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Abstract

Ragams, analogous to the Western musical concept of mode, are the cornerstone of Indian

classical music. Each song in Indian classical music exists within one of a few hundred com-

mon ragams. Learning to identify a song’s ragam is a core competency developed during an

Indian classical music education, and efforts to develop computational ragam identifiers have

thus recently gained traction. In this project, I combine two digital audio signal processing

techniques with four deep-learning models to determine whether these models are appropri-

ate tools for classifying ragams in real-world concert settings. I obtained promising results,

including 98% model testing accuracy when distinguishing between songs in two different

ragams, 94% testing accuracy when classifying songs within a pool of ten ragams, and 86%

testing accuracy on a pool of fifteen commonly occurring ragams. My results constitute

meaningful strides towards the ultimate goal of engineering a Shazam-like application for

reliable real-time song classification in four principal ways:

1. Dataset Assembly: Compiled a dataset of over 70,000 Carnatic songs, creating

a comprehensive training dataset with over 1 TB of audio files, labeled by ragam,

enabling novel features to be extracted and bigger models to be trained.

2. Improved Model Performance: Designed Artificial Neural Network (ANN), Long

Short-term Memory (LSTM), and 2-D Convolutional Neural Network (CNN) ragam

recognition models surpassing benchmarks in ragam classification accuracy and capa-

bility from previous studies.

3. Feature Importance Mapping: Provided model explainability by highlighting the

significance of particular audio features in ragam predictions, enhanced by Carnatic

domain knowledge, unlike prior black-box approaches.

4. Novel Model Application: Introduced transformer (BERT) models for ragam iden-

tification in Carnatic music, marking a novel approach in this research area.
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Chapter 1

Problem Statement

What are ragams in Carnatic music and why should we be interested in being able to identify

them using computational methods? 1

1.1 What is Carnatic Music?

Carnatic music is an ancient form of classical South Indian music with its origins dating

back to the 12th century AD. Characterized by both its highly structured compositions and

improvisations, Carnatic music emphasizes vocal performance, although it also includes a

wide range of instrumental accompaniments like the violin, mridangam (a double-headed

drum), and the veena (a plucked string instrument). The repertoire of Carnatic music is

mainly devotional; many compositions are dedicated to Hindu deities. It is deeply embedded

in the cultural and spiritual fabric of South Indian society, with performances commonly

taking place in temples, concert halls, and during festivals.

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
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1.2 What Carnatic music means to me

Carnatic music has always been one of the most significant influences on my life. I am a

fourth-generation performing Carnatic musician, as my mother, grandmother, and great-

grandmother were all professional Carnatic vocalists and scholars. My great-grandmother,

Ananthalakshmi Sadagopan, was in fact one of the first women to sing on the All-India

radio back in the 1940s. I have been learning Carnatic music for 17 years, and have given

over 40 concerts in the U.S. and India throughout my performing career. At Harvard, I’m

completing a citation in Tamil language and serving as the president of the South Asian

Music Association (SAMA), an organization for the appreciation and performance of South

Asian Music that has been around for almost 20 years now. We perform all over campus

and frequently host the world’s top Carnatic musicians on Harvard’s campus to perform and

speak to the community. Apart from all the lessons in music and life that Carnatic music

has imbued in me, it has also been a deeply grounding constant that has kept me connected

with my culture, community, and spirituality.

With so many Carnatic musicians, teachers, and fans in my family, Carnatic music has

always been the language of my dinner table. Over the years, I have noticed one comment

that keeps coming up. ”Wouldn’t it be nice if there were a smartphone app or something

that could tell you the ragam of the song you’re listening to?”

In my conversations with family and friends, we have always talked about a ragam

identification tool as a kind of holy grail of Carnatic music education and appreciation.

This thesis seeks to design such a tool and evaluate its performance.

1.3 What are ragams in Carnatic music?

In Western music theory, the concept of ragams from Carnatic music can be seen as complex,

primarily because there isn’t a direct equivalent in Western traditions. However, drawing

parallels to scales and modes in Western music can provide a foundational understanding,
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despite ragams encompassing much more than just a scale structure.

At a basic level, a ragam in Carnatic music is analogous to a scale or mode in West-

ern music, serving as a set sequence of notes that provides the melodic framework for a

composition. An example of a ragam familiar to a Western music audience would be the

major scale, known as the Ionian mode in Western music theory, and Shankarabharanam in

Carnatic music. This idea is similar to how major and minor scales, as well as modes like

Dorian, Phrygian, and Lydian, provide distinct moods or colors in Western music.

However, this comparison holds only to a point. Ragams are not merely scales; they are

comprehensive systems that include specific rules and characteristics governing improvisation

and performance. While there are only seven modes in Western music theory, there are

several hundred ragams in Carnatic music.

Each ragam includes:

1. Arohanam and Avarohanam: These are the ascending and descending note se-

quences of a ragam, akin to the scales in Western music. However, ragams may skip

certain notes or use them only in specific contexts, adding complexity beyond Western-

scale structures.

2. Characteristic Phrases: Ragams are defined by hallmark phrases or motifs essen-

tial to their identity, which must be emphasized in compositions and improvisations,

similar to the use of characteristic melodic phrases in certain Western modes.

3. Emotional and Symbolic Associations: Ragams often carry specific emotional,

temporal, or mythological associations, more specific and codified than the somewhat

analogous associations in Western music, such as the pastoral themes or the use of

minor keys to convey sadness.

4. Microtonality: Carnatic music uses a 22 shruti (pitch) system, allowing for nuanced

microtonal intervals within an octave, compared to the 12-tone equal temperament
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system in Western music, enabling a level of melodic expression not present in Western

scales.

In Carnatic music, the seven notes are represented by the solfege syllables Sa, Ri, Ga,

Ma, Pa, Da, and Ni, known as swaras [9].

Figure 1.1: The seven swaras (and their variants) in Carnatic Music

Consider the ragam Nattaikurinji as an example. Its Arohanam (ascending note pattern)

and Avarohanam (descending note pattern) are as follows:

Arohanam:

S R2 G3 M1 N2 D2 N2 P D2 N2 S

5



Avarohanam:

S N2 D2 M1 G3 M1 P G3 R2 S

To understand the notation used here, consider the following explanations for the symbols:

S = Sa (Root Note)

R2 = Ri (Second Note, Second V ariant)

G3 = Ga (Third Note, Third V ariant)

M1 =Ma (Fourth Note, F irst V ariant)

P = Pa (Fifth Note)

D2 = Da (Sixth Note, Second V ariant)

N2 = Ni (Seventh Note, Second V ariant)

S = Sa (Root Note, an Octave Higher)

This notation system reflects the specific intervals and nuances of a ragam, illustrating the

complexity and depth of Carnatic music’s melodic structures. Peculiar to this ragam, for

example, is the feature that on the descent, a musician must access the Pa note after the

Ma, even though Pa is a higher frequency. This can be seen in the Nattaikurinji ragam

Avarohanam above. A sweet and reflective ragam, Nattaikurinji songs are thought to be

suitable for evening time. Keep in mind, that this is just one of several hundred ragams in

Carnatic music. [3]
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Figure 1.2: A diagram of the 72 possible heptatonic ragams in Carnatic music, known as
the melakartas, composed of every combination of the 7 swaras and their variants

1.4 Ragam Identification

Each song in Carnatic music exists within a distinct ragam, with songs only being able

to access the notes/frequencies allowed by their ragam. Ragams are easily identifiable by

Carnatic connoisseurs and trained human listeners. Many of my family members can tell

you the ragam of a song being played or performed within seconds of it beginning.

However, computational methods still struggle to reliably identify them. In fact, to this

day no commercially available tool can tell you the ragam of a Carnatic song being played.
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This is an important problem because ragam identification is one of the most important

early concepts in Carnatic music education, with beginner students often struggling to un-

derstand how their teachers are identifying the ragam of a song being played or performed.

