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Abstract

Saccadic eye movements allow animals to bring different parts of an image into high-resolution. During free viewing,

inhibition of return incentivizes exploration by discouraging previously visited locations. Despite this inhibition, here we

show that subjects make frequent return fixations. We systematically studied a total of 44,328 return fixations out of 217,440

fixations across different tasks, in monkeys and humans, and in static images or egocentric videos. The ubiquitous return

fixations were consistent across subjects, tended to occur within short offsets, and were characterized by longer duration than

non-return fixations. The locations of return fixations corresponded to image areas of higher saliency and higher similarity

to the sought target during visual search tasks. We propose a biologically-inspired computational model that capitalizes on a

deep convolutional neural network for object recognition to predict a sequence of fixations. Given an input image, the model

computes four maps that constrain the location of the next saccade: a saliency map, a target similarity map, a saccade size

map, and a memory map. The model exhibits frequent return fixations and approximates the properties of return fixations

across tasks and species. The model provides initial steps towards capturing the trade-off between exploitation of informative

image locations combined with exploration of novel image locations during scene viewing.
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Introduction

Foveal vision is marked by small receptive field sizes compared to the larger receptive fields in the periphery. Primates and

other animals move their eyes several times a second through ballistic excursions called saccades, bringing different parts of a

scene into high resolution at the center of fixation. Saccades are critical to visual processing and are orchestrated by multiple

brain areas involved in determining the location of the next fixation and implementing the corresponding eye movements

(1–6). Certain locations in an image are more salient in the sense that they draw fixations more frequently than others; for

example, subjects rarely make saccades to the middle of a white wall, while a moving yellow car tends to attract saccades.

Models that aim to predict eye movements generally postulate an attention map that specifies how saliency differs across

an image (7–10). A winner-take-all mechanism selects the maximum of the attention map as the location for the next fixation.

Thereafter, some change must occur in the attention map to allow the eyes to explore other locations and prevent the system

from repeatedly selecting the same maximum. An inhibition-of-return (IOR) mechanism is typically imposed to ensure that

the model can choose the next maximum (11). A balance must be struck between an IOR mechanism that is too strong,

which would prevent the system from scrutinizing the areas of maximum interest in the attention map, and a weak IOR,

which would prevent image exploration. This trade-off can be thought of as a variant of the exploration-exploitation balance.

A finite IOR mechanism would allow subjects to return to previously visited locations. Indeed, behavioral studies have

shown that return fixations often take place during normal gaze behaviors including reading (12), pattern copying or block

sorting (13, 14), portrait painting (15), solving arithmetic and geometry problems (16), visual search (11, 17–22), and free

viewing (18, 23–25). Return fixations have been used in neurophysiological studies of target detection (26), to study working

memory during visual search in change detection tasks (11, 21, 22, 27), in object and location recall tasks (25), to study

the effects of memory load (19, 25, 28–32), in rejection of distractors (18), and the comparison of IOR versus memory-less

models (33).

The mechanisms driving return fixations remain poorly understood and likely involve multiple factors including image

contents, contextual relations among objects, goal-relevance, object familiarity, visual working memory, and eye muscle

constraints (33, 34). In this study, we set out to quantify and model the properties of return fixations across a wide variety of

naturalistic tasks. We assessed the general principles underlying return fixations, as opposed to only capturing how locations

are revisited under a single experimental condition. Therefore, we studied eight experiments that included different species

(humans and monkeys), different types of images (isolated object arrays, natural images, Waldo images), different tasks (free

viewing and visual search), and different stimulus dynamics (static images and egocentric videos). We studied the frequency

of return fixations, their temporal distribution, their spatial distribution and their dependence on image contents and task

demands. We show that both monkeys and humans make frequent return fixations with few intervening saccades, especially

but not exclusively during visual search; these return fixations show longer durations, and are more prevalent in areas of high

saliency and similarity to the target during visual search. To gain insights into the mechanisms that drive return fixations,

we propose a biologically-inspired computational model that provides a first-order approximation to the spatio-temporal

dynamics of revisiting previous fixation locations by humans and monkeys.



Results

A typical eye movement sequence is shown in Figure 1A. The subject fixated at location 3 (red triangle), then made a

saccade to location 4 (yellow circle), and quickly returned to location 5 (red circle), which overlaps with location 3. We refer

to location 3 as a to-be-revisited fixation, location 5 as a return fixation, and to all other locations as non-return fixations. We

used a threshold of one degree of visual angle (dva, approximately the resolution of our eye tracking system, Methods) to

determine whether two fixations overlapped. Other examples of return fixations are shown in Figure 1B-D. We evaluated

the pattern of return fixations in eight experiments schematically illustrated in Figure 2 (see Methods for experiment

details). These eight experiments encompassed different primate species (humans, Figure 2A-D,G-H, and non-human

primates, Figure 2E-F), different tasks (free viewing, Figure 2D-G, and visual search, Figure 2A-C,H), and different

stimulus presentation formats (static images, Figure 2A-F, and free-moving recorded in egocentric videos, Figure 2G-H).

We characterized the prevalence of return fixations and their properties, and propose a biologically-inspired computational

model (Figure 6) that captures the main properties of return fixations.

Return fixations are ubiquitous

We started by re-examining the fixation patterns of human subjects during three progressively more challenging visual search

tasks in a dataset that we had studied previously (7), which included object array images (Figure 2A), natural images

(Figure 2B), and “Where is Waldo?” images (Figure 2C). Even though many computational models of visual search assume

infinite inhibition of return (IOR), that is, no possibility of returning to a previously visited location, we observed that human

subjects made a large number of return fixations in all three cases: 11.9± 0.07% (Figure 3A, here and throughout, mean ±

SEM), 18.8±0.06% (Figure 3B), and 15.6±0.09% (Figure 3C), respectively. In all cases, the proportion of return fixations

was higher than expected by a null model implementing random eye movements while respecting the distribution of saccade

sizes (p < 10−15, two-tailed t-test, t < −16, df = 1, 598, Methods). Moreover, subjects returned to the same location not

just once, but often multiple times. Figure S1 shows the proportion of cases where subjects made two return fixations.

We reasoned that return fixations could constitute a useful strategy during visual search, especially in difficult tasks,

where it is easy to miss the target and it may therefore be advantageous to revisit previous locations. To assess whether return

fixations constitute a unique property of visual search tasks, we conducted a free-viewing experiment where there was no

obvious incentive to revisit previous locations (Figure 2D). Under free-viewing conditions, subjects still made multiple return

fixations (Figure 3D, 9.9 ± 0.08%), above the proportion expected by chance (p < 10−15, two-tailed t-test, t = −22, df =

1, 098). The free-viewing experiment in Figure 2D used the same images as the visual search experiment in Figure 2B and

we can therefore directly compare the fraction of return fixations. There were nearly twice as many return fixations during

visual search compared to free-viewing conditions.

We analyzed data from two additional free-viewing experiments in macaque monkeys (Figure 2E-F). Monkeys also

demonstrated extensive return fixations: 20.1± 0.03% and 8.2± 0.01% (Figure 3E-F). In all the free-viewing experiments,

the proportion of return fixations was higher than expected by chance (p < 10−15, two-tailed t-test, t < −498, df = 198).

The proportion of return fixations made by free-viewing monkeys was comparable or higher than the proportion by humans

during visual search. It should be noted that image content, image sizes, and stimulus presentation times differed between



the monkey and human experiments. Therefore, the different proportions of return fixations between humans and monkeys

may reflect differences in stimulus selection, rather than a true difference across species.

A large fraction of eye movements studies have focused on behavioral responses to flashed static images. Intrigued by the

consistency of return fixations across visual search and free viewing of static images, we asked whether subjects also revisit

fixation locations during more naturalistic conditions. To address this question, we extended the analyses to two egocentric

video datasets where eye movements were tracked in free-moving subjects during a cooking task (Figure 2G, reference(35)),

or a real-world visual search task (Figure 2H, reference(36)). In the cooking egocentric video dataset, subjects were asked

to follow a sequence of steps on recipes to prepare a meal (Methods). In the visual search egocentric video dataset, subjects

were asked to navigate an indoor home, search for a list of commonly used items, such as a thumb drive, and put those items

on a designated table (Methods). To avoid the complexities of head movements during free movement and also to account for

fixation locations that may disappear from the field of view, we focused on stable 5-second segments (Figure S3, Methods).

Under these conditions, subjects still made repeated return fixations: 33.4±0.02% (cooking) and 8.6±0.02% (visual search

task) (Figure 3G-H). In both egocentric video datasets, the proportion of return fixations was higher than expected by chance

(p < 10−15, two-tailed t-test, t < −79, df = 198). During the cooking task, subjects manipulated kitchenware, foods, and

the recipe in front of them and tended to make a large number of return fixations. In sum, return fixations were ubiquitous

across tasks, species, and static images or free-moving conditions.

The total number of fixations varied across tasks and the proportion of return fixations depends on the total number of

fixations in a non-linear way. We therefore evaluated the prevalence of return fixations during the first 6 fixations FigureS2.

