strategy is that it assumes the expert is acting
consistently with achieving the MDP’s reward, but there may be
significant differences between the MDP’s reward and a reward
function for which the agent’s policy is optimal. Empirically, it also
seems that using the ground-truth reward as opposed to a learned
reward proxy also harmed performance. In early exploratory
experiments in which a learned reward model was used, imitators
achieved superior modal action agreements.

A potential solution to this would be to use a learned state-only
reward function instead of the ground truth reward from the MDP. In
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fact, the resulting variant of BAQE strongly resembles AIRL [16]
except for h(a, s) from equation (2.6) being a function of both state
and action and no queryable demonstrations from the expert being
used for training the discriminator. As an added benefit, this version
of BAQE could also be used to learn either r or Q when the ground
truth reward is unknown.
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A
Appendix

A.1 What Makes a Policy “Adversarial?”

The notion of an “adversary” for a deep learning system was
popularized by [67] and subsequent works which developed malicious
images that are both effective, meaning that they fool an image
classifier, and subtle, meaning that they only differ from a benign
image by a very small-norm perturbation. While they often transfer
to other models [32, 46, 51, 69], typically, these adversaries are also
victim-specific in the sense that they are created specifically to fool a
particular victim.

Effectiveness and victim-specificity for adversaries in supervised
learning are analogous to the same characteristics for adversaries in
RL. However, the subtlety property does not have an analogous one
that fully captures what this and related works refer to as an
“adversarial” policy. A notion of subtlety for RL adversaries that
would be most directly analogous to the one in supervised learning
would be that the adversary has a very small expected distance in
policy space from a benign agent marginalized across that agent’s
state visitation distribution. This is closely related to the goal of
training insidious adversaries in this thesis, but in this and most

56



related work, no notion of subtlety is incorporated into the
operational definition of an adversarial policy.

For the sake of understanding practical threats, the performance of
an adversary against its victim is the only crucial concern, and some
works such as [5] have considered an attacker to be “adversarial” to a
victim if it simply succeeds at thwarting the victim. Other related
works, however, have defined an adversarial policy as one that is
victim-specific. For example, [19] trains and provides videos of
adversarial humanoid agents in competitive environments which learn
to perform specific actions which induce their particular victim to fall
to the ground. This notion of an adversarial policy being (over)fit to a
single victim can be useful and in fact describes well the
victim-modeling based attacks introduced here. But overall, an
“adversarial” policy here simply refers to one which is able to make its
victim fail. This is roughly the same as the definition operationalized
in [5].

A.2 Architecture, Training, and Environment
Details

In the Gfootball environment [39], the victim agents were first trained
for 10 million timesteps (each game lasted 3000 timesteps) against a
simple “bot” referred to as 11_vs_11_easy_stochastic in the
Gfootball codebase which used a simple rule-based policy and is not
implemented by a neural network. The victims were then trained for
another 10 million timesteps against a pretrained network-based agent
from [39], also known as 11_vs_11_easy_stochastic. This collision
between the name of the bot and the pretrained deep learning agents
is from the Gfootball codebase and coincidental. The victims which
had then been trained for a total of 20 million timesteps were then
used to train adversaries against. All adversaries were trained for a
total of 15 million timesteps meaning that they were trained for 5
million fewer timesteps overall than the victims they were attacking.

As discussed in Section 2.2, the Gfootball software allows for simple
115-length vectors of extracted observations to be used for training.
However, in experiments here, the agents’ observation space was
visual, consisting of 72× 96× 16 inputs whose channels encoded the
positions of the left team, right team, ball, and active player. These
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four channels were stacked with others from the previous three
timesteps to yield the final depth of 16. This temporal stacking
allowed for information such as velocity to be inferred from the inputs.

The policy network architecture used was the same as the
gfootball_impala_cnn network used in [39]. This was a ResNet [24]
architecture with 4 modules each consisting of an initial convolution
and pooling layer followed by two residual blocks, each consisting of
two convolutional layers and residual connections. All activations
were ReLU, all filter sizes were 3× 3, all pooling sizes were 2× 2, and
all padding was same. After the residual modules, outputs were
flattened, and processed through a dense layer of 256 neurons. This
created a 256-dimensional latent from which both the value estimate
and the policy were computed for Proximal Policy Optimization.

For victim-model attacks, the architecture was modified slightly.
For these experiments, the pre-flattening portions of the policy
network were identical, but both before and after the dense layer, the
latent vector was concatenated with the policy and Value/Q
estimates. The policy estimate was stacked over the past four
timesteps just as the visual inputs were which made its length
19× 4 = 76. For the value-models resulting from GAIL-RL, the value
estimates for the past four timesteps were also concatenated making
the total addition to the latent vectors a length-80 vector. For the
BAQE-RL-based models, the Q function evaluated at all 19 actions
for the past four timesteps were used making for an additional
19× 4 = 76 nodes for a total length-152 vector being concatenated
into the latent. These observations were concatenated with the latent
vector both before and after the dense layer in order to allow for a
more complex function to be learned from the pre dense-layer inputs
and for the value/Q estimates to be readily available for the agent to
learn its own Value function from the post-dense inputs.

All agents including GAIL-RL and BAQE-RL imitators were
trained using PPO from OpenAI Baselines [13] with the Adam
optimizer [37] with hyperparameters for PPO based on the search
conducted in [39]: γ = 0.993, a learning rate of 0.000343, PPO
surrogate objective clipping at ϵ = 0.08, and gradient norm clipping at
0.64. A minimum batch size of 4096 was used for training all agents,
though for the simple training experiments that only required one or
two models to be queried as part of the process multiple environments
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were run in parallel where possible, and all were used for the same
update resulting in larger batch sizes by a factor of two. For most
agents, entropy regularization with a coefficient of 0.003 was used,
while for imitators in GAIL-RL and BAQE-RL, a higher coefficient of
0.03 was used to discourage the imitator from outputting modal
actions. Training the discriminator only on examples it incorrectly
predicted and training the imitator only when it output a different
action from the discriminator also helped with this.