Identification is a necessary skill because it represents a student’s understanding of the

boundaries between distinct ragams, and the ability to adhere to those boundaries during

a performance. Additionally, knowing the ragam of a song can also provide critical context

enhancing the meaning and beauty of a piece to a listener. For instance, some ragams like

Amruthavarshini are thought to bring about rain, while others like Neelambari are used as

lullabies and calming conclusions to concerts. Often, the first question anyone at a Carnatic

music concert turns and discreetly asks their neighbor when a song begins, is, ”What ragam

is this song in?”

1.5 Why Computational Ragam Identifiers are Needed

Without strong ragam identification skills, a student can easily wrongly stray into adjacent

ragams during renditions of pieces or during the frequent improvisational aspects of Car-

natic concerts. This process of learning ragam identification is especially difficult when the

instructor is not present, and the student is unsure whether they have correctly identified

the song’s ragam. Seasoned listeners like my grandmother can easily, consistently, precisely,

and independently identify ragams even when listening to a song they have never heard

before, or during periods of musical improvisation, but the task of ragam identification is

even harder for newer students when they are unfamiliar with the piece being performed.

Thus, creating a computational method to instantly identify the ragam would allow

students to verify their thought processes in real time. This would significantly accelerate

the iterative process of learning to identify Carnatic ragams, render compositions within

their ragam’s bounds, and produce creative, aesthetic improvisation demonstrating a solid

grasp of the underlying classical concepts. Critically, this computational method would need
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to function reliably in real-world concert settings, with all the background noise, low-quality

audio, and variabilities these venues introduce.

1.6 What this Thesis Contributes

In this project, I build on recent research illustrating the potential of three different neural

network models for this task, and I introduce and develop a fourth model. I apply concepts I

have learned across the continuous and discrete breadth courses I have taken for my applied

math concentration to introduce and develop these models.

Previous research has demonstrated model efficacy on small pools of studio-quality ragam

audio recordings but serious work remains to be done to bridge the gap towards a general-

purpose tool that can be deployed on real-world audio data across a wide array of ragams.

The eventual goal would be to engineer a Shazam-like app, where you could go to a Car-

natic concert, hold up your phone, and have the app tell you the ragam of the song being

performed. This project takes steps towards bridging that gap in four principal ways.

1. Scope of dataset: By combining thousands of web-scraped audio files, family collec-

tions, and Harvard’s James A. Rubin Collection of Indian classical music (one of the

largest collections of Carnatic music in the world), I assembled a dataset of over 70,000

audio files of Carnatic songs. Representing over 1 terabyte of audio data, and split into

millions of audio chunks labeled by ragam, which constitute my model training data,

this dataset is far more expansive than any dataset I encountered in previous studies

aiming to train ragam classification models. This increased scope enabled both better

model robustness in my project and the potential for future research into much bigger

models using my dataset. Having a dataset of this scale gets us closer to the goal of a

general-purpose tool that can identify hundreds of ragams in the real world.

2. Improved performance of models previously applied to this task: I created

ANN (Artificial Neural Network), LSTM (Long-Short Term Memory), and 2-D CNN
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(Convolutional Neural Networks) models that achieved greater classification accuracy

than comparable models from previous studies, and that could recognize a greater

number of ragams than models from previous studies.

3. Mapping of feature importance provides model explainability: Previous work

in this space has largely used black-box models, whereas my models provide an under-

standing of what specific aspects of the audio file they are considering when making a

ragam prediction, by showing the relative weights they assign to each of these features.

I further developed intuition for why the models may be assigning these weights based

on my Carnatic music domain knowledge. This process allows us to get a sense of

what the ”computational essence” of a ragam is.

4. Introduction of a new model not previously applied to this task: In addition

to the successful ANN, LSTM, and CNN model architectures developed in this project,

I also demonstrated that transformer (BERT) models can effectively determine ragams

in recordings of Carnatic music audio. BERT models have not previously been used

for this task, so this was a promising new result.
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Chapter 2

Literature Review

2.1 Overview

With the evolution of machine learning models over the past five years, many researchers

have begun to apply neural network models to all sorts of audio and music classification

problems. In this section, I outline some of the key papers that guided my thinking in this

project and provide an overview of prior applications of neural network models to music

classification tasks, specifically ragam identification in Carnatic music. Before reviewing

the relevant papers, however, it is worth first understanding the two principal ways we can

represent audio data and the associated models for each of these representations. 1 2

2.2 Image Representation

Mel-spectrograms are a common representation of audio data that show the frequency con-

tent of a signal over time. They are created by first computing a spectrogram of the audio

signal (which shows the amplitude of each frequency component over time) and then ap-

plying a set of frequency-weighting filters that mimic the human auditory system. The

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language in this chapter comes from my Neuro 240 final report, which I produced for Dr.

Kreiman in 2023, and which is cited in my bibliography below.
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mathematics underpinning mel-spectrogram construction will be explained in later sections

of this thesis. Mel-spectrograms are widely used in audio analysis, particularly for tasks like

speech recognition, music classification, and environmental sound recognition.

Convolutional Neural Networks (CNNs) are a type of neural network that is particularly

well-suited to analyzing image data. They are inspired by the structure of the visual cortex

in animals and use a series of convolutional layers to extract features from the input image.

These layers apply a set of learnable filters to the image, which are shifted over the entire

image to produce a feature map. By stacking multiple convolutional layers, CNNs are able

to learn increasingly complex features from the input image.[4]

CNNs are well-suited to analyzing mel-spectrograms because they can learn local patterns

in the frequency and time domains. By applying convolutional filters to a mel-spectrogram,

a CNN can learn to identify important features like harmonics, formants, and other spectral

characteristics that are relevant for audio analysis. This makes CNNs a potentially powerful

tool for the task of ragam identification.

Convolutional neural networks, which are a class of deep feedforward artificial neural

networks, have recently seen wide application in music recognition and more specifically

Carnatic ragam identification. A 2019 paper presented at the International Conference on

Advanced Computational and Communication Paradigms showed promising results applying

CNN’s to the problem of Carnatic ragam identification. The study involved creating a visual

diagram of a snippet of a song, essentially graphing various sound features against time, and

training CNN models on these visual input data, classified by ragam. However, model

accuracy dropped from 90% to 80% as the pool of ragams increased from 5 to 11. [6]

With regards to spectrogram construction and inputs for CNNs, a key resource I rely

on is the paper “An evaluation of deep neural network models for music classification us-

ing spectrograms,” published in Multimedia Tools and Applications. This study applied

spectrograms for music classification tasks and found architectures that were better able

to “process non-speech background audio signals, remove noise, and effectively improve the
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accuracy of speech emotion recognition,” which is a key objective in my project which aims

to more accurately classify real-world audio data by ragam.[12] According to a 2017 paper

published in the Journal of Applied Soft Computing, CNNs have been shown to outper-

form results obtained by using handcrafted features and SVM classifiers in the task of genre

classification, which inherently relies on a greater number of parameters than ragam clas-

sification, although the differences between tracks may be more pronounced[8]. This is a

promising result with regard to the expected success of CNN applications in the task of

ragam classification. Another key paper I have found for this project proposal is “Auto-

matic tagging using deep convolutional neural networks,” published recently by researchers

at Queen Mary University of London, which demonstrates the effects of using deeper CNNs

and larger datasets on ROC and AuROC measures in music classification tasks. [7]

2.3 Numerical Features Representation

Mel-spectrograms can be computationally intensive to store and process, as they are essen-

tially large matrices (256 x 256 in my project) capturing every aspect of the audio file. In

fact, the original audio file can be reconstructed and played from just the information in

the mel-spectrogram. Training models on mel-spectrograms can thus become very costly as

complexity scales.