We chose to examine the first 6 fixations because this number allowed us to incorporate most of the data, including those

experiments that had few fixations per trial. Except for the visual search 3 experiment, the proportion of return fixations was

above chance in all the experiments, even when considering exclusively the first 6 fixations in each trial.

In contrast with our initial conjecture, return fixations do not constitute a behavior that is unique to visual search tasks;

return fixations are also prevalent during free viewing of scenes. Consistent with our expectations, the proportion of return

fixations was higher during visual search than free-viewing when comparing the same experimental conditions. In sum,

subjects revisit certain locations within an image, even multiple times, across a large variety of experimental conditions,

tasks, and species.

Return fixations are consistent across subjects

We asked whether the locations of return fixations were consistent across subjects in the first six experiments with static

images (Figure S4). We omitted this analysis in the egocentric video datasets because the field of view in each frame could

be different across subjects, making comparisons between subjects difficult to interpret. Figure S17 shows examples that

illustrate consistent return fixation locations across subjects for the same image. For example, seven out of ten subjects made

a return fixation to the location at “9 o’clock” in Figure S17A and five out of seven subjects made return fixations to the

framed picture on the upper left in Figure S17D. On the same image, to quantify the degree of consistency across subjects,

we divided the image into a grid and calculated the probability of observing return fixations at each location (Methods,

Figure S4B). We summarized these probability distributions of return fixation locations by computing their entropy. An



extreme case of perfect consistency would lead to a probability of 1 at a given location and 0 elsewhere, resulting in minimal

entropy. In contrast, a complete lack of consistency would lead to an approximately uniform probability distribution, except

for random overlaps, resulting in high entropy. The chance level was computed by considering the same total number of

return fixations and distributing them at random locations in the image (Methods). The entropy was lower than expected by

chance in four of the six experiments, the exceptions being the visual search 3 experiment and the Free Viewing 2 experiment

in monkeys, both of which showed the same trend but did not reach statistical significance (Figure S4E,H). In sum, in most

experiments different subjects tended to revisit the same locations.

Subjects promptly revisit return fixation locations and tend to linger at those locations

We divided all fixation locations into the following three non-overlapping categories: to-be-revisited fixations, non-return

fixations, and return fixations (Figure 4A). We calculated the offset between to-be-revisited and return fixations. In the

example in Figure 1A, the return offset is 1 (intervening location 4 between fixation 3 and 5). A strong inhibition-of-return

would imply that there should be a large return offset between to-be-revisited and return fixations. In stark contrast, in all the

experiments, the distribution of return offsets showed a rapid decay (Figure 4B). The percentage of all return fixations with

an offset of 1 ranged from 28.3% (humans, Free Viewing) to 80.5% (monkeys, Free Viewing 2) and the percentage of return

fixations with a return offset less than or equal to 3 ranged from 47.3% (Visual Search 2) to 100% (monkeys, Free Viewing 2).

Regardless of the species, experimental task or stimulus mode, subjects held recently visited locations in memory and tended

to move their eyes back to those locations after a very short delay, often the minimum possible delay of one intervening

fixation.

After returning their eyes to a given location, subjects tended to fixate longer at the return location (Figure 4C). The

difference between the return fixation durations and non-return fixation durations ranged from 35.4 ± 5 ms (Human Visual

Search 1) to 77.8±5.3 ms (Human Visual Search 2). The duration of return fixations was significantly longer than non-return

fixations for all the visual search experiments and two of the free-viewing experiments. Intriguingly, in the egocentric video

visual search experiment, fixation durations were longer for the non-return fixations (see Discussion).

Return fixation durations were also longer than to-be-revisited fixation durations. The difference between return fixation

durations and to-be-revisited fixation durations ranged from 22.2 ± 8.5 ms (Monkeys Free Viewing 1) to 68.8 ± 6.6 ms

(Human Visual Search 2). The duration of return fixations was significantly longer than to-be-revisited fixations for all the

visual search experiments and the first two free-viewing experiments. There was no consistent relationship between the

duration of to-be-revisited fixations and non-return fixations. Therefore, the increased lingering at return locations cannot

be simply ascribed to a specific content property of the image (by definition, the image content at to-be-revisited and return

locations is very similar).

Saccade sizes preceding return fixations were generally smaller than those preceding non-return fixations. The difference

in saccade sizes ranged from 0.7± 0.2 dva (Monkey Free Viewing 1) to 4.3± 0.5 dva (Human Videos 2) (Figure 4D). The

visual search on object arrays experiment did not show this effect, perhaps because subjects tended to fixate on the objects,

which were isolated with no background, and thus there was only a limited repertoire of possible saccade sizes given the

geometry of the display. There was also no difference in saccade sizes in the Monkey Free Viewing 2 experiment.



In sum, return fixations were distinct from non-return fixations and also distinct from to-be-revisited fixations. Subjects

tended to remember previously visited locations and revisit them shortly after their first encounter, typically after making a

smaller saccade, and generally spending an additional ∼ 50 milliseconds the second time around.

Subjects return more often to salient locations and locations more similar to the target during visual search

Beyond the proximity to recent previously explored locations, we asked whether features in the image had an impact on

the locations of return fixations. The consistency between subjects described in Figure S4 suggested that there are special

locations in the image that tend to be revisited more often. In addition, the distribution of all return fixation locations

was not uniform, further suggesting that there are spatial biases that impact the return fixation locations (Figure S9). For

example, there was a center bias, especially during free-viewing tasks for both humans and monkeys (Figure S9D-F), and

the return fixation locations were skewed towards the bottom part of the image in egocentric videos (Figure S9G-H). To

test whether these location biases are specific to return fixations or general to all fixations, we plotted the spatial biases for

both return fixations (Figure S9A1-H1) and non-return fixations separately (Figure S9A2-H2). We compared the spatial

distribution of return versus non-return fixations using the Kullback–Leibler divergence (KLD, which a value of 0 for two

identical distributions and a large value when the two distributions are very dissimilar). To avoid the sparsity in the fixation

distribution and to account for the resolution of the eye tracker, we quantized the fixation locations with a 2D grid of resolution

1 dva, and computed the KLD between return and non-return fixations. KLD was greater than 38 for all datasets except for

Visual Search 1 (where there were only 6 object locations), and Monkey Free Viewing 2. The KLD values suggest that return

fixation distribution tended to be more spatially biased than non-return fixations.

Previous studies have shown that fixations tend to gravitate towards locations with high bottom-up saliency, such as

regions of high contrast changes (9, 10, 37). Therefore, we asked whether return fixations were distinct in terms of their

bottom-up saliency. We used low-level image features, including edges, contrast, intensity, and color, defined in reference(38)

to calculate the bottom-up saliency at each location in each image and compared the bottom-up saliency at return fixation

locations versus non-return locations. In all experiments except for Visual Search 1, saliency at return fixation locations was

higher than at non-return locations (Figure 5A).

Although saliency was higher at return fixation locations, the difference in saliency seemed to be too small to fully explain

the pattern of return fixations, especially during visual search conditions. In particular, in the visual search experiment 1,

return fixations could not be distinguished from non-return fixations in terms of their bottom-up saliency. We hypothesized

that the decision making process driving return fixations during visual search might also incorporate top-down information,

leading us to investigate how the task demands impacted the locations of return fixations. First, we separately considered

the sought target location versus non-target locations. In the three visual search experiments (Figure 2A-C), there were

more frequent return fixations to target locations than to non-target locations (Figure 5B). In the visual search experiments

in Figure 2B-C (but not in the object array experiment in Figure 2A), subjects had to use the computer mouse to click on

the target location. Therefore, return fixations to target locations are most likely to imply that subjects fixated on the target

but were unaware that they had found it, moved their eyes to other locations, and then returned to the target location, became

aware that they had finished the search, and clicked the target location with the mouse.



Even though returning to the target location makes sense in terms of the task goals, subjects also returned to non-target

locations. In all three visual search experiments, the proportion of return fixations was higher than expected by chance both

for target and non-target locations (Figure 5B). In particular, we compared the Visual Search 2 and Human Free Viewing

tasks, which used the same images. The proportion of non-target return fixations in the Visual Search 2 task was larger

than the proportion of return fixations in the Human Free Viewing task (p < 10−15, two-tailed t-test, t < 70, df = 2, 498).

Subjects revisit more locations during visual search compared to free-viewing conditions, even when those locations do not

contain the target.

A simple hypothesis of why subjects may return to non-target locations is that those locations may share some degree of

visual similarity with the target. To test this hypothesis, we designed an experiment to assess the degree of visual similarity

between different fixation locations with the sought target (Figure 5C). Subjects were presented with the target image plus

two options and were asked to choose the image that was most visually similar to the target (Methods). The subjects

participating in these two psychophysics experiments on target similarity were different from the ones in the two original

visual search tasks. To ensure that subjects performed the task as directed, we included two controls where one of the options

was identical to the target (control 1), or one of the options was a different exemplar from the same category (control 2). As

expected, subjects chose the control images over non-return fixations (Figure 5D). In the test condition, one of the images

was a non-target return fixation and the other one was a non-return fixation. Subjects indicated that the return fixations were

slightly more similar to the target than non-return fixations 55.8 ± 1.25% of the time in the visual search experiments 1

(p = 0.002, one-sample t-test comparing to chance, t = 4.45, df = 9) and 56.3 ± 1.57% of the time in the Visual Search 2

experiment (p = 0.003, one-sample t-test comparing to chance, t = 3.99, df = 9). In sum, subjects returned more frequently

to salient locations, to locations containing the target, and to locations resembling the target in visual search experiments.

