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Stochastic consolidation of lifelong 
memory
Nimrod Shaham1, Jay Chandra1, Gabriel Kreiman2 & Haim Sompolinsky1,3*

Humans have the remarkable ability to continually store new memories, while maintaining old 
memories for a lifetime. How the brain avoids catastrophic forgetting of memories due to interference 
between encoded memories is an open problem in computational neuroscience. Here we present 
a model for continual learning in a recurrent neural network combining Hebbian learning, synaptic 
decay and a novel memory consolidation mechanism: memories undergo stochastic rehearsals 
with rates proportional to the memory’s basin of attraction, causing self-amplified consolidation. 
This mechanism gives rise to memory lifetimes that extend much longer than the synaptic decay 
time, and retrieval probability of memories that gracefully decays with their age. The number of 
retrievable memories is proportional to a power of the number of neurons. Perturbations to the circuit 
model cause temporally-graded retrograde and anterograde deficits, mimicking observed memory 
impairments following neurological trauma.

Understanding the principles governing long-term memory is a major challenge in theoretical neuroscience. The 
brain is capable of storing information for the lifetime of the animal, while continually learning new information, 
so the brain must face the stability—plasticity dilemma: keep changing in order to learn new memories, but do 
so without erasing existing information. In humans, forgetting curves (retrieval probability vs. age of memory, 
sometimes referred to as retention curves), are found experimentally to be gracefully decaying with memory 
age, allowing for non-zero probability of retrieval for memories tens of years of  age1–4. While retrieval prob-
ability curves monotonically decrease with memory age, the lifetime of individual memories is more intricate, 
and seemingly stochastic—we might not be able to retrieve a memory from last week, but can retrieve a much 
older one. Thus, the retrieval of memories does not depend on the memories’ age alone.

Early attractor neural network models of long-term memory suffer from catastrophic forgetting: when the 
number of encoded memories is lower than a critical value, memories are retrievable with high precision, but 
when it is above that critical value, none of the memories can be  retrieved5–7. Incorporating synaptic decay into 
the circuit enables continual learning, such that at any point in time recent memories are stable. However, the 
predicted forgetting curves exhibit a critical memory age, all memories newer than some age are almost perfectly 
retrievable, while all older ones are destroyed (a palimpsestic behavior-old information is deleted in favor of 
new information)8–13. This is in contrast to the gracefully decaying forgetting curves in humans. Furthermore, 
the critical age is of the order of synaptic decay time, hence memories older than this time cannot be retrieved. 
Another class of memory models which avoid catastrophic forgetting are models with bounded (continuous or 
discrete) synaptic  strengths14,15. These models also give rise to a palimpsestic behavior qualitatively similar to syn-
aptic decay models: only new memories up until a critical age are retrievable, while the older memories are not.

One of the main methods of studying the mechanisms of human memory is through memory disorders. 
Amnesic patients show a variety of patterns of forgetting. One is anterograde amnesia-reduced memory retrieval 
of events encoded after the onset of the disturbance to the circuit, presumably due to the inability to encode 
or store new memories. Another pattern is temporally-graded retrograde amnesia—when the probability of 
retrieval of memories encoded a short time before the pathology onset is lower than that of older events, giving 
rise to non-monotonic forgetting curves (an effect also known as Ribot’s law). Retrograde amnesia is typically 
explained by invoking memory consolidation theory, suggesting that memories must go through a stabilization 
process that is disrupted by the proximal onset of the  disturbance16–22.

In addition to possible cellular mechanisms, memory consolidation at the system level is mediated through 
a rehearsal process—reactivating memories in wakefulness or during  sleep23–27. Several computational mod-
els have been proposed for memory consolidation through  rehearsals28–36. However, all reported results were 
confined to a small number of memories; none demonstrated memory functionality and forgetting curves in a 
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large circuit with a number of retrievable memories scaling with the number of neurons. None of the models 
obtain the scaling of capacity and memory lifetime with the number of neurons and other intrinsic parameters.

Here we present a neural network model for lifelong continual learning and memory consolidation. Our 
model continuously stores patterns of activity by Hebbian learning, and combines synaptic decay with stochas-
tic nonlinear reactivation of memories. Our model generates intricate and rich memory forgetting behavior. 
Retrieval probability curves decay smoothly with memory age (exponentially or even as a power law), with 
characteristic times that can be orders of magnitude longer than the synaptic decay time. In addition, due to the 
stochasticity of the consolidation process, there is a large variability in the survival of individual memories of the 
same age. We show that at any given time, the number of retrievable memories scales as a power of the number 
of neurons, exhibiting adequate memory functionality expected for a robust neuronal circuit with distributed 
memories. The power approaches unity for high rehearsal rate and the capacity approaches linear behavior with 
the number of neurons.

Perturbations of the model circuit give rise to complex patterns of memory deficits, temporally-graded retro-
grade and anterograde amnesia, the details of which depend on the size as well as the nature of the perturbation. 
Our theory relates global measures of memory functionality (memory capacity, characteristic memory lifetime) 
to intrinsic cellular and circuit parameters, such as synaptic decay rate and reactivation statistics, and provides 
new insight into how the brain builds and maintains the body of memories available for retrieval at each point 
in an animal’s life.

Results
Model conceptual description. We model the lifelong memory acquisition and forgetting processes using 
a recurrent neural network, continuously experiencing Hebbian learning of new activity patterns (”memories”). 
Following initial memorization, memories are strengthened by stochastic rehearsal events, each increasing the 
Hebbian contribution of the rehearsed memory to the network synaptic connectivity matrix (‘the memory effi-
cacy’), thereby enhancing their retrievability. In addition, the synapses spontaneously degrade with time, mim-
icking the well-known synaptic turnover in biological neural networks. For simplicity, our model consists of a 
single neuronal population, and every synapse is allowed to be positive or negative. The retrieval of a memory at 
a certain moment in time is determined by both its current efficacy as well as its random interference with other 
stored memories. The rate of rehearsals of a given memory is self-consistently determined by its retrievability, 
such that a more easily retrievable memory will be revisited more frequently than a less retrievable one, and a 
memory that loses its retrievability will not be rehearsed anymore. In this framework, memories begin their life 
with a fixed initial efficacy, which is subsequently increased by each rehearsal, and decays between rehearsals. As 
long as a memory is revisited frequently enough, its amplitude will be larger than the threshold efficacy required 
for retrieval. However, due to the stochastic nature of the rehearsals process, there will be a period of time even-
tually when the time lag between two rehearsals will be too long, such that the efficacy of the memory will drop 
too low, making the memory irretrievable, and therefore forgotten. The age at which a certain memory will be 
forgotten is therefore stochastic and may range from the order of the synaptic decay timescale to several orders 
of magnitude longer. In the following sections we give a detailed description of our memory model, present its 
properties and explain how these properties emerge from our model’s dynamics.