In fact, models can still perform effectively given a very limited slice of information about

the audio file. Consider a vector containing several columns of statistics and measurements,

such as Chroma Features and the Root Mean Square Energy, that describe the audio file.

While one cannot fully reconstruct the audio file from these statistics, they can still provide

sufficiently significant information to classification models like Artificial Neural Networks

(ANNs). [13]

Artificial Neural Networks (ANNs) are computational models inspired by the human

brain, designed to recognize patterns and make decisions by learning from data. They
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consist of layers of interconnected nodes or neurons, where each connection can transmit a

signal from one neuron to another. ANNs are particularly suited for the ragam classification

problem, due to their ability to handle complex, high-dimensional data, such as a dataset

with thousands of rows and tens of columns of unlabeled audio statistics. The network can

learn to discern the underlying patterns and characteristics of different ragams by training

on the dataset, using the final column containing the ragam name as the truth label to guide

its learning process. This enables ANNs to effectively classify and predict the ragam of new,

unseen musical pieces. [4]

One approach described in a study published in the International Journal of Neural Net-

works, achieved close to perfect testing accuracy using ANN models with various topologies,

and on a pool of 72 ragams, but with datasets involving computer-generated, acoustically-

pure, audio files. [15] More recently, a paper entitled “A Comparison of Audio Preprocessing

Techniques and Deep Learning Algorithms for Raga Recognition,” published last year by

researchers at MIT World Peace University used a dataset of live recordings over a pool of

12 ragams, with 40 songs worth of data in each ragam. They were able to achieve north

of 90% testing accuracy using spectrogram analysis through ANN and 2-D convolutional

neural network methodologies [10]. This is the key paper I relied on for my project as

their approach used the most realistic training data for the situations for which I’m most

interested in designing a solution: ragam identification in live concerts. [14]
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Chapter 3

Data Sources

3.1 Overview

The required data for training machine learning ragam classification models is ragam-labeled

audio files. Based on my advisor Dr. Kreiman’s advice, I made it my goal to assemble as

large a dataset of labeled Carnatic music audio as possible, as a small initial investment of

time into creating a larger training dataset can often yield better eventual model accuracy

than many hours spent later on advanced feature engineering and hyperparameter tuning.

I relied on three principal sources to assemble such a collection of audio files, which I

then labeled by ragam. This section will review the sources, content, and scale of the audio

data used to train my models.1 2

3.2 Source #1: Sangeethapriya.com

The first source of audio data for this source was Sangeethapriya.com, the largest online

library of Indian classical music in the world, with over 10,000 recordings of Carnatic music

concerts [2]. Based on database track frequency and my knowledge of Carnatic music, I

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language in this chapter comes from my Neuro 240 final report, which I produced for Dr.

Kreiman in 2023, and which is cited in my bibliography below.
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defined a set of 140 ragams that I deemed to be the most popular and commonly occurring

in concert settings. I then used a brief Python script to scrape and download all individual

tracks from Sangeethapriya.com that were labeled with one of the ragams from this set of

140 names. This came out to be 3561 downloaded tracks, of average length 10 minutes

and a total size of roughly 500 GB. Based on my review of the literature, this content alone

would make my dataset the largest and broadest dataset of Carnatic music used for training

a ragam recognition model, with the largest previous being the MIT World Peace University

study involving 480 tracks spanning 12 ragams. Importantly, the audio data scraped from

Sangeethapriya are from real-world concerts, and are not necessarily recorded under studio

conditions where impurities are filtered, silences are trimmed, and applause and background

noise are absent. The idea was that using a much larger dataset that is as reflective of

real-world listening conditions as possible would be the most effective way to train a robust

model for the task of ragam recognition in exactly those conditions.

3.3 Source #2: Harvard University’s James Rubin Col-

lection of Indian Classical Music

Shortly after commencing this project, I learned that Harvard is home to one of the world’s

largest libraries of Indian classical music, the James Rubin Collection.

James Rubin, born in Boston in 1927, was an avid ”collector and promoter of Indian

music even though he had no formal training,” according to the collection’s webpage. During

his career, he founded and directed an organization called the Pan Orient Arts Foundation,

which organized concerts by Indian artists across the United States. A close friend and tour

manager for the famous Carnatic singer M.S. Subbulakshmi, the collection webpage states

that to this day, Rubin is still fondly remembered by the music community in Chennai ”as

’Rubin Mama’ (Uncle Rubin) for wearing Indian dress, his love of music, and his avuncular

manner.”[1]
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Physically stored in the Archive of World Music at Harvard University’s Loeb music

library, this collection is comprised of over 1000 reels of audio tape, containing many thou-

sands of songs recorded by James Rubin over twenty trips to Chennai, India, where my family

is from, between 1957 and 1989. Crucially, these recordings are accompanied by documen-

tation containing ragam labels for each song, along with other detailed composition-level

information.

This dataset was not easy to access for my project, because much of the collection has

not yet been digitized and because the Harvard library system is still designing its protocols

around providing music collections for AI research. Furthermore, the files that have been

digitized reside in an antiquated storage platform that does not support bulk export. I

worked with Dr. Kreiman and librarians at the Loeb library over several weeks to set up

a pipeline to access about twenty hours of Carnatic music audio data with accompanying

ragam labels for the set of ten ragams I was interested in identifying using my convolutional

neural network models, which will be explained in later sections. These ten ragams were:

Mohanam, Nilambari, Ahiri, Amruthavarshini, Bhupalam, Kalyanavasantam, Manirangu,

Revati, Simhendramadhyamam, and Yamunakalyani.

While this represents only a slice of the Rubin Collection, these files still added valuable

information to my training dataset and allowed me to bring Harvard’s resources into my

senior thesis. These audio recordings of songs from the Rubin collection were especially

valuable to me because they are not available anywhere else in the world, online or physically.

This means that the audio data from the Rubin collection would all be new to my model,

and would not overlap with any of the public data from Sangeethapriya already in my

model’s training set. I hypothesized that this would improve the robustness of my models

by reducing the likelihood of overfitting, (memorizing of training data), leading to better

testing performance on unseen data.

Additionally, this was the first time the Loeb librarians had opened up the Rubin collec-

tion for machine learning research. My hope is to continue my research beyond this thesis
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to eventually design models trained on the entire scope of the Rubin collection, once it is

fully digitized, which is an ongoing effort by the Loeb librarians. Now that we have set up a

preliminary working pipeline to access these files, I hope that future researchers interested

in extending my work or designing more robust raga-identification models can more easily

do so.

3.4 Source #3: Family Collections

The final, and most significant source of training data for this project came from my family

members and friends, some of whom are professional Carnatic musicians and teachers who

have accumulated massive collections over many decades. My aunt Sumitra Nitin, a Carnatic

music teacher based in Bangalore, India, provided me with a dataset of 1,593 audio recordings

(one song per track) labeled by ragam, and my uncle, Madurai Sundar, a Carnatic music

teacher based in Detroit, MI, provided me with a dataset of 6,985 audio tracks with ragam

information. Lastly, my family friend Delhi Muthukumar, a professional Carnatic musician

based in Chennai, India, provided me with his collection of 60,663 Carnatic music audio

files, also labeled by ragam. As these datasets were all structured and labeled differently, I

wrote customized python scripts for each collection to read the documentation and append

the ragam label to the file name, for each file in the dataset.