A computational model captures key properties of return fixations

To further understand the mechanisms that give rise to return fixations, we sought to develop an image-computable model

capturing the basic observations in Figures 3-5. A schematic diagram of the model is shown in Figure 6. The starting point

was the neurophysiologically-inspired invariant visual search network (IVSN) (7). IVSN consists of a “ventral visual cortex”

module, implemented by a pre-trained deep convolutional neural network (the VGG-16 network, (39)), and a “pre-frontal

cortex” module. The visual features from the target image are temporarily stored in pre-frontal cortex and modulate the

features of the search image in a top-down fashion, creating a target feature similarity map,Msim (Figure S5A, Figure S7D).

The IVSN model uses this map to generate a sequence of fixations. The model does not have any mechanism to process

motion information or integrate temporal information across video frames; therefore, we focus here on modeling the results

of the first six experiments on static images (Methods).

Several modifications were introduced into the IVSN architecture. First, to produce a sequence of eye movements during

free-viewing conditions, we incorporated the possibility of having uniform top-down modulation and introduced a bottom-up

saliency map, Msal (Figure S5A, Figure S7C, Methods). The saliency map (Msal) depended exclusively on the image

contents, while the similarity map (Msim) additionally depended on the target during visual search. Of note, the weight

parameters used for extracting visual features for Msim and Msal were neither trained with any of the images used in this



study, nor were they trained to match human performance: all the weights in the VGG-16 architecture were pre-trained using

the ImageNet dataset in a visual recognition task (39).

Second, we incorporated a constraint on the saccade sizes. The distribution of saccade sizes in humans and monkeys is

not uniform (Figure S10): occulomotor constraints imply that there are few large saccades and the saccade sizes follow an

approximately gamma distribution. Therefore, for each fixation t, we included a saccade prior map, Msac,t, computed from

the current fixation location and an empirical saccade size distribution for each task (Figure S6B-G, Figure S7E). Thus, in

contrast to the previous two maps, Msac,t does not depend on the image content.

A third and critical modification is the introduction of a memory decay function for previous fixation locations. Many

visual search models, including the initial implementation of IVSN include an infinite inhibition-of-return mechanism that

prohibits fixations to revisit previous locations. Instead, we introduced a memory decay map Mmem,t that contained

information about previously visited locations (Figure S6A, Figure S7F). The map Mmem,t does not depend on the image

contents but rather it is calculated from the eye positions at all the previous fixations 1, ..., t.

The model linearly combines the four maps, Msim, Msal, Msac,t and Mmem,t, producing a final attention map, Mf,t.

(Methods, Figure S7G). The linear combination involved two scalar weights, wsac and wmem, which control the relative

importance of the Msac,t and Mmem,t maps. We heuristically searched for adequate values for wsac and wmem based on the

Visual Search 2 experiment. These two parameters were then fixed and used to test all the datasets. The location of the next

fixation for the model is dictated by the maximum of Mf,t (Figure S7G). The saccade and memory maps are updated after

each fixation (the similarity and saliency maps are fixed), and a new fixation is generated. During visual search, the model

decides whether the current fixation contains the target or not by using the ventral visual cortex to extract visual features in

the current fixation and comparing those features to the stored target features (Figure S5B, Methods). The process is iterated

until the target is found in visual search tasks or for a fixed number of steps in the free viewing tasks.

An example sequence of fixations produced by the model in the free-viewing experiment is shown in Figure 7A2. The

model makes one return fixation denoted by the red triangle, which matches the location of a return fixation made by the

monkey in the same experiment. In this example, both the monkey and the model revisited a location within the face (note

that the model has no special bias towards faces other than the features extracted from the image by the ventral visual cortex

module). Further visualization examples for each of the six datasets are shown in Figure S8.

Similar to the results shown for humans and monkeys in Figure 3, the model made more return fixations than expected by

chance in all six experiments (Figure 7B, Figure S12, p < 10−15, two-tailed t-test, t < −75, df = 198), with a proportion

of return fixations ranging from 5 ± 0.02% in the human Free-Viewing experiment to 25.2 ± 0.07% in the human Visual

Search 2 experiment. The proportion of return fixations was higher in the visual search tasks (Figure S12A-C) compared to

the free-viewing tasks (Figure S12D-F, p < 10−15, two-tailed t-test, t = 49, df = 598). Consistent with the results shown

in Figure 5B, even though the model does not explicitly incorporate any target location information, the model tended to

produce a higher proportion of return fixations at the target locations than at non-target locations in the Visual Search 2 and

3 experiments (Figure S13), but not in the Visual Search 1 experiment.

Consistent with the results in humans and monkeys (Figure 4B), most of the return offsets for the model tended to be

small and the return offset distribution showed an approximately exponential decay (see example in Figure 7C and results



for all experiments in Figure S14). The model does not have any notion of fixation duration and therefore we cannot plot

the equivalent to Figure 4C. In the Visual Search 2 and 3 tasks, the saccade sizes preceding a return fixation for the model

tended to be larger than those preceding non-return fixations (Figure S15A-C), which is different from the trend observed in

humans and monkeys in Figure 4D. In the human and monkey free-viewing tasks, the saccade sizes preceding return fixations

for the model tended to be smaller (Figure S15D-F), consistent with the results in humans and monkeys. Image properties

also influenced the probability of making a return fixation to a particular location in the model, as shown by the increased

bottom-up saliency at return fixations compared to non-return fixations (Figure S16). In sum, without any task-specific

training, the model approximates most of the basic properties of return fixations in humans and monkeys.

Discussion

We examined 44,328 return fixations out of a total of 217,440 fixations (20.4%) in 8 experiments monitoring eye movements

(Figure 2). Return fixations are ubiquitous across visual search tasks of different complexity levels, during free-viewing

conditions, in humans and monkeys, and also under naturalistic free-moving conditions (Figure 3). Return fixations tend to

occur shortly after the first exploration of a given location, in many cases with the minimum possible offset of one intervening

fixation (Figure 4B). Return fixations last ∼ 50 ms longer (Figure 4C) and often follow small saccades (Figure 4D).

The locations of return fixations are consistent across subjects (Figure S4) and tend to gravitate towards regions of higher

bottom-up saliency (Figure 5A) and also towards regions that resemble the target during visual search tasks (Figure 5B-D).

We developed an image-computable model that mimics the basic properties of return fixations (Figure 6, Figure 7). The

proposed model has four main components: (i) a saliency map, (ii) a target similarity map, (iii) a constraint on saccade sizes,

and (iv) a finite inhibition-of-return with an approximately exponential memory decay function (Figure 6B). The first two

components depend exclusively on the image contents. Salient locations include changes in color, orientation, and texture,

among other properties. There is extensive literature documenting the role of salient locations in attracting eye movements

(40, 41). The target similarity map, which is only relevant during visual search tasks, makes image locations that resemble

the target especially attractive for fixations (7).

The third model component is based on the observed distribution of saccade sizes (Figure S10), which is far from uniform

and leads to a low probability of making large saccades. The avoidance of large saccades is likely to be imposed by the eye

movement musculature itself (42, 43). Additionally, saccadic suppression might also be more difficult to implement with

large saccades. This constraint also makes it more likely to revisit recent locations (Figure 4B), but previous work has shown

that the saccade size distribution is not sufficient to account for the frequency of return fixations (33).

The fourth model component is memory decay, which approximates the finite inhibition-of-return (IOR). The strength of

IOR plays a central role in balancing exploration (stronger inhibition of prior fixations enhances foraging of novel image

locations) versus exploitation (weaker memory for inhibiting previous locations facilitates return fixations). The proportion

of return fixations is lower than what would be expected by a memoryless system (33), which can be explained by a finite

IOR. As an initial approximation, the computational model assumes that the IOR function is fixed and independent of the

task, species, or experimental conditions. Differences in the return fixation properties across tasks are thus accounted for in

the model by the integration of the four components.



Task demands can play an important role in determining the frequency and duration of return fixations. For example,

during the cooking task, say that the subject is cutting carrots, the eyes are constantly drawn to the knife and carrot, increasing

the number of return fixations. Under these conditions, there is no need to process extensive information at each fixation and

the fixation durations are shorter. In contrast, during the Waldo search task, there is a stronger incentive for exploring other

locations, thus reducing the frequency of return fixations, yet each return fixation lasts longer, as the large amount of clutter

makes the target recognition decision harder.

It is interesting to speculate that return fixations may be especially linked to an imperfect visual recognition machinery.

In an extreme case where the visual recognition machinery achieves perfect performance in interpreting the contents at the

fovea in every fixation, there would be little incentive to revisit locations to gain further insights. Multiple studies have praised

the virtues of fast recognition in approximately 150 ms after flashing a stimulus (44–46). However, many of those studies

have focused either on isolated objects or large objects with minimal clutter. Under more natural conditions and especially

for smaller objects embedded in clutter, subjects make many recognition mistakes (47, 48). Indeed, a strong example of

recognition errors is the case of return fixations to the target during visual search (Figure 5B, see also discussion in (7)).