Model details. Our model is based on the sparse version of the Hopfield attractor network model of asso-
ciative  memory5,6. Memories are  sparse7,37–41, uncorrelated N-dimensional binary activation patterns (N is the 
number of neurons) and are stored as fixed points of a recurrent neural network dynamics with binary neurons. 
We assume that the neural activation threshold is adjusted dynamically so that the population activity level 
maintains the same sparsity as the memories (see “Methods”, in “The effects of structural perturbations on mem-
ory function” this assumption is modified). Synaptic dynamics are governed by three processes: Deterministic 
exponential synaptic  decay8,11 (first term in Eq. (1)), Hebbian  learning42 of new memories (second term in Eq. 
(1)), and Hebbian consolidation of old memories following their reactivation (third term in Eq. (1)),

Here Jij(t) is the strength of the synapse between neurons i and j at time t (symmetric in i and j), ξ li  is the i-th 
element of the memory introduced first at time t = l and it is given by:

Here f is the fraction of neurons active in a memory state (the sparseness level). According to the above equation, 
new memories enter in each time interval �t and synapses decay at a rate 1/τ , representing the finite lifetime of 
 synapses43. The last term represents a Hebbian strengthening of old memories following a sequence of reactivation 
events that occur for memory k at times denoted by tk (which will be specified below). The factor b denotes the 
size of synaptic modification due to a single consolidation event of an old memory, assumed to be smaller than 
the Hebbian amplitude of learning a new memory (i.e. b < 1 ). The resulting connectivity matrix can be written as:
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Al(t) is the efficacy of memory l at time t. The ability to recall a memory depends on the level of noise, which 
originates from random interference with other memories. Its variance is proportional to the sum of the squares 
of all efficacies (see “Methods”):

We define the critical efficacy Ac , as the efficacy for which a memory pattern loses its stability. Ac is proportional 
to the interference noise � , with the proportionality constant depending only on the sparseness:

Due to the reduction of overlap between memories, The critical efficacy is increased when f is decreased. The 
factor a(f) can be approximated by (see Supplementary Information (SI) section 1):

This approximation holds for the f regime we consider throughout this study. For f = 0.01 (which we will use 
throughout the paper), a ≈ 4.7.

Pure forgetting. Without rehearsals, our model is similar to previous models of associative memory with 
 forgetting8,10,11, in which memory efficacies decay exponentially with age, Al(t) = exp(−(t − l)/τ) (Fig.  1a). 
Using Eq. (4), the interference noise equals �2 ≈ f τ/(2N) . For τ > τ0 , where τ0 = 2N/(fa2(f )) (see Eq. (5)), Ac 
increases above unity (the initial efficacy) and no memory will be retrievable. This global catastrophic forgetting 
is similar to the behavior of the Hopfield model after reaching memory capacity, where the interference effect is 
too strong and all memory states lose their  stability5,6. If τ < τ0 , recent memories are retrievable, while memories 
older than a critical age t0 = τ

2 log
(

τ0
τ

)

 are forgotten (Fig. 1b). Thus, for short decay times, this model allows for 
continual learning of recent memories without global catastrophic forgetting. However, it predicts an unrealistic  
age-dependent catastrophic forgetting, where all memories up to a critical age are almost perfectly retrievable, 
and all older memories are completely forgotten. This sharp transition happens despite the graceful exponential 
decay of efficacies with age, and results from the collective effects of memory stability in the network.

In what follows we will show that when stochastic rehearsals are taken into account, the behavior changes 
dramatically, generating more realistic memory forgetting trajectories and allowing for lifelong memories.

Nonlinear stochastic reactivation. To specify the statistics of reactivations, we revert to the continuous 
time version of Eq. (1) which yields the efficacies dynamics:

With Al(t) = 0 for t < l and Al(l) = 1 . The reactivations are modeled as a point process
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Figure 1.  (a) Pure forgetting. A memory efficacy trajectory as a function of time (solid line). The critical 
efficacy Ac is plotted as a dashed line. (b) Overlap of the network state with a memory state as a function of the 
memory age. The overlap is a measure of memory retrievability—after initializing the network near a memory 
state, the overlap of the nearby attractor network activity will be close to unity for retrievable memories and 
small compared to one for irretrievable memories. Here N = 8000 , f = 0.01 , τ = 2240 . The catastrophic age 
here is ∼ 1.73τ , resulting in a capacity (number of retrievable memories) of  0.5N. Note the very large value of τ 
needed to support this capacity—this will be addressed in later sections.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13107  | https://doi.org/10.1038/s41598-022-16407-9

www.nature.com/scientificreports/

where tl are the times at which memory l was rehearsed. To specify the rate of the reactivation process, we 
hypothesize that this process is more likely to yield a Hebbian strengthening of memories with a large basin of 
attraction. The rationale is that during reactivation periods, the system is more likely to visit memories with 
large basins of attraction and stay there for a significant period of time triggering their Hebbian strengthening . 
In particular, memories that at some point in time lost their stability and are not attractors of the dynamics (i.e., 
have vanishing basin of attraction) will not be reactivated, will experience fast pure decay, and will be forgotten. 
Hence we model reactivation events as inhomogeneous Poisson processes, with mean rate rl(t) ≡ �Rl(t)� , which 
is proportional to the memory’s basin of attraction size:

where � denotes the maximal reactivation rate. As in Eqs. (4) and (5), at all times Ac(t) = a(f ) ·�(t) . The 
nonlinear function F denotes the size of the basin of a memory and depends on the ratio of the memory efficacy 
over the critical capacity Ac (Fig. 2a). We derive the function F by numerical calculation of memories’ basin of 
attraction size for different values of A/Ac (see “Methods” section and SI for details). At any given time, only 
memories with non-zero basin size (i.e., Al(t) > Ac → F > 0 ) are retrievable and might be reactivated. Note 
that since the interference �(t) depends on the efficacies of all memories (Eq. (4)), the reactivation rates of all 
memories are coupled in Eq.  (9) via Ac.