Much as with the Rubin collection, many of the files in these ”family collections” were

especially valuable to my project due to their being directly recorded at live concerts over

many decades by my family members. This means they are unlikely to have been recorded

or streamed otherwise, meaning they are very unlikely to be repeated from the public

Sangeethapriya database. The addition of this much new data to my dataset was crucial to

preventing model overfitting and ensuring the robustness of my model.
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3.5 Scale of Dataset

Altogether, my dataset for this project contained 72,812 audio recordings (mp3 files) of

Carnatic music audio data, with each file labeled by ragam. Based on my review of preceding

research into ragam identification, this is by far the largest dataset used for training ragam

identification models assembled thus far.

This dataset not only enabled me to experiment with much larger models than those

described in the literature, but my hope is that it will also enable future researchers interested

in this problem to extend my work.
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Chapter 4

Data Preprocessing

4.1 Overview

In this section, I describe the processes of splitting the dataset, labeling the splits, and

performing data augmentation to improve model robustness and ensure efficacy in real-

world applications. All audio data, mel-spectrograms, and numerical features were stored

in Google Drive folders due to storage constraints on my local drive (the combined size of

the audio files was over 1 terabyte). Thus, all code for data pre-processing was written in

Google Colab Jupyter notebooks that can read data directly from Google Drive. 1 2

4.2 Determining Ragam labels

Defining the training data and labeling them proved to be quite challenging, as the choices

had to reflect real-world considerations. A human listener can identify a ragam in just a few

seconds of hearing a song. Most ragams also have “tells” or melodic phrases (1-3 second note

sequences) that are so unique that a connoisseur could instantly contextually recognize the

song as being in that ragam, even if the frequencies of that “tell” are technically within the

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language in this chapter comes from my Neuro 240 final report, which I produced for Dr.

Kreiman in 2023, and which is cited in my bibliography below.
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bounds of many other ragams. Therefore, simply detecting the pattern of these frequencies

would not be sufficient for a model to predict a distinct label– it would have to learn the

association between that “tell” and the ragam.

There were also issues with the labeling of each track that made ground truth labeling

and annotating challenging. Many file names in the dataset contained missing or incorrect

ragam names, requiring me to listen to a few seconds of the track before hand-annotating

the ground truth label for that track. For the majority of the labeling task, however, I

wrote a script found in the SplitGenerator.ipynb file in my GitHub repository. Some ragam

names, like “Sree” or “Shyama” are also extremely common words found in the names of

Carnatic music songs, and my labeling script was wrongly labeling songs with the words

“Sree” and “Shyama” as being in those ragams. This misclassification rate was sufficiently

high to justify removing these two ragams from the bank of available labels, thus excluding

all tracks in these two ragams. The script then iterated over all the file names in the dataset,

searching for a match between the tokens in the filename and one of the ragams in our bank

of 138 remaining ragams.

To provide a sense for the fraction of the original tracks classified as belonging to a

ragam after conducting this process, 3316 out of the original 3561 Sangeethapriya tracks

were able to be definitively labeled as belonging to one particular ragam. Upon inspecting

the remainder, I found that most unlabeled tracks fell into one of the exclusion categories

listed above, and would not have been useful for teaching a model to recognize ragams as it

is unlikely a trained human listener would have been able to identify much in those tracks

either.

I then wrote another Python script that processed each track’s sample rate and audio

time series, and cut each track into ten-second split files named by their ragam and split

number in that ragam. This yielded a total of 261,341 ten-second audio files from the

Sangeethapriya set alone, with each file titled according to its ragam. The decision to use a

ten-second split was informed by the MIT World Peace University study using five-second
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splits. My intuition was that a ten-second split contained strictly more signaling features

about a ragam that could be captured as learning information by the CNN, and the fact

that I had so many more tracks in my dataset than in their study eased the concern that I

would have fewer training data points if I used longer time intervals. The number of splits

was not standardized by ragam. For some extremely common ragams, there were nearly

15,000 splits, and for some of the rarer ones, the splits produced numbered in the low 100s.

As I discussed with Professor Kreiman, while class imbalance is typically avoided, in

this problem, the imbalance reflects the real-world disparity between the frequencies of

performance of certain ragams and is valuable intuition for the model to pick up when

predicting output probability vectors. If there are a few ragams that sound somewhat

similar, but one of them dominates the others in terms of performance frequency, the model

would correctly bias towards that ragam prediction, in line with our desired outcome. For

the purposes of this project, all audio files were converted to .wav format.

4.3 Preparing the Mel-Spectrograms for the Model

After generating these audio splits, the next step was to generate mel-spectrograms for each

split. Mel-spectrograms, as described in the Literature Review section, are a visualization

of the frequency content of an audio signal over time. They are commonly used in music

classification tasks involving Convolutional Neural Networks to analyze and classify different

genres, emotions, and instruments in a piece of music. In the next section, I will briefly intro-

duce the mathematical basis for constructing spectrograms, based on material I encountered

in Applied Math 104: Complex Analysis and Fourier Analysis. This analysis informs the

data pre-processing and augmentation decisions I made for this dataset, as described below.
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4.4 Mathematical Review of Spectrograms

Complex Analysis Background

In complex analysis, a complex number is represented as z = x+ iy, where x and y are real

numbers, and i is the imaginary unit with the property i2 = −1. Complex analysis involves

the study of functions that operate on complex numbers.

Fourier Analysis Background

Fourier analysis decomposes a function (in our case, a sound signal) into its constituent

frequencies. The basic tool for this is the Fourier Transform, which transforms a time-

domain signal into a frequency-domain representation.

Given a continuous time-domain signal x(t), its Fourier Transform X(f) is defined as:

X(f) =

∫ ∞

−∞
x(t)e−2πift dt

where:

• X(f) is the complex-valued Fourier Transform of x(t),

• f is the frequency in hertz,

• t is time in seconds,

• i is the imaginary unit.

Spectrogram Calculation

A spectrogram is obtained by computing the squared magnitude of the Short-Time Fourier

Transform (STFT) of the signal. The STFT is a series of Fourier Transforms computed over
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short, overlapping time windows, which allows for the analysis of non-stationary signals (like

most sounds).

Given a sound signal x(t), the STFT X(τ, f) at time τ and frequency f is defined as:

X(τ, f) =

∫ ∞

−∞
x(t)w(t− τ)e−2πift dt

where w(t) is a window function centered at zero, typically a Hanning window or a

Gaussian window, which tapers off towards the ends to minimize edge effects. [13]

The spectrogram S(τ, f) is then the squared magnitude of X(τ, f):

S(τ, f) = |X(τ, f)|2 = X(τ, f)X(τ, f)

where X(τ, f) denotes the complex conjugate of X(τ, f).

The duration of the audio clip is represented in the STFT through the temporal length

of the analysis window and the overlap between consecutive windows. The total number of

STFT windows N depends on the window duration D, the overlap O, and the total duration

T of the audio clip:

N =

⌊
T −D

D −O

⌋
+ 1

This equation shows how the duration of the audio clip influences the number of analysis

windows in the STFT, which in turn affects the temporal resolution of the STFT represen-

tation. [13]

What a Spectrogram Shows

The spectrogram, through the STFT, provides a time-resolved frequency analysis, showing

how the energy of different frequency components of the sound signal varies over time. The

complex numbers in the STFT capture both the amplitude and phase information of the
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signal at each time and frequency point. The magnitude squared operation converts this

complex-valued representation into a real-valued one, representing the energy at each point

in the time-frequency space, which is what the spectrogram visualizes. [13]

By analyzing the spectrogram, one can identify and study the temporal evolution of

various frequency components in the sound, such as the harmonic structure of music, which

makes it an optimal graph to describe ragams in a piece of Carnatic music audio data over

a period of time.

Figure 4.1: A mel-spectrogram representing a short audio clip of my singing the ragam
manirangu

Modifications to the STFT Algorithm

Several mathematical modifications can be made to the STFT algorithm to accommodate

various considerations about the audio file. In this section, I explain these modifications and

their implementation in my audio-processing code.
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1. Window Function Modification

The choice of window function w(t) can be altered to balance the time-frequency resolution

trade-off:

w(t) = Hann(t,D) or w(t) = Hamming(t,D) or w(t) = Gaussian(t, σ)

Different window functions may be chosen based on the desired properties of the STFT.