Consistent with the link between return fixations and imperfect recognition during a single fixation, several studies have

argued that return fixations allow re-inspection of incomplete or dynamic regions in scenes (33), recovery of lost information

(29–32), and rehearsals of visual working memory (25, 28).

The proposed model is deliberately founded on using pre-trained neural networks and has very few free parameters.

The weights to extract image features in the ventral visual cortex module are trained on a visual recognition task using

the ImageNet dataset and are not fine-tuned for any of the tasks in the current study. The saccade size constrain, the IOR

memory decay function and the relative weight of those two components are derived from experimental data. Specifically,

they were tuned using the Visual Search 2 experiment. All of those parameters were fixed thereafter, and the results for all

the other datasets shown throughout the text do not use any type of data fitting. The model does not always quantitatively

match the observations in humans and monkeys (e.g., compare Figure 3 versus Figure S12, Figure 4 versus Figure S14

and Figure S15, Figure 5 versus Figure S16). While fine-tuning the model for each dataset would improve the fitting, the

purpose of the model was to provide a conceptual proof-of-principle demonstration of the key ingredients underlying return

fixations rather than an attempt at fine-tuning multiple parameters to fit the experiments.

Most eye movement studies have focused on flashing two-dimensional images on a computer screen. This paradigm

as a surrogate for natural vision has been criticized for lacking depth information, natural spatiotemporal statistics, and

natural head and body movements. Egocentric videos provide a more naturalistic venue to study first-person viewing

behaviors where subjects interact with physical objects while freely moving their eyes, heads and bodies. Despite the notable

experimental differences to flashing images, in terms of return fixations, subjects revisit previously fixated locations during

naturalistic behaviors like visual search and cooking, in a similar fashion to the behavior observed in static images. Task

demands and natural behaviors may impose additional constraints. Several studies have shown that the egocentric gaze in a

natural environment requires the combination of gaze direction (the line of sight in a head-centered coordinate system), head

orientation, and body pose (49–51). For example, during the cooking task, the gaze point tends to fall on the object that is

currently being manipulated. This constraint results in a higher proportion of return fixations compared with the other tasks.



The amount of time devoted to visual processing during a saccade has been used as a proxy for the computational demands

of given tasks(52, 53). Consistent with this notion, the average fixation duration during free viewing (259.7 ± 0.9 ms) was

shorter than during visual search (297.9 ± 0.9 ms). Interestingly, return fixations showed longer durations (Figure 4C). A

possible interpretation of this observation is that the brain tags these locations as return fixations, perhaps acknowledging the

difficulties in visual recognition during the first pass, and devotes additional computational time to improving recognition the

second time around.

Even though the model captures essential properties of return fixations, the model does not behave exactly the way humans

and monkeys do. First, the model shows constant acuity over the entire visual field, which is clearly not the case for primate

vision where acuity drops rapidly from the fovea to the periphery. Second, humans and monkeys have a better recognition

system to decide whether the target is present or not at the current fixation (Figure S11). Third, humans and monkeys may

capitalize on contextual information integrated over multiple saccades to decide whether a return fixation is warranted or not

(48). For example, the object relations in the environment might attract primates to check back for relevant objects. Fourth,

there is no learning in the current model, but humans and monkeys can adapt and change their exploration and exploitation

strategies in a task-dependent manner. Despite these limitations, the model suggests a biologically plausible mechanism to

describe the balance of exploration and exploitation during visual scene understanding across species, tasks and viewing

conditions.

Methods

Datasets

We evaluated return fixations on eight datasets (Figure 2), individually described below.

Visual search on static images

We evaluated eye movements during three visual search tasks with increasing level of difficulty, reported in reference (7):

object arrays (Visual Search 1, Figure 2A), natural images (Visual Search 2, Figure 2B), and Waldo images (Visual Search

3, Figure 2C). Forty-five naive observers (19–37 years old, 15 subjects per experiment) participated in these tasks. Subjects

had to fixate on a cross shown in the middle of the screen for 500 ms, a target object was presented followed by another

fixation delay (object arrays and natural images), a search image was presented, and subjects had to move their eyes to find

the target. In the natural images (Visual Search 2) and Waldo images (Visual Search 3), subjects had to indicate the target

location via a mouse click. If the clicked location fell within the target, subjects went on to the next trial; otherwise, subjects

stayed on the same search image until the target was found. If the subjects could not find the target within 20 seconds, the

trial was aborted and the next trial was presented. For further details about the images and the tasks, see reference (7).

Human free viewing

To compare human eye movements during visual search versus free viewing, we conducted an experiment with 10 subjects

(18-37 years old, 5 female). We used the same 240 natural images from the Visual Search 2 task, described above. Subjects



had to first fixate on the center cross for 500 ms and then freely move their eyes to explore the image for 4500 ms (Figure 2D).

The stimulus presentation duration of 4500 ms was chosen because subjects were able to find the target in 90% of the

trials within this time during the visual search task (Visual Search 2) (7), therefore providing us with an approximately

comparable number of fixations. Subjects were instructed to look at the images, without any other task demands. The stimuli

were presented in grayscale on a 19-inch CRT monitor (Sony Multiscan G520) occupying full screen (1024 × 1280 pixels,

subtending 25 × 30 degrees of visual angle (dva)). Observers were seated at a viewing distance of approximately 66.4 cm.

The participants’ eye movements were recorded using the EyeLink 1000 plus system (SR Research, Canada). All participants

had normal or corrected-to-normal vision. Participants were compensated for participation in the experiments. All the human

psychophysics experiments were conducted with the subjects’ informed consent and according to the protocols approved by

the Institutional Review Board at Children’s Hospital.

Monkey free viewing

To compare eye movements under free viewing conditions across species, we analyzed eyetracking data from free-viewing

monkeys (Figure 2E-F). These two datasets were initially collected for other experiments with the goal of studying neuronal

responses during free viewing; the neuronal responses are not discussed here. These two experiments were not designed to

specifically match the conditions in the previous experiments. The purpose of introducing these experiments in the current

study is not to quantitatively assess whether humans make more or less return fixations than monkeys, which would require

matching the experimental conditions. Rather, the purpose here is to qualitatively assess the properties of return fixations in

different species and to evaluate whether the model can capture those properties. Six monkeys (5-13 years old, all male) from

one lab were tested in the Monkey Free Viewing 1 experiment. Two monkeys (both 7 years old males) from a second lab were

tested in the monkey Free Viewing 2 experiment. Procedures were approved by the Harvard Medical School Institutional

Animal Care and Use Committee (Monkey Free Viewing 1), and the Washington University School of Medicine Institutional

Animal Care and Use Committee (Monkey Free Viewing 2), and conformed to NIH guidelines provided in the Guide for the

Care and Use of Laboratory Animals.

In the Monkey Free Viewing 1 experiment (Figure 2E), each trial of the experiment did not start with a center cross.

Instead, the initial fixation of a trial could start anywhere on the screen. The presentation duration of each trial vary from

1,000 ms to 2,000 ms. There were 121 images in total with repeated presentations in random order. In our analysis, we

focused on fixation sequences longer than 1,500 ms during only first stimulus presentations. We discarded other fixation

sequences in repeated presentations due to concerns about the impact of memory across trials on return fixations. The trial

sequence intermixed both natural images and images containing salient visual features, such as other monkeys or body parts.

There were 36 images out of 121 containing faces. To ameliorate the center fixation bias in each trial, the image location was

randomly jittered relative to the original image in a [-3:1:3] dva grid. For example, in Figure 2E, the stimulus was shifted

to the left; with the vacant space shown as grey background. Monkeys were seated at a viewing distance of approximately

57-58 cm away. All images were presented in color on a monitor screen (635 × 635 pixels, subtending 16 × 16 dva).

In the Monkey Free Viewing 2 experiment (Figure 2F), monkeys were trained to first look at the center fixation for 500 ms,



followed by the stimulus presentation for 1000 - 1500 ms. There were 1,761 images in total with 1,380 natural images from

the MSCOCO dataset (54), around 240 images that contain either monkey faces or their body parts, and around 140 pictures

of local laboratory staff and animal shelters. As in the Monkey Free Viewing 1 experiment, to eliminate the center bias, all

the images were shifted randomly in a 2-degree radius circle. Monkeys were seated at a viewing distance of approximately

57-58 cm away. All images are presented in color on a monitor screen (596 × 596 pixels, subtending 15 × 15 dva).

Human egocentric videos

While the majority of eye movement studies have focused on static images, here we also considered a more naturalistic

setting where subjects could move freely and interact with physical objects while eye positions and first person videos were

recorded (Egocentric videos, Figure 2G-H). We used two existing egocentric video datasets (35, 36). In both cases, subjects

wore an SMI mobile eyetracker (iMotions, Denmark) with a sampling rate of 30 Hz and precision of ≈ 0.5 dva.