The approach to steady state of memory consolidation. It is useful to first consider the average 
dynamics, replacing the reactivation point process by its mean rate, Eq. (9). For a given Ac , the resulting self-
consistent equation for the steady state efficacies,

possesses two stable fixed points: one at zero and another one when the two competing processes, decay and 
reactivation, balance each other ( Afp , Fig 2a). Due to the rapid saturation of the function F, for most of the 
parameter regime Afp ∼ b�τ.

To fully understand the system’s behavior we need to consider the dynamics of Ac itself as well as the stochastic 
nature of the process. Initially, when the first memories enter the system, Ac ∝ � is very small and the memory 
efficacies consolidate around the value Afp ∼ b�τ . As more memories are encoded, the interference grows and so 

(9)rl(t) = �F(Al(t)/Ac(t))
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Figure 2.  Stochastic memory dynamics. (a) Blue: basin of attraction size F as a function of memory efficacy 
A. Orange dashed: A/τ , the negative of the deterministic decay term in Eq. (7). Importantly, F is zero for 
A < Ac . Here �τ = 5 , Ac = 0.4 . (b) Example memory efficacies vs. age of the system. Memories enter with 
efficacy A(0) = 1 , rehearsal efficacy b = 0.3 . Most of them increase towards Afp ≈ b�τ ≈ 1.5 , and fluctuate 
around it. Large enough fluctuations can take efficacies below Ac (e.g, cyan curve at age/τ ≈ 40 , yellow curve 
at age/τ ≈ 120 ). Some memories are alive for a very short time (e.g., green curve) and some for very long (e.g., 
red, blue curves). (c) Distribution of memory efficacies after saturation of Ac . (d) Equilibrium values of Ac as a 
function of b�τ for different �τ values. Here τ = 160, N = 8000.
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does the critical efficacy (red line in Fig. 2b). When the critical efficacy is large enough, fluctuations in reactiva-
tion times lead some memory efficacies to drop below Ac , making these memories irretrievable. A steady state is 
achieved when the flux of memories arriving at the system and consolidated is balanced by the rate of memories 
forgetting due to the drop of their efficacy below Ac . At this stage, Ac reaches a fixed equilibrium value and so 
does the mean number of retrievable memories. The specific identity of the retrievable memories varies with 
time—some are forgotten while new ones are being consolidated. The distribution of efficacies at equilibrium 
(Fig. 2c) consists of two modes: The first is the contribution of the forgotten memories, below Ac , which diverges 
at small A as p(A) = τ/A . The second, above Ac , is a mode around Afp representing the retrievable memories.

Ac increases as the amplitude b and number of reactivations per decay timescale �τ increase, due to increased 
interference (Fig. 2d). For moderate reactivation strength, Ac is well below both the encoding strength A(0) = 1 
and the consolidation fixed point as seen in the examples in Fig. 2b,c. As reactivation strength grows, Ac increases 
and approaches 1, affecting adversely the consolidation process, as will be seen in the next section.

The forgetting curve. Importantly, in our model, the time of forgetting of memories at a given age is 
highly variable, ranging from a fraction of the decay time τ (for unfortunate memories that weren’t rehearsed fast 
enough after learning), and up to hundreds of τ for well-rehearsed memories (Fig. 2b). Nevertheless, on average, 
memory retrievability decreases with memory age, and this is captured by the forgetting curve—the probability 
of retrieving a memory as a function of its age, after a steady state has been reached (Fig. 3a,b). This curve exhib-
its an exponential tail with a long time constant, denoted as the consolidation time τc —a direct result of the long 
time required for a large fluctuation in reactivation rates to form such that consolidated efficacies decrease from 
around Afp to Ac (SI). The consolidation time enhancement factor τc/τ can reach several orders of magnitude, 
allowing memories to survive for very long times compared to the intrinsic timescales of the system (as shown 
in Fig. 3c,d). For fixed consolidation parameters �τ and b, consolidation time normalized by τ decreases with τ 
due to increased interference (Fig. 3d).

For fixed τ , consolidation time increases sharply with �τ and b (Fig. 3c). However, increasing these param-
eters may adversely affect the consolidation process. When b�τ is of order 1, most of the memories experience 
consolidation, as is the case in Fig. 3a . However when b�τ ≫ 1 , Ac is close to the encoding efficacy (Fig. 2d). This 
causes a significant number of memories not to get consolidated. Therefore, the forgetting curve exhibits an initial 

0 20 40 60 80 100
memory age/τ

0.0

0.2

0.4

0.6

0.8

1.0

re
tri

ev
al

 p
ro

b.

net. simulation
mean field
pure forgetting
exp. fit

0 20 40 60 80 100
memory age/τ

0.0

0.2

0.4

0.6

0.8

1.0

re
tri

ev
al

 p
ro

b.

net. simulation
mean field
pure forgetting
exp. fit

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
bλτ

0.0

0.2

0.4

0.6

0.8

1.0

p c

10

20

30

τ c/τ

Pure forgetting 

λτ=10

λτ=10

λτ=5

λτ=5

25 50 75

fo

100

g

125 150 175 200
τ

0

20

40

60

80

τ c /
 τ

λτ=5

λτ=10

a b

c d

Figure 3.  (a, b) The forgetting curve. The probability of retrieval as a function of memory age. Blue dots: full 
network simulation results (see “Methods”). Red solid lines: results of a mean field approximation (“Methods”). 
An exponential fit with characteristic decay time ≈ 18τ is shown in green (dash-dot line) in (a), and a double 
exponential fit with characteristic decay times ≈ τ and ≈ 38τ in (b). The retrieval probability for pure forgetting 
is shown in black (dashed line). In (a) N = 8000 , τ = 160 , �τ = 5 , b = 0.3 . In (b) same parameters as (a) 
except b = 0.25, �τ = 10 . (c) Blue (left y axis): Consolidation probability vs. b�τ for different �τ values. Green 
(right y axis): Consolidation time τc normalized by synaptic decay time τ vs. b�τ for different �τ values. Here 
τ = 160 . (d) Consolidation time τc normalized by synaptic decay time τ vs. τ for different �τ values. Blue curve: 
�τ = 5, b = 0.3 . Green curve: �τ = 10, b = 0.25.
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fast decay with a characteristic time τ , in addition to the slow decay time τc (Fig. 3b). To quantify this effect, we 
measure the consolidation probability of memories, pc , defined as the chance of a memory efficacy to reach Afp , 
and therefore become part of long-lived memories. pc decreases as a function of the reactivation strength from 
pc = 1 , for b�τ < 1 , to zero for strong reactivation (Fig. 3d). The consolidation probability pc together with τc 
are the key consolidation parameters.