In Carnatic music, ragams are characterized by their unique melodic and rhythmic patterns,

often exhibiting complex tonal variations and subtle ornamentations. The choice of window

function directly impacts the ability to capture these nuances effectively. I chose to apply

a Hann window, implemented in librosa, as it is beneficial for maintaining a balance

between time and frequency resolution, essential for capturing both the rapid ornamentations

(gamakas) and sustained notes typical in Carnatic music. [10]

The Hann window function, also known as the Hanning window, is represented by the

equation:

w(n) = 0.5− 0.5 cos

(
2πn

N − 1

)
where n ranges from 0 to N − 1, and N is the length of the window.

The Hann window function maintains a balance between time and frequency resolution by

smoothly tapering the signal toward zero at both ends. By gradually reducing the amplitude

of the signal towards the edges, the Hann window effectively balances time and frequency

localization, preserving the resolution of both domains.[13]

Other options, like a Gaussian window function might be better suited for emphasiz-

ing specific frequency ranges and could be better for particular ragams with microtonal

variations, but the Hann window function would be generally effective for processing most

Carnatic audio data.
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2. Overlap Adjustment

The overlap O between consecutive windows can be adjusted to change the temporal reso-

lution and redundancy of the STFT representation:

O = αD

where 0 < α < 1 is the fraction of the window that overlaps. Increasing α improves

temporal resolution but increases computational complexity. Ragams in Carnatic music

often feature rapid transitions between different notes, intricate rhythmic patterns, and

dynamic tempo variations. Adjusting the overlap between consecutive windows enables the

spectrogram to capture these temporal variations more accurately. A higher overlap ratio

ensures smoother transitions between successive frames, thereby preserving the continuity

of melodic and rhythmic elements.[13] This is particularly relevant in Carnatic music, where

subtle variations in pitch and tempo can convey distinct emotional expressions and aesthetic

nuances characteristic of different ragams. This ratio is determined by the hop length

parameter in librosa, which I set to 75%.

3. Zero-Padding

Zero-padding can be applied to each windowed segment before performing the Fourier Trans-

form to increase the frequency resolution:

X(τ, f) =

∫ ∞

−∞
x(t)w(t− τ) · ZeroPad(·) e−2πift dt

This does not increase the actual information content but interpolates the frequency bins,

making it easier to identify peaks in the frequency domain. Carnatic music is renowned for

its rich harmonic content, often incorporating complex frequency modulations. Zero-padding

before Fourier Transform interpolation enhances the frequency resolution of the spectrogram,

making it easier to identify spectral peaks corresponding to different ragams. This is essential
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in Carnatic music, where the identification of subtle tonal variations between notes is crucial

for distinguishing between closely related ragams. [10]

4.5 Spectrogram generation in Python

Thus, I applied the Python library librosa, which is a popular library used for audio

analysis, processing, and feature extraction, and is widely used in music information retrieval

research, for computing these mel-spectrograms. One can think of these mel-spectrograms as

2D arrays of pixel intensities. I developed a custom function that wrote a mel-spectrogram

and corresponding ragam label to a pickle file, derived from the split file name, for each

split file within a ragam folder. The pickle file enabled easy data loading into my models

after one-time generation. Otherwise, loading in the mel-spectrograms into my model each

time I wanted to compile it could take up to 30 minutes, for each ragam. This was due to

the mel-spectrogram computation time, the combined size of the mel-spectrograms across

the splits for each ragam (several gigabytes), and the fact that these audio files were being

stored in Google Drive, resulting in slower read/write times due to network latency and

speed considerations.

During this stage, each mel-spectrogram was standardized and resized to a 256x256 array,

keeping with the methods employed by Hebbar and Jagtap, and a subset of ten ragams in the

dataset were selected for computation, given the large size of the full dataset. These power

spectrograms were then scaled to decibel units, using a standardized audio sample rate of

16,000 and with all audio samples scaled by a factor of 1/32768, which are figures in line with

those used in the surveyed literature during data preprocessing for music classification. The

ten ragams, randomly selected, were ahiri, amruthavarshini, bhupalam, kalyanavasantham,

manirangu, mohanam, nilambari, revati, simhendramadhyamam, and yamunakalyani, and

had an average number of 1000 splits each. While mostly consistent in sample size, the

length of each ragam’s pickle file did in some cases reflect the real-world class imbalance
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captured by the dataset, with the commonly performed mohanam ragam having 3000 splits

and the lesser-known ahiri ragam having only 600. An X array containing the computed

mel-spectrograms for each split, and an accompanying y array containing the ragam name,

was written to a pickle file for each of these ten ragams.

4.6 Removal of Misleading and Irrelevant Spectrograms

There were a few situations in the dataset that could make ragam detection difficult for

humans and neural networks alike. For instance, there are some pieces, called ragamalikas

where the artist may choose to rapidly switch ragams, giving the listener only limited time

to orient themselves. Secondly, during percussion solos within songs, there is no melody,

and classifying the song’s ragam is impossible. In a similar vein, there were often speeches

and applause throughout sections of certain tracks. And because the audio splits containing

these elements came from a larger labeled track, they were labeled as a ragam, even though

no ragam could be detected by listening to them, introducing error into the dataset. Having

silences, speech, and percussion labeled as being in a particular ragam could greatly impede

the model’s ability to learn the actual features of that ragam.

To combat these issues, I manually filtered out all ragamalika pieces and wrote a script

in Python to detect spectrograms with extensive silences, percussion solos, and speeches,

and remove them from the dataset.

To clarify this process, I have provided a brief mathematical representation of the features

my code was identifying when deciding whether to remove a spectrogram from the training

set.

Representation of Silence

Silence in an audio signal is characterized by minimal energy across all frequencies. In the

STFT representation:
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Xsilence(τ, f) ≈ 0

for all f within the audible range, indicating a lack of significant frequency components

in the signal during silent periods. Practically, this involves summing the squared magnitude

of the spectrogram values and determining whether it falls below a silence threshold, which

I implemented in Python.

Representation of Percussion

Percussion sounds, such as drum beats, are transient and broadband in nature. They contain

a wide range of frequencies with rapid onset and decay times. In the STFT representation,

percussion elements appear as:

Xpercussion(τ, f) =


High magnitude, for short τ duration across a wide range of f

0, otherwise

This indicates sharp, short bursts of energy spread across a broad frequency spectrum.

Representation of Melody

Melodic components, such as those from a singing voice or a musical instrument playing

a tune, are characterized by harmonic structures and are more sustained than percussive

sounds. In the STFT representation, the melody appears as:

Xmelody(τ, f) = Harmonically related peaks over sustained τ durations

In practical coding terms, removing the percussion-dominant splits involved removing
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splits with a majority of energy peaks occurring within short-duration windows, and with

many windows having below silence threshold energy.

4.7 Preparing the Numerical Feature Vectors for the

Model

As mentioned in the Literature Review section, models can still perform effectively given a

very limited slice of information about the audio file. For the non-CNN models evaluated

in this thesis, I constructed 1-D input data, essentially a vector of statistics describing the

audio split. This is much less computationally intensive to generate and store than a 256x256

matrix (spectrogram). In this section, I will introduce a mathematical background for the

statistics I selected, and explain how each one could provide useful information to a ragam

identification model.