As discussed in Sections 2.3.3 and 2.3.4, GAIL and BAQE,
imitators were trained with normalized versions of the
discriminator-based and expert/environment-based rewards with
weights β = 0.75 and 1− β = 0.25. Except for this fact and the
entropy regularization coefficient as mentioned above, they were
trained identically to other agents. The discriminator for GAIL-RL
experiments had an architecture mimicking that of the policy
networks for the RL agents and was also trained with Adam and an
L2 weight decay with a coefficient of 0.0001. The BAQE discriminator
calculated an internal Q estimate using the same residual architecture
as the GAIL discriminator and was also trained with Adam using the
same weight decay as for GAIL. The BAQE discriminator had
additional batch normalization [33] layers added for stability. The
output was calculated according to equations (2.5) and (2.6). As
discussed in Section 2.3.4, the network took as input s, a, s′, a′, and
π(s). However, to simplify the implementation, the a′ from the expert
was always used, and the expert and imitator were only distinguished
based on a. To abide by the threat model outlined in Section 2.1, the
victim’s π(s) was always used because grey-box access to the
victim/expert was not available.

Code for this project will be available in the final paper submitted
for publication. That pending, code can be shared on an ad hoc basis
by request.

A.3 “Explain it to me like I’m a highschooler.”

While impressive progress is being made in AI and related fields,
there is a communication gap between researchers and the public
which too often serves as a barrier to the spread of information.
While this thesis is primarily meant for people who are familiar with
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reinforcement learning, this author believes that this and many other
works will benefit from a brief section dedicated to explaining key
concepts free of jargon and in a way that is more understandable to
those outside the specialty.

Machine learning refers to the process of learning to accomplish a
task from data. Much of the recent progress in machine learning has
involved the use of neural networks. These information-processing
systems resemble biological brains in many ways, and they tend to be
versatile and excellent at learning good solutions to complicated
problems when trained with enough data. In recent years, research in
machine learning has made immense progress in tasks such as image
recognition, natural language processing, and data compression.

Another area of great interest for active research is known as
“reinforcement learning.” Reinforcement learning refers to the process
by which some agent acts in an environment and learns by some
formalized process of trial-and-error to learn how to maximize the
attainment of some reward. For example, many reinforcement learning
algorithms are tested by having them learn to play simple video
games with the objective of achieving high scores. However, there are
much more important applications of reinforcement learning than
video games such as self-driving cars.

One concern with machine learning systems – particularly ones
based on neural networks – is a vulnerability to adversarial inputs.
An adversary can be broadly understood as some input that has been
designed to cause a machine learning system to fail. For example,
adversaries can be created to fool image classifiers by taking a normal
image which is classified correctly and then engineering a small,
human-imperceptible, perturbation to that image’s pixels which
successfully fools the classifier.

In reinforcement learning, one type of adversarial threat can come
from another agent. It has been found in multiagent environments
that if a victim agent is frozen (i.e. no longer actively learning and
just implementing a learned policy) and another adversarial agent is
trained with the goal of making the victim fail, that the adversary can
learn to effectively thwart the victim. This can happen even if the
victim is normally good at accomplishing its goals when interacting
with other nonadversarial agents. For example, [19] experimented
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with a simulated kicker and goalie in a soccer/football-playing game.
Interestingly, they found that an adversarial goalie would learn to
defeat the kicker not by blocking the ball when kicked but by making
unusual movements that induced the kicker to fall to the ground!

The effectiveness of adversarial policies in reinforcement learning
poses concerns that real-world systems could be attacked with these
adversaries. This is especially concerning in safety-critical domains
like self-driving cars. It is important to understand these threats, but
previous research into adversarial agents in machine learning is
limited. Previous works have trained adversarial agents by training
with extensive access to a victim and without the goal of avoiding
detection measures. However, in the real world, one’s ability to access
and train against a victim will often be limited or expensive, and
detection systems might be in place. In order to better understand
more sophisticated threats from adversarial agents in reinforcement
learning, this thesis develops and tests three types of methods for
training adversaries to be efficient and difficult to detect.

1. Pretraining against an imitator (Efficiency): Even if one’s
ability to interact with the intended victim is limited, access to
observations from the victim in nonadversarial settings may be
available. Using only observations of the victim, an agent is
trained to imitate the victim, and then that imitator is used as
a proxy for the intended victim for training. This reduces and
potentially eliminates the need to access the actual victim.

2. Victim modeling (Efficiency): In addition to learning an
imitator from benign data, one can also train another model of
the victim which learns to estimate how valuable the victim
“thinks” its situation is at a given point in time. This can then
be added to the adversary’s observations along with an
imitator’s action predictions in order to provide information
relevant to what strategy the victim will use and how it can be
beaten. This is made available to the adversaries during
training to increase their ability to effectively and quickly learn
to beat the victim.

3. Expert imitation (Undetectability): Unlike the previous two
strategies which focus on efficient adversaries, these experiments
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focus on training adversaries that are hard to detect. Here, this
is done by jointly training an adversary to jointly beat its victim
and imitate a non-adversarial expert agent.

By introducing methods for developing adversarial agents in ways
that are efficient and difficult to detect, this thesis makes progress
toward a better understanding of what threats reinforcement learning
systems may face. This author hopes that continued work in
understanding and preventing these threats will make future systems
more safe and trustworthy.
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