The egocentric video dataset 1 (Humans, Videos 1) consisted of eye positions in 86 videos showing the field of view

captured from a fist-person perspective (35). In these videos, 32 subjects performed cooking activities. Each video clip

lasted 20 minutes and was captured at 24 frames per second and 960 × 1280 pixels (corresponding to ≈ 46 × 60 dva). In

the beginning of each cooking task, subjects were instructed to follow the steps on a recipe. There were 10 recipes, such

as northern american breakfast, pizza, and turkey sandwich. Each recipe entailed a sequence of meal preparation steps.

Figure S3B shows example video frames and their corresponding fixations overlaid on the last frame of each video clip

(yellow circles).

The egocentric video dataset 2 (Humans, Videos 2) consisted of eye positions in 57 videos showing the field of view

captured from a first-person perspective (36). In these videos, 55 subjects performed a visual search task . Each video clip

lasted around 15 minutes and was captured at 24 frames per second and a resolution of 960 × 1280 pixels (corresponding to

≈ 46× 60 dva). The experiment site was a fully furnished and functional model home including a master bedroom, children’s

room, living room, open kitchen, dining area, study room, recreational room, bathroom and exercise area. Each subject was

asked to search for a list of 22 items commonly used in daily life (including thumb drive, shampoo, etc.) and move them to

the designated packing location (dining table). Figure S3C shows example video frames and their corresponding fixations

overlaid on the last frame of each video clip (yellow circles).

Psychophysics experiments on target feature similarity for return fixations

In Figure 5C-D, we asked whether the return fixation locations were visually similar to the sought target during the visual

search tasks. To answer this question, we conducted two psychophysics experiments on Amazon Mechanical Turk (Mturk).

We recruited 20 subjects (10 subjects for the object arrays task and 10 subjects for the natural images task). Subjects were

compensated for participation. Participants provided informed consent in electronic format. We followed all the protocols

approved by the Institutional Review Board at Children’s Hospital.

Subjects were presented with a target object and two alternative images. Subjects performed a two-alternative forced

choice task indicating which of the two options was more similar to the target object. The images remained on the screen

until the subjects made a choice. The two image options were randomly mapped onto choice A or B. The images were fixation



patches obtained by cropping the search image. In the main test condition, one of the options always corresponded to a return

fixation patch and the other option corresponded to a non-return fixation patch, where return and non-return were defined

based on the eye movement data independently obtained from different subjects in reference (7). For each trial, the return and

non-return fixation image patches were extracted from the same image and trial. In the object array experiment (Figure 2A),

the patch encompassed the entire object (subtending about 3.6 dva). In the natural images experiment (Figure 2B), the patch

encompassed a square box of size 156 ×156 pixels, subtending 3.6 dva and centered at each fixation. We collected 412 pairs

on object arrays and 1,041 pairs on natural images.

As a sanity check to evaluate the quality of the online results from Mturk, we introduced two control conditions that were

randomly intermixed with the test trials. In control 1 (3% of the trials), the two options were a non-return fixation patch versus

the actual identical target. We (obviously) expected subjects to indicate that the identical target was more similar to the target

than the non-return fixation locations. In control 2 (3 % of the trials), the two options were a non-return fixation patch versus

an object belonging to the same semantic category as the target object but showing a different exemplar, different rotation

and scaling. We expected subjects to indicate that the exemplar from the same category was more similar to the target than

the non-return fixation locations. We set an exclusion criteria for subjects that made more than 3 errors in the control trials,

but all 20 subjects satisfied these two controls and none were excluded from the analyses.

Computational model to predict return fixations

We first provide a high-level intuitive outline of the proposed computational model, followed by a full description of the

implementation details (Figure 6). The model is based on the previously published architecture for invariant visual search

(IVSN(7)). The current model incorporates many modifications, most notably the prediction of eye movements during free

viewing conditions when there is no target to search for, the incorporation of multiple maps discussed below, and finite

inhibition-of-return.

The output of the model is a sequence of fixations. During visual search tasks, there are two inputs to the model: the target

image (IT ) and the search image (IS). During free viewing tasks, there is only a single stimulus input (IS). The model posits

an attention map Mf,t at each fixation time t by integrating four components: a bottom-up saliency map Msal, a target visual

feature similarity map Msim, a saccade prior map Msac,t dependent on the previous fixation location, and a visual working

memory map Mmem,t dependent on the location of previous fixations (Figure 6).

In the visual search tasks, both the target image (IT ) and the search image (IS) are processed through the same deep

convolutional neural network, which aims to mimic the transformation of pixel-like inputs through the ventral visual cortex

(55–57). The target feature similarity map (Msim) indicates the similarity between the target image and each location of

the search image. Msim is computed using the same procedure described previously (7). Briefly, feature information from

the top level of the visual hierarchy provides top-down modulation, based on the target high-level features, on the activation

responses to the search image. The target feature similarity map depends exclusively on IT and IS and does not change with

each fixation. During the free viewing tasks, there is no target image, and we therefore remove the top-down modulation,

and use the same deep convolutional neural network to extract the high-level features of the stimulus IS , aggregating all the

feature maps into one saliency map Msal.



Inhibition-of-return refers to the observation that previously fixated locations tend to be inhibited (11). Many models

of visual search, including the initial version of IVSN (7), assume infinite inhibition-of-return. Under these conditions,

there cannot be any return fixations since these models remember perfectly the previously visited locations and never look

back. Modeling return fixations requires a finite memory. Many studies (25, 28–32) have capitalized on return fixations to

study visual working memory. Here we introduced a memory decay function to keep track of previous visited locations and

constantly update the visual working memory map Mmem,t over all past fixations from 1 to t − 1 (Figure S6A). Mmem,t

depends only on the previous fixations and is independent of the content of IT or IS .

Researchers have also shown that occulomotor biases constrain the saccade sizes (e.g., subjects are more likely to make

two 10 dva saccades than one 20 dva saccade). This occulomotor constraint can also impact the frequency of return fixations

(33). To take saccade size constraints into account, the model incorporated a saccade prior distribution map Msac,t. Msac,t

depends only on the previous fixation t− 1 and is independent of the content of IT or IS .

The final attention map Mf,t integrates Msim, Msal, Mmem,t and Msac,t. A winner-take-all mechanism selects the

maximum local activity as the location for the next fixation at t + 1. During visual search tasks, if the model recognizes

the target at the current fixation location, the search stops. Otherwise, the maps are updated and the model produces a new

fixation. During the free viewing tasks, the model stops when it reaches the average number of fixations made by humans or

monkeys in the corresponding datasets.

The model was always presented with the exact same images that were shown to the subjects in all the tasks. We focus

here on modeling the results for only the first six experiments on static images for several reasons. First, the model does

not have any mechanism to process motion information or integrate temporal information across video frames. Second, the

model does not have any mechanism to incorporate specific task information such as following a recipe in the cooking task.

Third, a model of the egocentric videos would require constructing a memory map in 3D.

Target feature similarity map

The computation of the target feature similarity map Msim follows the IVSN model in reference (7). Of note, this is a

zero-shot model which does not require training on any eye movement data. We describe the computation of Msim briefly

here and refer the reader to reference (7) for further details. The “ventral visual cortex” module builds upon the basic

bottom-up architecture for visual recognition (39, 55, 56, 58–60). We used a state-of-the-art deep feed-forward network,

implemented in VGG16 (39), pre-trained for image classification on the 2012 version of the ImageNet dataset (61). The

same set of weights, that is, the same network, is used to process the target image IT and the search image IS . The output

of the ventral visual cortex module is given by the activations at the top-level (Layer 31 in VGG16, φ31(IT ,W ) , and the

layer before that (Layer 30 in VGG16), φ30(IS ,W ), in response to the target image and search image, respectively. The top

level activation is stored in a “pre-frontal cortex” module. We use the activations in layer 31 in response to the target image

to provide top-down modulation to layer 30’s response to the search image (Figure S5A). This modulation is achieved by

convolving the representation of the target with the representation of the search image before max-pooling:

Msim = f(φ31(IT ,W ), φ30(IS ,W )) (1)



where f(·) is the target modulation function defined as a 2D convolution operation with kernel φ31(IT ,W ) on the search

feature map φ30(IS ,W ).

Saliency map

The saliency map Msal is computed using the same ventral visual cortex module (without any weight changes or retraining).

We obtained the activations of size C30 × W30 × H30 at the top-level (Layer 30 in VGG16) where C30 is the number

of channels, W30 and H30 are the width and height respectively. We take the average over all channels. In other words,

φ30(IS ,W ) gets uniformly modulated by an all-ones matrix JCl×1×1 of size Cl × 1× 1.

Msal = f(JCl×1×1, φ30(IS ,W )) (2)

Saccade prior map

Humans and monkeys make relatively small saccades due to occulumotor constraints (7, 33). We used the empirical

distribution of saccade sizes to constrain the saccade sizes for the model. Specifically, we plotted the saccade size distribution

of the subjects on the corresponding datasets and interpolated to create a 2D map Msac,t centered at the tth fixation.

Figure S6B plots the empirical saccade size distributions of all fixations over all trials and subjects for each dataset and

their corresponding 2D saccade maps when the fixation is at the center. The saccade prior map is updated after each fixation.