Mel Frequency Cepstrum Coefficients (MFCCs)

MFCCs are derived from the real cepstrum of a windowed short-time signal. They are based

on the linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency

[13]:

MFCC[i] =
N−1∑
k=0

log (S[k]) cos

[
i

(
k − 1

2

)
π

N

]
, i = 1, . . . ,M (4.1)

Here, S[k] is the power spectral density of the signal, computed as |X[k]|2, where X[k]

is the Fourier transform of the signal. The mel scale is defined to mimic the human ear’s

response more closely than the linearly-spaced frequency bands, typically using the formula:

Mel(f) = 2595 log10

(
1 +

f

700

)
(4.2)
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where f is the frequency in Hz. The inverse mel scale, used to convert back from mels

to frequency, is given by:

Mel−1(m) = 700
(
10

m
2595 − 1

)
(4.3)

where m is the frequency in mels. The N mel filters used in the computation of MFCCs

are triangular filters spaced evenly on the mel scale, and M is the number of cepstral

coefficients we wish to retain.

In Carnatic music, MFCCs hold particular importance due to their ability to encapsulate

the timbre and texture of musical sounds. Carnatic ragams are defined in part by their

gamakams, which, as I have mentioned above, add a distinctive color to the ragam and convey

its emotional essence. MFCCs, by capturing the spectral properties of these nuances, allow

for a representation of the intricate melodic contours of gamakams. Consequently, when

employing neural networks for ragam classification, MFCCs serve as a fundamental feature

set, enabling the model to discern the complex spectral characteristics that distinguish one

ragam from another. In my code for this section, I retained 19 cepstral coefficients for each

audio split using librosa functions.

Chroma Features

Chroma features aggregate all the spectral information within each of the 12 distinct semi-

tone (pitch class) bands, regardless of the octave. For the Chroma STFT, we first compute

the Short-Time Fourier Transform (STFT) of the signal to obtain the frequency spectrum

[13]. The Chroma feature for each pitch class c is then computed as:

Chroma[c] =
N−1∑
n=0

|X(n)| · I [PitchClass(n) = c] (4.4)

where |X(n)| is the magnitude of the STFT at bin n, I is the indicator function (which
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is 1 if the condition is true and 0 otherwise), and PitchClass(n) determines the pitch class

of the n-th bin, mapping it to one of the 12 semitones (c ∈ {C,C#, D, . . . , B}).

Chroma features, encompassing both Chroma STFT and Chroma CENS, are particularly

aligned with the modal nature of Carnatic music. As explained in the problem statement,

each ragam in Carnatic music is characterized by a unique set of swaras (notes) that form its

scale. The ragam’s identity is deeply rooted in these swaras and their sequential progression.

Chroma features effectively abstract the pitch content of music into 12 distinct semitone

bands, making them highly relevant for capturing the essence of a ragam’s scale, irrespective

of the octave. This octave invariance is crucial in Carnatic music, which frequently employs

elaborate octave jumps. By analyzing the energy distribution across these chroma bands, a

neural network can learn to identify ragams based on their foundational swara structures,

even in the presence of complex ornamentations. Once again, I used librosa functions to

calculate and store the 12 Chroma STFT and Chroma CENS features.

Root Mean Square Energy (RMSE)

RMSE is a measure of the power of the audio signal and is computed over short frames of

the signal. For a frame of N samples, the RMSE is defined as:

RMSE =

√√√√ 1

N

N−1∑
i=0

|x(i)|2 (4.5)

where x(i) is the amplitude of the i-th sample within the frame. This measure gives an

estimate of the average power across the frame, providing insight into the signal’s amplitude

and energy content. [13]

The dynamic range of a Carnatic music performance, captured through RMSE, provides

insights into the emotive intensity of a composition. In Carnatic music, dynamic variations

serve as a key expressive tool in delineating different sections of a performance, such as the

explorative alapanai and the rhythmic tanam. These sections vary both in melodic content
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and energy levels. For instance, an alapanai might start with a soft, meditative energy,

gradually building up to a climax. By quantifying these energy variations, RMSE aids in

distinguishing ragams that might employ similar scales but differ in their expressive delivery,

thereby enriching the feature set for neural network-based ragam classification. This statistic

is easily calculated by means of the rms function in librosa.

Spectral Centroid

There are three spectral features I was interested in calculating for each audio split. Firstly,

the spectral centroid represents the center of mass of the spectrum and is computed as the

weighted mean of the frequencies present in the signal, weighted by their amplitudes. [13]

The spectral centroid for a frame is given by:

Centroid =

∑N−1
k=0 f(k)|X(k)|∑N−1

k=0 |X(k)|
(4.6)

where f(k) represents the frequency of the k-th bin in the spectrum, and |X(k)| is the

magnitude of the k-th bin in the Fourier transform of the frame. The spectral centroid is

a measure of the ”brightness” or ”sharpness” of the sound, with higher values indicating a

brighter sound with more high-frequency content.

The spectral centroid is a measure of the brightness or tonal center of a sound, which

in the context of Carnatic music, correlates with the shruti (the foundational pitch around

which a performance is centered). The spectral centroid captures these subtleties by provid-

ing a mean frequency value, representing the tonal center that the artist navigates around

[13]. This is particularly useful in distinguishing ragams that may occur more frequently

around certain shruthis, thereby serving as an essential feature for neural network models

aimed at ragam classification.
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Spectral Bandwidth

Secondly, spectral bandwidth quantifies the spread of the spectrum around its centroid,

effectively measuring the width of the spectrum. The p-th order spectral bandwidth is

defined as:

Bandwidth =

(∑N−1
k=0 (f(k)− Centroid)p|X(k)|∑N−1

k=0 |X(k)|

) 1
p

(4.7)

Typically, p is set to 2, in which case the spectral bandwidth measures the standard

deviation of the spectral distribution, reflecting the spread of the energy around the spectral

centroid.

Spectral bandwidth, which measures the spread of the spectrum around its centroid,

captures the extent of frequency modulations in a musical piece. [13] In Carnatic music,

gamakas significantly influence the spectral bandwidth of a piece. A ragam that heavily

employs wide-ranging gamakas will exhibit a broader spectral bandwidth compared to a

ragam with more restrained ornamentations. Therefore, spectral bandwidth is a critical

feature in capturing the unique textural characteristics of each ragam for the models to

learn as they train.

Spectral Rolloff

The third spectral feature I captured was spectral rolloff, representing the frequency below

which a certain percentage (e.g., 85%) of the total spectral energy is contained. [13] It is

defined as the minimum frequency for which the cumulative sum of the spectrum reaches a

certain threshold:

Rolloff = min

{
f(k) :

k∑
n=0

|X(n)| ≥ θ

N−1∑
n=0

|X(n)|

}
(4.8)

where θ is the threshold percentage (e.g., 0.85 for 85%). The spectral rolloff gives an
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indication of the ”skewness” of the spectrum, with higher rolloff values indicating more

high-frequency content.

Spectral rolloff points to the frequency below which a specified percentage of the total

spectral energy is contained. This feature is indicative of the harmonic content and the tex-

tural richness of a Carnatic music piece. Compositions in certain ragams might be rendered

with a rich harmonic backdrop, while others might focus on the purity of the consistent

melodic line. The spectral roll-off captures these variations by identifying the point in the

frequency spectrum where most of the musical energy is concentrated.

Thus, capturing the distribution of musical energy across the frequency spectrum through

these three spectral features could greatly assist a model in learning the harmonic features

that distinguish ragams. All three of these spectral features were calculated for each audio

split using built-in librosa functions and then appended to the vector of numerical features.

Zero-Crossing Rate (ZCR)

The final statistic I was interested in capturing for each audio split was the zero-crossing rate.