Capacity increases as power law with network size. We define the network’s memory capacity as the 
number of memories retrievable (memories with A > Ac ) in the equilibrium phase after long encoding time 
(Fig. 4). The capacity can be evaluated as the area under the forgetting curve. Hence, it can be approximated 
as (1− pc)τ + pcτc , where pcτc is the contribution from consolidated memories and fraction of memories that 
are consolidated and the first term is the contribution from unconsolidated memories. As seen previously, τc 
increases with b�τ , while pc decreases with b�τ—less memories are consolidated, but the consolidated ones live 
longer. Maximal capacity is achieved when b�τ ≈ A(0) = 1 , which is the maximal value that allows for 100% of 
the memories to get consolidated.

To assess the efficiency of information storage in the network it is important to evaluate the dependence of the 
capacity on the network size, N. In previous ’pure forgetting’  models8,10 the synaptic decay time was assumed to 
scale linearly with N, resulting in memory capacity t0 which is proportional to N. The same holds for our model. 
However, this scaling results in extremely large, biologically implausible, synaptic decay times for large networks. 
Here we assume that τ is a property of individual synapses and is independent of network size. Under this condi-
tion, the capacity in the pure forgetting model increases only logarithmically with N, Fig. 4c.

Interestingly, we find that in our model, the capacity scales as a power law of the number of neurons, with 
a power that approaches unity for large �τ values (Fig. 4c,d). To approximate the power analytically (for the 
parameter range where pc ≈ 1 ), we first approximate Ac , assuming that the main contribution to the interference 
noise comes from consolidated, retrievable memories (SI, sec.3):

Now, under the assumption that pc ≈ 1 and that the mean rehearsal rate is �τ , we get (SI):
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Figure 4.  Memory capacity. (a) The number of retrievable memories divided by N as a function of b�τ for 
different average number of rehearsals per characteristic decay time ( �τ ) values. The dashed line shows the 
capacity of the pure forgetting model. Here N = 8000, τ = 160 . (b) The number of retrievable memories 
divided by N as a function of τ for different �τ values. (c) Capacity vs. N (logarithmic, base 10), solid lines show 
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Figure 4c,d show the approximation gives a reasonable fit to the dependence of the capacity on N. Note the 
significant increase in capacity compared to the pure forgetting model.

Inhomogeneity in initial memory encoding. So far we have assumed that all memories are encoded 
initially by Hebbian plasticity with the same amplitude A(0) = 1 (eq. 1). In reality, memories might differ in their 
encoding strength, for instance, due to factors such as attention, or emotional context. Thus, it is important to 
explore the effect of a distribution of initial encoding strengths. As long as most of the initial efficacies are in the 
neighborhood of b�τ , the global memory properties such as Ac , forgetting curve, and capacity are not affected 
drastically. However, individual memories with initial efficacy below Ac are forgotten, while memories with A(0) 
larger than b�τ have slightly enhanced consolidation properties, as is confirmed in Fig. 5a for an exponential 
distribution of A(0) with mean 1.

To better elucidate the effect of inhomogeneity in A(0), we consider in Fig. 5b,c the case of a Bernoulli distri-
bution, A(0) ∈ {1, a0} with equal probability. For small a0 compared to b�τ = 1.5 , the consolidation probability 
for memories with A(0) = a0 decreases drastically and vanishes for a0 below Ac ≈ 0.39 (Fig. 5b). When a0 
increases above 1, consolidation probability of these memories increases until it reaches 1 for a0 ≈ b�τ . On the 
other hand, memories with A(0) = 1 are only moderately affected by changing a0 . The mean lifetime of memories 
with A(0) = a0 < 1 drops considerably (Fig. 5a,c). This is, however, due to averaging the lifetime of all memories 
including those that did not consolidate. Importantly, in our model, memories with small a0 that did reach the 
neighborhood of the fixed point have the same long lifetime as other consolidated memories, independent of 
the original encoding strengths as shown by the dashed lines in Fig. 5c. Note that inhomogeneous initial efficacy 
distribution alone will not give rise to memories with lifetime much larger than the synaptic decay time scale, 
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due to the exponential decay—for a lifetime of 10 times the decay time scale, the initial efficacy will have to be 
exp(10) times larger than the critical efficacy. In any initial efficacy distribution, such a memory will be extremely 
rare, because the critical efficacy is proportional to the square root of the distribution’s second moment.

The effects of structural perturbations on memory function. In this section we analyze the effect of 
damage to the circuit on memory storage and retrieval. In previous sections, we assumed for simplicity that the 
neuronal firing threshold is automatically adjusted to guarantee a fixed mean activation level, f (see “Methods”). 
Here we assume that the firing threshold is fixed since we anticipate that part of the effect of perturbation is the 
disruption of the level of activity. Importantly, in the case of constant threshold, the dependence of Ac on � is not 
linear. It has a non-zero value for small � reflecting the requirement for the encoding efficacy to be large enough 
for neurons to cross the threshold. Above some critical � , Ac rises abruptly, causing all memories to lose stability, 
due to over-activation of the network when the noise level is high (Fig. S4). At equilibrium � is below but close to 
the critical value (for the presented parameter range). In this scenario, the properties of the unperturbed system 
are similar to those of the fixed activity scenario, with a memory capacity that depends on the threshold value. 
For the presented results we used the threshold value 0.36 which maximizes capacity in unperturbed conditions 
(See SI).