Figure S7E shows example visualizations of saccade priors over fixations.

Memory decay map

Humans and monkeys have limited memory capacity and finite inhibition of return (11, 62, 63). We added a finite memory

module to the model where the 2D memory map Mmem,t̃ at the t̃th fixation keeps track of memories at all the past fixation

locations {(x1, y1), (x2, y2), ..., (xt, yt), ..., (xt̃, yt̃)}. From the t̃th back to the 1st fixation locations, the memory value at at

the tth fixation location gets degraded using the following memory decay function:

at =

α
t̃−t, if αt̃−t ≥ β

β, otherwise
(3)

where we set memory decay parameter α = 0.92 and clipping threshold β = 0.5. Figure S6A shows the plot of memory

value at as a function of fixation number t when t̃ = 15. The model’s memory decays for the most recent fixations and

maintains a low memory level for the rest of past fixations. To avoid sparseness of the 2D memory map Amem,t for the tth

fixation at (xt, yt), we applied Gaussian filtering centered at that fixation location:

Amem,t(xt, yt) = at exp
(x−xt)2+(y−yt)2

2σ2 (4)

where σ is the standard deviation of the Gaussian. The value of σ controls how much the model remembers adjacent pixels

centered around fixation location (xt, yt). We set σ = 0.08 on object arrays (Visual Search 1) and σ = 0.02 in the other

datasets. The different σ is because in object arrays, each object stands alone, and the choice of the Gaussian memory mask



is large enough to cover the complete object on the arrays. To avoid overfitting, we performed a heuristic search for suitable

parameters α, β and σ only on the Visual Search 2 task, and fixed those parameters for the rest of the tasks.

After updating Amem,t(xt, yt) for each fixation t, the model predicts the final memory map Mmem,t̃ by taking the

largest memory value across Amem,t(xt, yt) for all previous fixation locations t ∈ {1, 2, ..., t, ..., t̃}. Figure S7F shows

visualization examples of the memory map Mmem,t̃. When there is a return fixation, by taking the largest memory value

acrossAmem,t(xt, yt), the memory value at the revisited location overwrites the decayed memory value at the “to-be-revisited”

location.

Integration of feature maps

The model predicts the final attention map Mf,t by taking the weighted linear combination of Msim, Msal, Mmem,t and

Msac, t, after normalizing them to [0,1] (Figure S7).

Mf,t = wmemMmem,t + wsacMsac,t + wsimMsim + wsalMsal (5)

In the visual search tasks, wsim = 1 and wsal = 0 and in the free viewing tasks wsim = 0 and wsal = 1. We fit the 2

weights wmem and wsac to match the return fixation properties only on the Visual Search 2 experiment with natural images.

We used the following weights: wmem = −0.93, wsac = 0.2346. These weights are fixed throughout the experiments and

do not depend on t. The model takes the maximum in the attention map Mf,t as the location of the t+ 1-th fixation.

Object recognition

In the visual search tasks, given a fixation location, the model needs to decide whether the target was found or not (in a

similar way that humans need to decide whether they found the target after moving their eyes to a new location). The

model performs visual recognition to decide whether the target is present at the fixated location. We used a simplified visual

recognition mechanism consisting of four steps: (1) we cropped a patch of 1 dva centered at the current fixation; (2) we used

the same deep feed-forward architecture described above to extract the activations in the last classification layer of VGG16 in

response to the cropped patch; (3) we similarly extracted the activation in the last classification layer of VGG16 in response

to the target image IT , and (4) we computed the cosine similarity distance between the activations for the image patch and

the target image.

We computed Mrecog for each location in the image. At each fixation location, the model retrieved the cosine similarity

distance in Mrecog. We empirically set a hard threshold for cosine similarity distance (0.5 for object arrays and Waldo

images; 0.3 for natural images). If the distance between the current fixation patch and the target image is below the threshold,

the model decides that the target is found and the search trial stops; otherwise, the model continues the visual search process

by updating the four maps and the overall attention map (Equation 5).

In the free viewing tasks, there is no target image to recognize. Instead, we stop the model after it generated Nc fixations,

where Nc is the average number of fixations by humans or monkeys in the corresponding dataset.



Null model

We compared the model performance against a null model that made random eye movements. Similar to reference (33), the

null model is memoryless: it does not have any history dependency during prediction of the next fixation location. The only

constraint that the null model has is the saccade size, ensuring that the null model can also make return fixations by selecting

random locations in the vicinity of the current fixation. Thus, the null model randomly samples the next fixation location

from the saccade amplitude distribution Msac,t. We used the same stopping criteria for the null model as the one described

in the previous paragraph. We ran simulations generating at least 25,000 random sequences of fixations and reported their

proportion of return fixations for all datasets in Figure 3 and Figure S12. These random sequences of fixations have the same

length as the average number of fixations per trial for each dataset. Similarly, the number of return fixations also impacts the

entropy value (Figure S4). In order to calculate the chance level for the between-subject consistency analyses, we used the

number of return fixations collected from all subjects in each trial (that is, each image) to randomly generate an equal number

of random return fixations and computed the entropy for these random return fixations. We repeated this process 100 times

for every trial per dataset.

Data analyses

Fixation extraction and calibration

In the visual search tasks, we used the fixations from the previous work (7). In the human free viewing task, we used the

fixation clustering function from reference (64), implemented in MATLAB. During all the human eyetracking experiments

on static images, if a fixation was not detected during the initial fixation window in each trial, the experimenter re-calibrated

the eye tracker.

In the Monkey Free Viewing 1 task, there were 3-5 re-calibrations. We minimized the number of times for checking

re-calibrations in order to maintain the monkeys’ attention. The checking process was only activated if the monkeys failed

3 times or more to complete a trial. We used two eyetrackers (four monkeys using ISCAN and two monkeys using Eyelink

1000 Plus) to record monkeys’ eye positions. In the Monkey Free Viewing 2 task, calibration was conducted in the beginning

of each session. We used the ISCAN eyetracker to record the monkeys’ eye positions. We used the built-in Monkeylogic 2

graphics library (65) to monitor eye movements on MATLAB.

In the two egocentric datasets (35, 36), calibration was only performed once before each experiment. In a natural

environment the resulting egocentric videos represent a combination of head pose and gaze position. Different from static

images, both foreground and background objects move with respect to the egocentric coordinate. This implies that the

coordinates of a fixated object on the current video frame might be shifted with respect to the next frame or even disappear

in the next frame due to abrupt large head motions. To avoid the complexities of using optic flow to track coordinates across

frames, we simplified the analyses by considering short segments with minimal head motion. We uniformly split the long

egocentric videos into short 5-second video clips. To approximate head motion, we calculated the Euclidean distance between

the first frame and the last frame of the video clip at the pixel level and normalized the Euclidean distance by the total number

of pixels on each frame (Figure S3). We only considered video clips if the normalized Euclidian distance between the first



frame and the last frame was ≤ 0.4.

The field of view of the camera capturing the egocentric videos was limited to 46 × 60 dva while the field of view for

human eyes is at least 120 dva. Thus, we could have cases when the eye tracking data goes beyond the size of the video

frame, leading to missing fixations in some video frames. Missing eye tracking data could also arise as a consequence of

large head rotations. The coordination between head and gaze movements results in an early movement of eye gazes to the

anticipated direction of what subjects intend to look at before the head rotates such that subjects can re-position the object

of interest in the center of the field of view (51). Therefore, in addition to the constraint based on the normalized Euclidian

distance, we also discarded from analyses those video clips with more than 14 consecutive frames with missing fixations.

Fourteen consecutive frames at 24 frames per second corresponds to about 3 fixations. For the rest of the video clips with

fewer missing fixations, we performed linear interpolation to estimate eye positions in frames with missing data. After all

these pre-filtering steps, we ended up with 8,468 video clips in the cooking egocentric videos (Figure 2G) and 1,186 clips in

the visual search egocentric videos (Figure 2H). Despite these efforts to remove large head motion, we could still have video

clips with small head movements, which would lead to inaccurate analyses of return fixations. Therefore, for the egocentric

videos, we relaxed the threshold in the definition of return fixations to 1.5 dva overlap, instead of 1 dva overlap as used in all

the other datasets.

Evaluation of object recognition during visual search

During visual search, subjects can fixate on the target object without realizing that they have found the target and continue

searching (there are multiple examples of this phenomenon and discussion in reference (7)). We refer to these cases of

missing the targets as “false negatives” in visual recognition (Figure S11). To compute the false negative rate for humans,

we counted the total number of fixations on the targets without mouse clicks and divided it by the total number of fixations

for all the trials (Figure S11).

Conversely, there could also be cases when humans are not looking at the target but rather they are fixating on a distractor;

yet, they misclassify the distractor as the target by clicking the mouse at the wrong location. We refer to these failure cases

as “false positives”. We computed the false positive rate as the number of trials when false clicks happen within that trial,

normalized by the total number of trials (Figure S11).

In the object array experiments, subjects were not asked to click the target location with the mouse and therefore we cannot

compute false positives or false negatives. Thus, we only reported false positive and false negative rates in the Visual Search

2 and 3 datasets (natural images and Waldo). The model similarly makes false positives and false negatives, also reported in

(Figure S11).