The zero-crossing rate measures how frequently the audio signal changes sign, effectively

quantifying the rate at which the waveform crosses the horizontal axis. For a frame of N

samples, the ZCR is computed as:

ZCR =
1

N − 1

N−2∑
i=0

I [x(i)x(i+ 1) < 0] (4.9)

where x(i) is the amplitude of the i-th sample, and I is the indicator function, which is 1

if the product x(i)x(i+ 1) is negative (indicating a sign change) and 0 otherwise. ZCR is a

simple measure of the signal’s frequency content, with higher rates indicating more frequent

sign changes and potentially more high-frequency content. [13]

ZCR, a measure of the frequency of sign changes in a signal, is particularly relevant in

capturing the rhythmic and percussive elements of Carnatic music. The intricate rhythms,
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articulated through the mridangam and other percussion instruments, along with the rhyth-

mic syllables of konnakol, contribute to the distinctive rhythmic structure of Carnatic com-

positions. Moreover, the vocal or instrumental rendering of fast-paced passages significantly

influences the ZCR. A higher ZCR may indicate a piece with brisk, articulated note se-

quences, characteristic of certain ragams or specific sections within a Carnatic music per-

formance. Thus, ZCR provides essential information on the tempo and rhythmic texture,

complementing the melodic and harmonic features in the neural network’s toolkit for ragam

classification. It would later be interesting to determine how the model weighed ZCR, a per-

cussion/tempo feature, relative to the harmonic features, when making a ragam classification

prediction.

4.8 Constructing and Storing the Numerical Feature

Vectors

As mentioned in the previous section, I then generated a vector of the aforementioned

numerical features for each audio split, painting a rich picture of the audio content in a

much less storage-intensive format than the mel-spectrogram representation. Across the

MFCC, Chroma, RMSE, Spectral, and ZCR features, the fully appended vector was of

dimension 1 x 50, with the fifty-first column containing the ragam label for that audio split.

These features and labels would later be loaded into the model as the X and y data arrays,

respectively. Much as with the image representation, I stored these vectors in pickle files

grouped by ragam, for easy retrieval and data loading during model training. I selected the

most commonly occurring ragams (sorted by # of splits) in my dataset and generated a

pickle file for each of the 33 ragams with at least 2000 ten-second audio splits. Each ragam’s

pickle file contained 2000+ rows corresponding to each of its ten-second audio splits. And

once again, class imbalances reflected the real-world relative incidences of certain ragams.
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4.9 Data Augmentation Techniques

After creating the audio splits and labeling them by ragam, the next step was to increase

the amount of audio training data being fed to the models in ways beyond simply adding

new recordings to the dataset. This is critical to ensuring model robustness and preventing

overfitting, leading to better performance on unseen testing data and real-world audio.

Following Dr. Kreiman’s advice, I performed data augmentation in four principal ways:

volume variation, speed variation, semitone shifting, and background noise introduction.

The idea here was not simply to increase the number of tracks in the training set, but also

to ensure the model would learn to recognize ragams no matter how loud or fast the musician

chooses to perform, at whatever shruthi (pitch) they choose to perform, and in whatever

environmental conditions the music is produced.

Mathematical Representation of Audio Data Augmen-

tation

1. Volume Variation:

• Increasing or decreasing the volume of an audio clip can be represented by multiply-

ing the time-domain signal by a scalar factor. Let’s denote this scalar factor as v,

where v > 1 for increasing volume and 0 < v < 1 for decreasing volume.

• Mathematically, this can be represented as:

xaug(t) = v · x(t)

– Where:

∗ x(t) is the original time-domain signal,

∗ xaug(t) is the augmented time-domain signal.
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• Mel Spectrogram Adaptation: Multiplication by a scalar v scales the magnitude in

the STFT, and thus each cell in the mel spectrogram is scaled by v, altering the

intensity without changing the structure.

• Carnatic Music Context :

– Models the dynamic range variations in live performances.

– Trains the model for ragam recognition across different acoustic environments.

• Librosa Implementation: Use librosa.effects.time stretch(audio, rate=1.0/v)

to adjust the volume by inversely modifying the speed. Using librosa, I created 2

new versions of each split: one 25% louder, and one 25% quieter.

2. Speed Variation:

• Speed variation, or time stretching/compression, can be achieved using time-domain

resampling techniques. Let’s denote the speed factor as s, where s > 1 for increasing

speed (shortening the duration) and 0 < s < 1 for decreasing speed (lengthening the

duration).

• Mathematically, this can be represented as:

xaug(t) = x(st)

– Where:

∗ x(t) is the original time-domain signal,

∗ xaug(t) is the augmented time-domain signal.

• Mel Spectrogram Adaptation: Speed modification by a factor s changes the time axis

in the STFT, affecting the tempo and time resolution in the mel spectrogram.

• Carnatic Music Context :

– Mimics natural tempo variations in performances by different artists.

– Enhances robustness to tempo changes in raga recognition.
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• Librosa Implementation: Apply librosa.effects.time stretch(audio, rate=s)

with s as the speed factor. Using librosa, I created 2 new versions of each split:

one 25% faster, and one 25% slower.

3. Semitone Shifting:

• Semitone shifting involves changing the pitch of the audio clip by a certain number

of semitones. This can be achieved by modifying the frequency content of the signal

while keeping the time axis intact.

• Let’s denote the semitone shift factor as n, where n represents the number of semi-

tones to shift.

• Mathematically, this can be represented as:

xaug(t) = x(t) · e(2πi·n·t)

– Where:

∗ x(t) is the original time-domain signal,

∗ xaug(t) is the augmented time-domain signal,

∗ n is the number of semitones to shift.

• Mel-spectrogram Adaptation: Pitch shifting by n semitones translates frequency bins

vertically in the mel-spectrogram, changing the pitch without affecting duration.

• Carnatic Music Context :

– Reflects the adaptability of ragas to different tonic notes.

– Improves raga recognition across various pitch levels, especially given that most

of the original data is clustered around the keys of C and G, which are the most

popular male and female vocal shruthis respectively (instrumentalists always

tune to the shruthi of the performing vocalist). This augmentation improves the

model’s robustness and efficacy when faced with audio data in an unfamiliar key.
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• Librosa Implementation: Use librosa.effects.pitch shift(audio, sr, n steps=n)

where n is the semitone shift. Using librosa, I shifted each ten-second audio split

up by two semitones, and down by two semitones. The intuition here was to generate

more data around the keys of D, F, and A, which can be encountered in Carnatic con-

certs, especially ones with instrumental leads, but were previously under-represented

in the dataset.

4. Adding Background Noise:

• Introducing background noise, such as tanpura drones, crowd chatter, or static, can

be represented by adding a noise signal to the original audio signal.

• Let’s denote the background noise signal as n(t).

• Mathematically, this can be represented as:

xaug(t) = x(t) + n(t)

– Where:

∗ x(t) is the original time-domain signal,

∗ xaug(t) is the augmented time-domain signal,

∗ n(t) is the background noise signal.

• Mel Spectrogram Adaptation: Adding noise n(t) introduces additional energy across

frequency bands depending on the noise characteristics, simulating ambient sounds

in the spectrogram.

• Carnatic Music Context :

– Simulates ambient noise in outdoor performances or recordings.

– Prepares the model to focus on musical content amidst extraneous sounds.

• Librosa Implementation: Add a scaled noise signal to the audio before computing

the spectrogram: audio augmented = audio + scaled noise. Using librosa, I
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added a background noise signal of static, one at 15% audio split amplitude, and one

at 30% audio split amplitude, to each track, to simulate various levels of background

noise, typical of amplification systems at Carnatic music performance venues, known

as sabhas, in India.

Each of these four data augmentation methods added two new versions of each original

ten-second audio split to the dataset. Thus, this data augmentation process yielded a 9x

increase in the size of our dataset

I did not pursue more than one layer of augmentation to avoid overlapping data. That is

to say, I did not create any augmented data where more than one of these four parameters

had been adjusted, to avoid feeding highly repetitive data into the training process and

risking the model memorizing the input data.