Noisy synaptic dynamics. We first consider perturbations of the synaptic learning and consolidation processes 
by adding white noise χ to the synaptic dynamics, for all t ≥ tonset,with a diffusion coefficient D,

The effect of this noise is approximately an additive contribution to the total variance of local fields

After the noise onset, � increases rapidly above its critical value, causing a sharp increase in Ac , and the blocking 
of rehearsals for all memories. This in turn causes a rapid decrease in magnitude of stored memory efficacies, 
leading to a decrease in � below the critical value and a decrease in Ac to a value which is between the value 
before the onset and the value just after the noise onset. This new equilibrium value of Ac , with reduced capacity, 
occurs over ∼ τ (Fig. 6a). Although overall reduction in capacity may be mild for moderate D values, there is a 
large reduction in the retrieval probability of memories that were encoded around the perturbation onset time, 
due to the sharp transient increase in Ac . In contrast, memories that have already been consolidated suffer only 
a mild reduction in survival probability (relative to unperturbed memories of the same age). Likewise, newly 
entered memories have a high probability of consolidation, since they experience the equilibrium value of Ac 
and their retrieval probability is similar to the unperturbed case (Fig. 6b).

Random synaptic silencing. Another perturbation we consider is the death of a fraction of the synapses. We 
model the effect of the synaptic death by multiplying the connectivity matrix Jij by a binary random dilution 
{0, 1} matrix:

Unlike the additive noise considered above, synaptic dilution process is multiplicative, reducing both the effec-
tive efficacy of each memory (by a factor 1− p ), and the interference noise � (by factor 

√
1− p ), and in general 

reduces the signal to noise ratio (“Methods”). After the dilution onset, Ac barely changes (due to the weak 
dependence of Ac on � in the constant threshold scenario), while all the efficacies are reduced, causing a reduc-
tion of retrievability that spreads over the entire age range ( Fig. 6c,d) and a new equilibrium is achieved slowly. 
Interestingly, neural adaptation (modeled here as a decrease in the neural activation threshold) can reduce the 
memory loss due to silencing (also reported  in44–46), by reducing the minimum efficacy required for activation, 
i.e., Ac , thereby recovering some of the gap between memory efficacies and Ac (Fig. 7). Thus, our model predicts 
a qualitative difference in the effects of the two types of perturbations: synaptic dilution affects memories of all 
ages, causing a reduction in capacity that develops over a long time and can be partially compensated for by 
threshold adaptation, while additive synaptic noise results in a deficit largely confined to the time of the pertur-
bation onset, and fast convergence to a new equilibrium.

Distribution of synaptic decay times. Experiments showing that the time scale of synaptic and spine 
turnover is  variable43, and observations of power law memory retention curves in some memory  studies1–4,47 
encourage consideration of the properties of synaptic dynamics with heterogeneous decay time constants, yield-
ing,

(13)

dJij

dt
= −

1

τ
Jij +

∑

l

ξ li ξ
l
j (δ(t − l)+ bRl(t))+ χij(t),

〈

χij(t)
〉

= 0,
〈

χij(t)χkl(t
′)
〉

= D2δ(t − t ′)δikδjl

(14)�2(t) ≈
1

N

∑

l

A2
l (t)+

τD2

2N

(

1− exp(−2(t − tonset)/τ)
)

(15)Jij → CijJij , Cij =
{

1 with prob. 1− p
0 with prob. p



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13107  | https://doi.org/10.1038/s41598-022-16407-9

www.nature.com/scientificreports/

where the efficacies Aij
l (t) contributed by each synapse obey

The mean efficacy of each memory is the average over these contributions,

(16)Jij(t) =
1

Nf (1− f )

∑

l

A
ij
l (t) (ξ

l
i − f )(ξ lj − f )
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Figure 6.  Perturbations and memory deficits. (a) The ratio between the capacity with and without injected 
noise vs. the diffusion coefficient D. (b) Retrieval probability vs. memory age with noisy synaptic dynamics 
( D = 6 ). Noise onset was before: 5τ (green), 10τ (blue), 20τ (purple), 40τ (brown). The control (black) is 
simulated with noiseless dynamics. (c) The ratio between the capacity with and without synaptic dilution 
vs. the silenced synapses fraction p. (d) Retrieval probability vs. memory age for random synaptic dilution 
( p = 0.1 ). Coloring as in (b). (e) Same as (c), but with p = 0.2 . Memories of all ages are affected, with some 
non-monotonicity caused by the small efficacies of newly learned memories, dropping more easily below Ac . 
(f) Combination of synaptic dilution and noisy synaptic dynamics, D = 6 and p = 0.1 . Coloring as in (b). 
Parameters: N = 8000, τ = 160, �τ = 10, b = 0.25
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where 〈..〉τij denotes the average over the distribution of synaptic time constants. Likewise, the noise term is 
proportional to the sum of second moments of the efficacies:

As an example, we show the case where the decay time constants are power law (Pareto) distributed , i.e., 
P(τ ) ∝ τ−(α+1) ; τ ≥ τ0,α > 0 (“Methods”). In the absence of rehearsals (pure decay), there will be a global 
catastrophic forgetting for α ≤ 1 , where the mean of the decay rate, and therefore the interference noise, diverges. 
For α > 1 there will be a catastrophic age dependent forgetting, as in the case with a uniform decay time scale 
 (See13 SI). With stochastic nonlinear rehearsals, for large α the forgetting curve is approximately exponential, 
similar to the single τ case (Fig. 8b). This is because the dominant contribution comes from the shortest time 
τ0 . Interestingly, for intermediate values ( 1 < α < 1.8) , the forgetting curves have an approximately power-law 
decay (Fig. 8a). In this regime, the retrieval probability is affected by contributions from a broad range of time 
constants: neither the minimal τ nor outliers with very large values are dominant.