Evaluation of return fixation properties

Definition of return fixations: A fixation location was considered to be a return fixation if it was within one degree of visual

angle (dva) of a previous fixation location (Figure 1, Figure 4A). One dva is approximately the resolution of the eye tracking

data in the experiments reported here. The original fixation is referred to as a to-be-revisited location. All other fixations



are referred to as non-return locations. This definition is consistent with criteria previously used in the literature (e.g., (20)).

In the egocentric video datasets (Figure 1G-H), we relaxed the degree of overlap to 1.5 dva to account for the alignment

imprecision introduced by potential head movements.

Proportion of return fixations: The proportion of return fixations is defined as the number of return fixations normalized

by the total number of fixations in each trial. Figure 3 reports the proportion of return fixations averaged over all subjects

and Figure S12 reports the proportion of return fixations for the model. In the visual search tasks, we further divided the

return fixations based on whether they landed on the target objects or non-target locations (Figure 5B). The proportion of

return fixations at target locations was calculated as the number of on-target return fixations divided by the total number of

on-target fixations per trial. Similarly, we calculated the proportion of non-target return fixations. We omitted the division of

on-target and non-target return fixations on the egocentric visual search dataset because of the lack of annotations of target

object locations in each video frame.

Return offset: The return offset was defined as the number of intervening fixations in between a to-be-revisited location and

a return fixation. For example, in Figure 4A the return offset between to-be-revisited location 3 and return fixation 6 is 2.

Figure 4B shows the distributions of return offsets for all experiments and Figure S14 shows the corresponding distributions

for the model.

Saliency: To study whether return fixations correlate with saliency, we evaluated saliency maps using Graph-based Visual

Saliency (GBVS), which is a bottom-up saliency prediction algorithm in computer vision using low-level visual features,

such as color, orientation, and contrast (38). We computed the average of all saliency values for each fixation patch, defined

as a squared region covering one dva and centered at the fixation location. Figure 5A shows saliency for all the experiments

and Figure S14 shows saliency for the model.

In the case of egocentric videos, it is not justifiable to establish a one-to-one mapping from an extracted fixation (lasting

approximately 250 ms) to a single video frame (about 42 ms, 24Hz video frame rate). The fact that one fixaiton involves

many frames implies the need for further assumptions to calculate the saliency value for a fixation. Assuming that we have

little head motion for the selected video clips, we approximated the saliency value for a fixation by projecting all the fixations

within a video clip back to the last frame, and computed saliency using GBVS on the last frame.

Mouse clicks: In the Visual Search 2 and Visual Search 3 experiments, subjects were asked to use the mouse to click on the

location of the target. We asked whether there were additional return fixations at the end of each trial which were related to

this testing procedure. For example, subjects may find the target, then look for the mouse position, and then make a second

saccade to the target. We conducted two additional analyses to evaluate this possibility. First, if subjects look back for the

mouse pointer, the fixation preceding the return fixations should overlap with the mouse pointer location. Subjects were

instructed not to move the mouse during visual search, except when the target was found at the end of the trial. We computed

the proportion of fixations preceding return fixations that overlapped with the mouse pointer location with respect to the total

number of return fixations in both experiments. There were only 1.5% and 1.3% of preceding return fixations overlapping

with mouse pointer locations in the Visual Search 2 and 3 experiments, respectively. Second, to further quantify the effect of

looking for mouse pointers, we examined the first 6 fixations in each trial (FigureS2). In both experiments, it took subjects

much more than 6 fixations to find the target(7). During the initial 6 fixations, it is unlikely that the subjects were looking



for the mouse pointer. During the first 6 fixations, the proportion of return fixations was significantly above chance in the

Visual Search 2 experiment, but not in the Visual Search 3 experiment. In sum, the presence of return fixations in the visual

search experiment 1 (where subjects did not use the mouse), combined with the presence of return fixations during the first

6 fixations in the Visual Search 2 experiment, and together with the low fraction of return fixations where subjects look for

the mouse pointer before making a return fixation, suggest that the majority of return fixations cannot be ascribed to subjects

searching for the mouse pointer.

Between-subject consistency in return fixation locations

To evaluate between-subject consistency (Figure S4, Figure S17), we performed the following steps: (1) we mapped all

return fixations from all subjects on each image to a uniform 2D grid of size 32 by 40 (Figure S4B); (2) we computed the

proportion of subjects that showed a return fixation at location l, with l = 1, ..., 32× 40; (3) computed the entropy H for this

distribution over L locations using the following equation:

H(L) = −
32×40∑
l=1

pl log(pl) (6)

An extreme case of perfect consistency would lead a probability of 1 at a given location and 0 elsewhere, leading to minimal

entropy, whereas a complete lack of consistency would lead to an approximately uniform probability distribution except for

random overlaps, resulting in high entropy. We omitted this analysis in the egocentric video datasets because the field of view

in each frame could be different across subjects, making comparisons difficult to interpret.

Statistical analyses

We used two-tailed t-tests when comparing two distributions and considered results to be statistically significant when p <

0.05. Because calculations of p values tend to be inaccurate when the probabilities are extremely low, we reported all p values

less than 10−15 as p < 10−15 (as opposed to reporting, for example, p = 10−40); clearly none of the conclusions depend on

this.

Code and Data availability

All the source code and raw data is publicly available through the lab’s GitHub repository: https://github.com/

kreimanlab/RefixationModel.
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Figures and figure captions

Figure 1. Primates make return fixations during natural vision. Example fixation sequences (yellow circles) of humans (A-C) and
monkeys (D) during visual search (A), free viewing of static images (B, D), and a cooking task with a head-mounted eye tracker (C)
(see Figure 2 for task definitions). The numbers denote the fixation order. A fixation (yellow circles) is referred to as a “return fixation”
(red triangle) if the Euclidean distance to any of the previous fixations is less than 1 degree of visual angle (dva). The previous fixation
overlapping with the return fixation is referred to as “fixation-to-be-revisited” (red circle). There are two return fixations in B and one in
A, C, and D.



Figure 2. Schematic description of the eight experimental paradigms. (A-C) Visual search tasks with object arrays (A), natural images
(B), and “Waldo” images (C), (see reference(7) for details). (D-F) free viewing experiments with static natural images in humans (D) and
monkeys (E, F). (G) Egocentric video dataset where subjects had to follow various recipes to make breakfast (see (35) for details). (H)
Egocentric video dataset where subjects had to search for 22 items (see reference(36) for details). The numbers in the top right corner of
each subplot denote the total number of fixations (top) and the total number of return fixations (bottom).



Figure 3. Human and non-human primates make frequent return fixations. The proportion of return fixations is defined as the total
number of return fixations normalized by the total number of fixations. A-H refer to the eight experiments in Figure 2. Error bars indicate
SEM across all subjects The chance level (dashed lines) was computed by generating sequences of random fixations (Methods). The
proportion of return fixations was higher than chance in all experiments (∗ denotes p < 0.05, one-sample t-test).



Figure 4. Return fixations showed short return offsets, tended to last longer and to follow smaller saccades. (A) Example sequence
of eight fixations on an image, including return fixations (6 and 7), to-be-revisited fixations (3 and 5), and non-return fixations (1, 2, 4 and
8). The return offset is defined as the number of intervening fixations for a given return location. (B) Distribution of the return offset for
the 8 experiments. In the visual search experiments (B1, B2, B3), the solid line shows return fixations to target locations and the dashed
line shows return fixations to non-target locations. (C) The durations of return fixations tended to be longer for return locations. Asterisks
(∗) denote statistically significant differences between two distributions. (D) The sizes of saccades to return locations tended to be smaller
(∗ denotes p < 0.05, two-tailed t-test).



Figure 5. Return fixation locations depended on the image and task. (A) Return locations tended to show higher saliency. Asterisks
denote statistical significance (∗ denotes p < 0.05, two-tailed t-test). Because to-be-revisited locations and return locations overlapped by
definition, saliency at to-be-revisited locations was similar to that at return locations and is not shown here. (B) During visual search tasks,
the proportion of return fixations was larger for target than non-target locations. Gray asterisks denote a statistically significant difference
in the proprtion of return fixations with respect to the chance levels. Black asterisks denote a statistically significant difference betwee the
proportion of return fixations in target versus non-target locations. (C) Schematic of an experiment to assess whether return fixations shared
similarity to the target. In each trial, subjects were presented with an image (Target) and had to choose the more similar image between two
alternatives. There were three conditions: (1) Test, where the two alternatives were return fixations versus non-return fixations, (2) Control
1, where the two alternatives were an identical copy of the target versus non-return fixations, and (3) Control 2, where the two alternatives
were a different object from the same category as the target versus non-return fixations. (D) Accuracy in distinguishing images from each of
the conditions in C versus non-return fixations. Asterisks denotes statistically significant difference from chance levels (horizontal dashed
line at 50%, (∗ denotes p < 0.05, one sample t-test)).