Discussion
Consolidation time scale. We have proposed a stochastic self-amplified memory consolidation mecha-
nism and showed that it leads to smooth forgetting curves that extend much longer than the synaptic decay time. 
Our model provides estimates for the global long-term memory properties such as the capacity of the network, 
the shape of the forgetting curve and the average lifetime of memories. Translating synaptic decay time to realis-
tic times is hard. In rodents, spine turnover time is estimated to be of the order of several weeks in the hippocam-
pus and up to a year in the  cortex43,48–51. In humans, these times may be longer given the lower metabolic  rate52,53; 
however, there are no direct experimental evidence. In addition, the model synaptic decay time τ is in units of the 
mean inverse rate of encoding of episodic memories, which is hard to estimate, but it is likely to be of the order 
of weeks. Thus, assuming a human spine turnover time of the order of months yields τ of the order of tens of 
months, which could lead to mean memory lifetime of several years. At present, these estimates are speculative.

Memory deficiencies. We have considered two types of perturbations to the memory circuit: synaptic 
death and increased synaptic noise. Both types of damage result in reduced retrievability of memories intro-
duced prior to the damage onset, a phenomenon known in the literature as retrograde  amnesia16–19. Due to the 
consolidation effect in our model, the amnesia is temporally graded: memories learned just before the noise 
onset are more severely affected than older ones, because they didn’t have enough time to consolidate, and were 
more fragile at the onset time. This effect is more prominent in the case of increased synaptic noise than synaptic 
dilution, due to the sharper drop in basins of attraction size after the noise addition. Perturbations cause a drop 
in retrieval performance of new memories entering after the perturbation onset, a manifestation of anterograde 
amnesia. This effect is temporally graded as well, being more severe for memories introduced just after the onset, 
and is especially prominent deficit in the additive noise case. Another interesting difference is the approach to a 
new equilibrium, which is fast in the case of additive noise but slow in the dilution. In addition, threshold adap-
tation can compensate part of the memory dysfunction caused by dilution, but not by additive noise.
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Our model also allows for exploration of transient perturbations (SI), where the damage lasts for a finite time 
 window54. In this case there is again a temporally-graded retrograde amnesia. Interestingly, new memories intro-
duced after the end of the event not only regain retrievability, but can even improve their retrievability compared 
to control. This is due to the increased forgetting rate during the event, which results in lower interference noise 
and increased rehearsal rate after the event end.

The predictions of our model should be contrasted with the pure decay model where similar perturbations 
reduce the capacity (maximal age for retrievable memories), but don’t introduce any non-monotonicity in the 
forgetting curve, which is still a step function, but with a reduced width.

Relation to previous models. In the classical theory of systems memory  consolidation16–18,20, the interac-
tion between the hippocampus (HC) and the cortex plays a central role, with HC storing memories for short 
periods of time, and following rehearsals, memories are transmitted to the cortex for long-term storage. In the 
recent Multiple Trace Theory (MTT)20,29 autobiographic memories are stored for long term memory in both HC 
and cortex and consolidated through rehearsals that establish multiple memory traces in HC. This model shares 
some key elements with our theory, such as ongoing, life-long consolidation of memories and rehearsals which 
make memories more robust to perturbations. However, it is unclear how MMT can scale to large numbers of 
stored memories. In addition,  in29 the rehearsal statistics (new trace formation) don’t depend on the robustness 
of the memories, nor does the model take into account interference between memories.

In the pseudo-rehearsal  model28, new memories are learned in batches. After each batch is learned, there is 
a series of presudo-rehearsals, which are learning of fixed point states that are found by random initialization of 
the network’s state. This model implements stochastic rehearsals explicitly, and it reduces loss of old information 
by the pseudo-rehearsals. While in our model we use Hebbian, one-shot learning of new memories, the pseudo-
rehearsal model relies on multi step gradient descent of each memory batch, which is generally a less biologically 
plausible learning algorithm. In addition, the authors present results only for a single, small size network and it 
is not clear how the results scale with the size of the network, nor how the increase of memory life time depends 
on the different properties of the model.

A few studies used neural network models where rehearsals are modeled as random visits of learned 
 memories31,33,36, or implicit rehearsals (via memory traces embedded in the noise  correlations30).  In33 the authors 
shows the effects of rehearsals on a large number of learned memories. Yet they do not explicitly model the ”Hip-
pocampus” part of the model where rehearsals occur, and they do not provide quantitative relations between the 
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model’s performance and the different parameters, such as number of neurons in the ”neocortex” part.  In30,31,36 
The authors study the effect of rehearsals in networks with specific size, small number of memories, that don’t 
scale with the network size. It is not clear how their results scale with the network size, and how does the enhance-
ment in memory lifetime depends on the different network properties. The authors  of30,36 consider rehearsals 
of a finite batch of previously encoded memories rather than with life-long learning as in our study. Benna and 
 Fusi13 studied memory storage with complex synapses, where a consolidation process is implemented in the 
dynamics of synapses, with a cascade of synaptic characteristic times. They show that their mechanism gives 
rise to a power-law decay of the signal-to-noise ratio (SNR, equivalent to Al(t)/�(t) in our model) with age. 
However, this model still exhibits a deterministic catastrophic age-dependent forgetting, such that all memories 
older than a critical age are non-retrievable, whereas all newer memories are almost perfectly retrievable. A 
recent phenomenological  model47 derives a power-law form for memory retention curves with a power of 1 or 
smaller. A power close to 1 for intermediate ages is consistent with our result for a power law distribution of 
synaptic decay time. However, at present, it is unclear whether the experimental paradigms and time scales in 
which a power law is observed are relevant to life long episodic memory.

Fiebig and  Lansner35 proposed a three component model, each with different synaptic decay rate, which 
performs continual learning with self-generated rehearsals. Similar to our work, they study the effects of per-
turbations and show similarities to human data. However, this work does not provide an analysis of the model, 
and does not explore the dependence on the different parameters such as network size and synaptic decay time 
and rehearsal rates. Comparison with our results is hampered also by the fact that synaptic decay in their model 
is an active process, dependent on memory arrivals among other factors. In general, none of the past models 
provide quantitative analysis of the memory capacity and the memory lifetime statistics, while enabling lifelong 
learning and avoiding global and critical-age catastrophic forgetting.

Catastrophic forgetting in memory models vs. machine learning models. There is a fundamental 
difference between the catastrophic forgetting nature in long term memory network models, which we address 
here, and what is called catastrophic forgetting in machine learning, and deep learning  especially55–57. In the 
deep learning literature, it is assumed that if all the data was available all the time the model was able to learn 
from it and successfully solve the relevant task. In other words, the model is in a regime below its capacity limits, 
and the problem is the online, incremental presentation of the data, which causes stability-plasticity issues. In 
contrast, when modeling long term memory we assume that there is too much information to be stored- even if 
the data to be stored was available all the time and learning wasn’t online, still we would encounter catastrophic 
forgetting due to crossing of the model capacity limit.

Limitations and future work. In this paper we don’t explicitly model the rehearsals process—how the sys-
tem moves between activation states and visits different attractors. Possible mechanisms could be destabilization 
of attractors by  adaptation36,58 or transitions induced by random initialization  processes31. These mechanisms 
will generate a rate of rehearsals per memory that depends on its basin of attraction size, as in our model, but 
whether the rate is simply proportional to the basin’s size as we assume is yet to be tested.

Our model can be extended in a variety of ways, including more biologically plausible neuronal and synaptic 
integration. For example, detailed neuron models with rich morphologies and dendritic structure might influence 
the memory capacity and lifetime, in addition to the number of neurons. In addition, our model does not obey 
Dale’s law, and restricting neurons to be either excitatory or inhibitory, while also allowing different long term 
and short term plasticity dynamics for the different populations, will likely introduce richer memory properties.

Studying more synaptic decay characteristic time distributions, such as bimodal distributions where one 
synapse population decays much slower than another population, could also give rise to interesting memory 
properties. A relevant example is an inhibitory population with slow synaptic decay, interacting with an excita-
tory population with faster synaptic decay. We limit ourselves in this work to the mechanism of synaptic decay, 
while other mechanisms, such as bounded, discrete  synapses14,15 can also prevent global catastrophic forgetting. 
Due to the qualitative similarity of the behavior of such models to synaptic decay models (palimpsestic behavior 
with critical age catastrophic forgetting), we expect that this model will respond similarly to the introduction of 
stochastic rehearsals. Additionally, our framework allows for analyzing the effect of other types of perturbations, 
such as post-traumatic stress disorder  amnesia59,60.

Conclusions. The stochastic nonlinear rehearsal mechanism proposed in our work is, to the best of our 
knowledge, the first large-scale memory model that gives rise to realistic gracefully decaying forgetting prob-
ability curves, with exponential or power law tails depending on synaptic decay rate distribution. Our model’s 
capacity scales as a power law of the number of neurons, with a power that approaches unity for a large mean 
number of rehearsal events per synaptic decay time. Our model’s capacity interpolates between two extreme 
cases—for low rehearsal rate it approaches the pure forgetting case (logarithmic scaling of the capacity with the 
number of neurons), where learning is incremental and synapses decay, and for high rehearsal rate it approaches 
linear scaling of capacity with N, as in the static case without synaptic decay, where memories are stored (not 
necessarily incremental, they can be available forever) until capacity is reached and then all memories become 
irretrievable. Our model predicts that the onset of perturbation to the circuit, in the form of synaptic noise, leads 
to non-monotonic memory deficits affecting more strongly memories encoded around perturbation onset time, 
which have not yet a chance to consolidate. The richness of the model behavior in normal and diseased condi-
tions provides a theoretical framework for predictions and testing against empirical data on human memory.
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Methods
Network model. As described in section II, memories are modeled as sparse, uncorrelated N dimensional 
activation patterns (N is the number of neurons), and the synaptic dynamics are governed by three processes: 
deterministic synaptic decay with rate 1/τ , Hebbian learning of new memories, and rehearsal of old memories, 
which is the central novelty of our model. In continuous time, Eq. (1) becomes:

The rehearsals are modeled as a point process

Inserting the ansatz (3), we get that Al obeys the differential equation:

With Al(t) = 0 for t < l and Al(l) = 1.
The single neuron dynamics are binary, and given by:

where σ(t) is the state of neuron i at time t, �(x) is the Heaviside step function, hi(t) is the local field (total input 
received by neuron i at time t):

and θ is a threshold, set at every time step such that the total activation of the network is maintained and equal 
to fN. This can be thought of as the effect of an inhibitory population, regulating the total population activity 
(practically, in full simulations, at each time step we choose the fN neurons with the largest local fields and set 
their state to one, and all the others are set to zero).

Mean field equations, basins of attraction. We would like to find the relation between memory stability, meas-
ured by the memory pattern’s basin of attraction size, and the efficacy of the memory and all other memories in 
the system. First, we define two useful quantities: f l+ is the probability of a neuron to be active in the current state 
given that it is active in the memory pattern ξ l . f l− is the probability of a neuron to be active in the current state 
given that it is not active in the memory pattern ξ l . In other words, f l+ is the fraction out of the neurons active 
in memory state l that are active in the current state. f l− is the fraction out of the neurons not active in memory 
state l that are active in the current state. We will omit the l dependence of f± from now on. In terms of these 
quantities,

For clarity, in this section instead of the memory patterns definition we use above (Eq. (2)) we define the patterns 
in an equivalent, more explicit way:

, and we normalize the connectivity matrix accordingly.
The overlap between memory pattern l and the system’s state σ

Now, assume that the current state is close to the memory state ξ l . The input to neuron i which is active in 
memory pattern l ( ξ li = 1):
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Averaging h+i  over memories realizations gives Al(1− f )Ml , and the variance:

Now, because the system state is close to the memory state ξ l , we can assume it is uncorrelated with all other 
memory states. Hence, there are contributions only from terms with j = j′, n = n′:

Applying the central limit theorem, we approximate h+i  by a Gaussian variable with mean Al(1− f )Ml and vari-
ance �2 . Now, f+ is the probability for h+i  to be larger than θ , which is given by the complimentary error function, 
H(x) = 1√

2π

∫∞
x exp(−0.5t2)dt:

In a similar way (same noise term, mean equals −AlMlf  ) we find for f− (for f ≪ 1 ) :

Note that we didn’t set the threshold θ , but instead demanded a constant population activation f. Equations (25), 
(27), (31) and (32) allow us to write an equation for the overlap dynamics:

where

and

Therefore, the equation for the overlap fixed points is:

Now, we numerically find the fixed points for M at a given A/� by running the dynamics described by Eq. (33). 
Typically (for large enough A/� ), there will be a stable fixed point at M = 0 , a stable fixed point 0 < Ms ≤ 1 and 
an unstable fixed point 0 < Mus < Ms . We approximate the basin of attraction size as the distance Ms −Mus . 
This way, we obtain the basin size as a function of A/� , F(A/�) . We check the validity of our approximations 
by simulating a full neural network model and checking numerically the basin of attraction sizes, and find good 
agreement (SI), which is the basis for the good agreement in retention curves between the mean field simulations 
and the full network simulation (Fig. 3a,b) . We define the critical efficacy Ac as the efficacy for which Ms = Mus 
(meaning, the non-zero overlap solution loses stability). This happens approximately when Ms = Mus ≈ 0.85 . As 
one can see from Eq. (36), the fixed points depends only on the ratio A/� and on f, and therefore Ac/� is only a 
function of f, and we can write Ac = a(f )� . For f = 0.01 (the typical value we use throughout the manuscript) 
we find numerically that a(f ) ≈ 4.7 . Analytical approximation for a(f) is given in the SI.