Figure 6. Architecture of the computational model. (A) The model has a ventral visual cortex module (pre-trained VGG-16) that extracts
features from the image. These features constitute the saliency map (Msal). In visual search tasks, the same ventral visual cortex module
processes the target image and modulates the features in the search image via top-down modulation, generating a target similarity map
(Msim) (7). See Figure S5 and Methods for detailed architecture. (B) The generation of eye movements is governed by a weighted
combination of 4 maps: Msal (part A), Msim (part A, only in visual search tasks), a time-dependent memory map (Mmem,t, and a
time-dependent saccade size constrain map (Msac,t). At each time point t, the 2D spatial memory decay map Mmem,t is updated based on
all previous visited locations {l1, l2, . . . , lt}. The brighter the color on the memory decay map, the stronger the effect of memory inhibition.
The saccade size constrain map is also updated at each time point according to the current fixation location, lt. A winner-take-all chooses
the maximum in the combined attention map Matt,t (yellow circle) as the location for the next fixation. In visual search tasks, the model
computes a recognition map Mrecog indicating the confidence that the current fixation contains the sought target (Figure S5B). If the
target is found, the search stops; otherwise, it continues. During free viewing tasks, the recognition map is not used and the model keeps
generating eye movements for a fixed amount of time.



Figure 7. The computational model generates return fixations. (A). Example scanpaths by monkeys (A1) and by the model (A2) while
free viewing natural images (conventions follow those in Figure 1.) (B) Proportion of return fixations. (C) Distribution of the offset
between two fixations on the same location. (D) Saccade sizes. Panels (B, C, D) follow the same conventions as those in Figure 3E and
Figure 4B, D. See Figure S5 for model implementation and a full comparison of all return fixation properties predicted by the model for
all static image datasets in Figure S12, Figure S14, Figure S15, and Figure S16.



Supplementary Materials

Figure S1. Proportion of fixations that revisit the same location twice. Following the format in Figure 3, here we show the proportion
of fixations that return to the same location twice (as in the sequence L1-L2-L1-L3-L4-L1 where L indicates different image locations).



Figure S2. Proportion of return fixations among the first six fixations. Following the format in Figure 3, here we show the proportion
of return fixations among the first six fixations of all scanpaths over all eight datasets. The proportion of return fixations among the first six
fixations was higher than chance (∗ denotes p < 0.05, one-sample t-test) in all experiments except Visual Search 3.



Figure S3. Extraction of fixations on egocentric videos. Egocentric videos (Figure 2G-H) were analyzed in 5-second segments. (A).
Distribution of normalized Euclidian distance between the first frame and the last frame (solid lines). The chance distribution of normalized
Euclidian distance values was computed by considering random pairs of frames from 100 different video sequences (dashed line). Segments
with large head motion (normalized Euclidian distance > 0.4, gray rectangle) were excluded from analyses. (B-C). Examples of the first
and last frame in 5-second clips (top) and extracted fixations (yellow circles) mapped to the last frame of example video clips (bottom)
during the cooking task (B, Figure 2G) and visual search (C, Figure 2H). The figure conventions follow Figure 1.



Figure S4. Return fixations are consistent across subjects. (A). Example return fixations over multiple subjects. The numbers indicate
the fixation number in the sequence for each subject. (B). The image is divided into a 32 × 40 grid (only a few of the lines are shown in
the image). For those locations where there is at least one return fixation, we compute the proportion of the total number of return fixations
that land on that location (shown here by the grayscale colormap). The entropy of the distribution is then computed from those probability
values. The lower the entropy, the higher the consistency between subejcts. (C). Entropy for each experiment. Horizontal dashed lines
show the expected chance value obtained by assigning the total number of return fixations to random locations for each image.



Figure S5. Calculation of bottom-up saliency map, target similarity map, and recognition map in the computational model. (A). At
the heart of the model is a pre-trained deep convolutional network that mimics image processing along the ventral visual cortex. Here we
used the VGG-16 architecture (39). The features extracted from the top convolutional layer in the model yield the saliency map, Msal.
During visual search tasks, we following the work of Zhang et al (7), to create a target similarity map, Msim, based on comparing the target
features (orange box) and the search image features (gray box). Only some of the layers are shown here for simplicity, the dimensions of
the feature maps are indicated for each layer. (B). For each location on the search image, we cropped a fixation patch of size 224×224 and
used it as input to the same pre-trained recognition network as (A) to extract the feature maps. Similarly, we obtained the feature maps
of the target image. We computed the cosine similarity between the target and cropped features, resulting in a 2D spatial recognition map
Mrecog where each location on the map denotes a confidence value of recognizing the target at each location on IS .



Figure S6. Memory Decay Function and 2D Empirical Distribution of saccade sizes. A. The memory decay is a function of the offset
from the current fixation (see Methods). (B-G). Saccade size prior maps (Msac) in Visual Search 1 on object arrays (B), Visual Search 2
in natural images (C), Visual Search 3 in Waldo images (D), Free Viewing in humans (E), and Free Viewing 1 and 2 in monkeys (F-G).
The map activation color scale is shown on the bottom left. In all cases, we show the map assuming fixation in the center (yellow circle),
except in B where the map is shown assuming fixation in the lower left (yellow circle).



Figure S7. Visualization examples of attention maps for the model. (A) Example image. (B) Pattern of fixations predicted by the model.
The plot follows the conventions in Figure 1. (C) Saliency map (Msal). (D) Similarity map (Msim). ((E)) Saccade map (Msac) for
fixations 1, 3, 5 and 7. (F) Memory map (Mmap) for fixations 1, 3, 5 and 7. (G) Attention map (Mf ) for fixations 1, 3, 5 and 7. The
yellow circle indicates the maximum, which corresponds to the fixation location.



Figure S8. Example return fixations and model predictions. Red circles = to-be-revisited locations; Red triangles = return fixations.
Middle column shows return fixation probability map across all subjects (see color scale on bottom right).



Figure S9. A. Return and non-return fixation locations. Locations of return fixations (Column 1) and non-return fixations (Column 2) for
each of the experiments for humans/monkeys (A12-H12) and the model (A34-F34). Each dot indicates the location of a return/non-return
fixation.



Figure S9. B. Return and non-return fixation locations. Locations of return fixations (Column 1) and non-return fixations (Column 2) for
each of the experiments for humans/monkeys (A12-H12) and the model (A34-F34). Each dot indicates the location of a return/non-return
fixation.



Figure S10. The distribution of saccade sizes in the model matches the one from humans and monkeys. Distribution of saccade sizes
for humans/monkeys (solid lines) and the model (dashed lines).



Figure S11. False negative and positive rates for humans and the model (IVSN2.0) in Visual Search 2 on natural images (A) and in
Visual Search 3 on Waldo images (B). In visual search tasks, IVSN2.0 has to decide whether the current fixation patch is the target. We
introduced the recognition map indicating the confidence value of recognizing that fixation patch belongs to the target. See Figure S5B for
recognition map Mrecog calculation. We empirically set a threshold for deciding whether the target is found based on the corresponding
confidence value obtained from Mrecog at current location lt. The false positive rates for humans are defined as the number of mouse
clicks at the wrong locations normalized by total number of mouse clicks over all the trials. The false negative rates for humans are defined
as the proportion of number of fixations falling on the targets and yet, humans do not recognize the targets and continue to move their
eyes to other locations out of total number of fixations over all the trials. For IVSN2.0, since the fixations and the mouse clicks are always
consistent, we calculated both false positive rates and false negative rates based on the empirical thresholds and normalized them based on
total number of fixations.



Figure S12. The model makes frequent return fixations. Following the format in Figure 3, this figure shows the proportion of return
fixations in each static image dataset for the model.



Figure S13. The model makes more return fixations at target locations than non-target locations in visual search. Following the
format in Figure 5B, this figure shows the proportion of return fixations in each visual search dataset at target and non-target locations for
the model. Asterisks denote statistical significance above chance (∗ denotes p < 0.05, two-tailed t-test).



Figure S14. Return fixations show small return offsets for the model. Following the format of Figure 4B, we show distribution of return
fixation offsets for the computational model. In the visual search experiments (A, B, C), the solid line shows return fixations to target
locations and the dashed line shows return fixations to non-target locations.



Figure S15. The model makes shorter saccades at return fixations than non-return fixations. Following the format of Figure 4D,
bar plots show saccade sizes of to-be-reivisted, return, and non-return fixations for the computational model over all static image datasets.
Asterisks denote statistical significance (∗ denotes p < 0.05, two-tailed t-test).



Figure S16. Return fixation locations in the model showed higher saliency. Following the format in Figure 5A, saliency for return
and non-return fixations for the model in each of the static image datasets. Asterisks denote statistical significance (∗ denotes p < 0.05,
two-tailed t-test).



Figure S17. A. Example of consistent return fixations across subjects, Visual Search 1.



Figure S17. B. Example of consistent return fixations across subjects, Visual Search 2.



Figure S17. C. Example of consistent return fixations across subjects, visual search 3.



Figure S17. D. Example of consistent return fixations across subjects, free viewing (humans).



Figure S17. E. Example of consistent return fixations across subjects, free viewing 1 (monkeys).



Figure S17. F. Example of consistent return fixations across subjects, free viewing 2 (monkeys).