Numerical simulations. In our simulations, we first numerically solve the coupled stochastic dif-
ferential equations for the efficacies (Eq. (7)). Theoretically our model considers infinite number of memo-
ries. However, practically we solve the equations for a finite but large number of memory efficacies, typically 
200τ − 1000τ , chosen such that Ac saturates to its steady state value. We measure time in units of the lag between 
the introduction of two consecutive memories (assumed constant). At every integration time step dt (small 
compared to all characteristic timescales of the system, typically dt = 0.05/� ), a rehearsal event might occur 
for each memory with Al ≥ Ac . We generate a uniform random number between 0 and 1 and compare it to 
� · F(Al(t)/�(t) · dt . A rehearsal event of memory l will happen at time t if the uniform random number is 
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(34)
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smaller than � · F(Al(t)/�(t) · dt . This approximates the statistics of a non-homogeneous Poisson process. By 
averaging over many such realizations (typically 500), we calculate the efficacy histogram, capacity (counting 
how many efficacies are above Ac ) and retrieval probabilities (by checking the probability for the efficacy of a 
memory introduced l time units into the past to be retrievable now). These calculations are referred to as ”mean 
field simulations”, and they don’t include generation of random memories and building the connectivity matrix.

Full network simulation. When simulating the full network model, after generating the efficacies, we 
randomly generate memory patterns (binary vectors of dimension N) to be stored, and build the connectivity 
matrix according to Eq. (3). Then, to measure retrievability, we initialize the network’s state at a memory pattern, 
and let the binary neurons dynamics run until they settle to a steady state. Then, we measure the overlap between 
the pattern and the steady-state activity. We say a memory is retrievable if the overlap is ≥ 0.85 . For measuring 
the basin of attraction sizes of the memory patterns, we generate an initial state by randomly flipping the state 
of units in the memory pattern (conserving the total activation fN), and run the dynamics until convergence. 
Then we measure the overlap between the final state and the memory pattern. We keep increasing the number 
of flipped units until the final state has an overlap smaller than ≥ 0.85 with the memory state. We define the 
normalized basin size as the maximal number of flips allowing for a large overlap divided by 2fN, the maximal 
number of flips. Results are shown in the SI.

Noisy synaptic dynamics. The synaptic dynamics in the presence of Gaussian noise is presented in Eq. 
(13). It is straightforward to show that a solution to the equation can be written as:

with Al(t) obeying Eq. (7) as before. The nonlinear effect of the noise arises through the self consistent require-
ment, that the rehearsal rate of memory l is proportional to the basin of attraction size of this memory, which 
depends on Al and on � . We calculate � with the injected noise (Eq. (14)) the same way we calculated � without 
noise above. Here there is a non trivial mixed term involving the average 〈Al(t)χij(t)〉 , which we found numeri-
cally to be negligible for the parameter range we are interested in.

Synaptic dilution. The random silencing is done by multiplying the connectivity matrix Jij by a binary 
matrix:

We would like to calculate the effect of the dilution on the memory efficacies dynamics, and for that we need to 
find the effect on Al(t) and on �(t) . Let us calculate the local field near memory l as before:

Taking the mean over memories and over Cij realizations (denoted by []) we get:

Here 〈 〉 denotes average over memories realizations. As one can see, the efficacies are scaled by a factor of 1− p . 
We assumed here we can neglect correlations between Al and Cij . The second moment:

There are two contributions arising from the Cij randomness. Now, when calculating the local field variance, the 
term proportional to (1− p)2 is exactly canceled by the squared mean, and we are left with:

where �̃2 is the local field variance without dilution.
Now, we obtain the efficacies modified dynamics by using these expressions for the signal and noise to cal-

culate the basins of attraction sizes as before.

Non-uniform characteristic decay time. Assuming synapse Jij has a decay rate ǫij , and all memories 
have unit initial efficacy. Memory l appears for the first time at time l. The learning dynamics is:
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In continuous time,

Assuming all synapses starts at zero value, the solution can be written as:

Let us define efficacies

A
ij
l  obeys the differential equation:

With Aij
l (t) = 0 for t < l and Aij

l (l) = 1.
Given that the decay rates have a probability density ρ(ǫ) , let us define:

and

Including normalization and sparseness considerations,

Now let us calculate the mean local field on neuron i in a state near memory state k, and assume ξ ki = 1:

Taking an average over the memories realizations and the decay rates, we get:

And the variance:

The second term does not include summation over all memories, and therefore it is negligible for large N values 
(the first term is O(1) while the second is O(N−2 ). This leads to Eq. (19).

Power law τ distribution. For each synapse we generated synaptic decay characteristic times from a power 
law (Pareto) distribution with density:
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In this distribution, for α < 1 the mean diverges. We scaled the resulting τ ij0  values by a uniform factor: 
τ ij = 2ω · N · τ ij0  . We fixed ω value for the average number of rehearsals per mean decay time R0 , and used it 
to set the � parameter by dividing R0 by the empirical average of the generated decay times. Next we solved the 
stochastic differential Eq. (48) numerically. The rehearsals are generated with time dependent rates proportional 
to the basin of attraction size, now as a function of the average and variance of the memory efficacies over all 
synaptic timescales.

Data availability
All presented results were obtained by a custom code written in the Julia language. Code  will be made available 
upon request. No experimental data was used or generated.
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