42



Chapter 5

Methods

5.1 Overview

In this section, I will introduce the mathematical basis and implementation details for the

four machine learning models I designed and evaluated on the task of ragam identification

in Carnatic music. I will begin with the three models trained on the numerical feature

vectors, before describing the Convolutional Neural Networks trained on image data. As

mentioned in the previous section, all code for these models was written in Google Colab

Jupyter notebooks that can read data directly from Google Drive. I used high-ram, A100

GPU-enabled runtimes capable of handling these data and computationally intensive model

training processes. 1 2

Mathematical Introduction to Neural Networks

Neural networks are a cornerstone of modern machine learning, inspired by the biological

neural networks that constitute animal brains, as will be further explained later in this

report. At their core, neural networks are composed of layers of interconnected nodes or

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language in this chapter comes from my Neuro 240 final report, which I produced for Dr.

Kreiman in 2023, and which is cited in my bibliography below.
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“neurons,” each capable of performing simple computations. The power of neural networks

lies in their ability to approximate complex functions through the collective operations of

these neurons, making them highly effective for tasks such as image recognition, natural

language processing, and audio classification, as in this problem.

Mathematical Foundations

To understand neural networks from a linear algebra perspective, we begin with the concept

of a neuron. Mathematically, a neuron’s operation can be represented as a weighted sum

of its inputs, followed by the application of an activation function. If we consider a neuron

with n inputs x1, x2, . . . , xn and corresponding weights w1, w2, . . . , wn, the output y of the

neuron can be described as:

y = f

(
n∑

i=1

wixi + b

)

Here, b represents a bias term, and f is the activation function, which introduces non-

linearity into the model.

From Single Neurons to Layers

In a neural network, neurons are organized into layers: an input layer, one or more hidden

layers, and an output layer. The output of one layer becomes the input of the next. This

structure can be efficiently represented using matrices and vectors, facilitating straightfor-

ward computations

Consider a layer with m neurons and an input vector x ∈ Rn. The weights connecting

the inputs to each neuron can be represented as a matrix W ∈ Rm×n, and the biases for

each neuron as a vector b ∈ Rm. The operation of the entire layer can then be expressed as:

y = f(Wx+ b)
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where f is applied element-wise if it is a non-linear function, and y is the output vector

of the layer.

Network Training

Training a neural network involves adjusting the weights and biases to minimize the differ-

ence between the network’s output and the true outputs for a set of training data. This

process is typically performed using backpropagation and gradient descent, where backprop-

agation computes the gradient of a loss function with respect to each weight and bias in

the network, and gradient descent uses these gradients to update the weights and biases to

minimize the loss.

The loss function quantifies the difference between the predicted and true outputs. For

a given set of training examples, the goal of training is to find the set of weights and biases

that minimize this loss function.

Artificial Neural Networks and Dense Layers

Artificial Neural Networks (ANNs) are a class of neural network models designed to simulate

the way a human brain analyzes and processes information. ANNs are the foundation of

deep learning algorithms and are particularly well-suited for problems that involve complex,

non-linear relationships.

Dense Layers in ANNs

Dense layers, also known as fully connected layers, are a fundamental component of ANNs.

In a dense layer, every neuron is connected to every neuron in the previous layer. This dense

interconnectivity allows the layer to learn deep representations of the input data.

Mathematically, the operation of a dense layer can be described as follows:

Let X ∈ Rn×d be the input matrix to the dense layer, where n is the number of samples
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and d is the number of features for each sample. The weight matrix of the dense layer is

denoted as W ∈ Rd×k, where k is the number of neurons in the layer. Each neuron in the

dense layer also has a bias term, represented as a vector b ∈ Rk.

The output of the dense layer, Y ∈ Rn×k, is computed as follows:

Y = f(XW + b)

Here, f represents the activation function applied element-wise. Common choices for f

include ReLU (Rectified Linear Unit), softmax, sigmoid, and tanh functions, each introduc-

ing non-linearity to enable the learning of complex patterns. I will not go into the math

behind all of these activation functions, but the softmax function is defined as:

softmax(z)i =
ezi∑K
k=1 e

zk

where: - e is the base of the natural logarithm. - zi is the score for class i. - K is the

total number of classes. - softmax(z)i is the probability of class i.

This function converts logits z into a probability distribution, ensuring each element

is in the range (0, 1) and their sum is 1. The exponential function applied to each logit

introduces non-linearity, amplifying differences between logits and allowing interpretation as

probabilities. The element with the highest assigned probability corresponds to the model’s

ragam prediction. [4]

Importance of Dense Layers

Dense layers are crucial for learning high-level features in the data. In deep learning archi-

tectures, multiple dense layers are often stacked together, allowing the network to learn a

hierarchy of features. Lower layers might learn basic patterns, while deeper layers can learn

more abstract representations.
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Mathematical Perspective on ANN Training

Training ANNs involves finding the optimal weights W and biases b that minimize the loss

function. This is achieved through optimization algorithms like stochastic gradient descent

(SGD) or Adam. I will not go into the mathematical background of SGD or Adam in this

report, but the backpropagation algorithm plays a key role here, calculating the gradient of

the loss function with respect to each weight and bias in the network, which is then updated

accordingly.

Given a loss function L, the update rule for the weights can be expressed as:

Wnew = W − η
∂L

∂W

And for the biases:

bnew = b− η
∂L

∂b

Here, η is the learning rate, a hyperparameter that controls the step size during opti-

mization.

Considerations

While dense layers are powerful, they also come with challenges. Overfitting is a common

issue, where the model learns the training data too well, including its noise and outliers,

leading to poor generalization. While I will not explain the full mathematical background

of these concepts here, I used techniques like regularization, dropout, and early stopping to

mitigate this. Furthermore, dense layers can significantly increase the number of parameters

in a model, leading to increased computational cost and memory usage. Therefore, care-

ful architecture design and hyperparameter tuning are crucial in developing effective ANN

models.

With that being said, overall, ANNs are well-suited for tasks where the input data can
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be effectively represented as feature vectors, as in this case the numerical features extracted

from audio signals for ragam identification. As I have described, ANNs are adept at learning

complex mappings between input features and output labels, making them suitable for

classification tasks. In the context of ragam identification, ANNs can efficiently capture

the relationships between the extracted audio features and the corresponding ragam labels,

leveraging their capacity for nonlinear transformations. Additionally, ANNs are relatively

quick and computationally straightforward to train and interpret, making them a practical

choice for this task, especially when dealing with the kind of structured input data and

discrete output labels I have generated.

5.2 Artificial Neural Network Implementation Details

After loading in the numerical feature vectors and labels for all audio splits for a pool of

ten ragams into X and y data-frames in Python, I performed a 90% - 10% train-test split

of the the data. These ten ragams were kalyani, bhairavi, mohanam, carukesi, kapi, varali,

nattakurinji, kamavardhini, shankarabharanam, and hindolam. They were randomly selected

from the set of the 33 most commonly occurring ragams, and the labels were manually

encoded as integers 0-9 instead of ragam labels.

Model Architecture

I implemented my ANN models for this task using the keras library in Python, a popular

framework for deep learning tasks. The first model I attempted to build was a simple linear

model with one dense layer, seeking to categorize ten ragams. My goal was to get a sense

of baseline performance using this simplistic model.

The first layer in this model was a Flatten layer, which was used to convert the 2D

input of shape (50, 1) into a single-dimensional array of 50 elements. This is necessary

because a linear model does not inherently process 2D or 3D data as is, but rather works
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with flat input vectors. The input shape parameter was set to (50, 1), matching the shape

of the input data, excluding the batch size dimension. Following the flattening of the input,

the model employed a Dense layer, which is a fully connected neural network layer. This

layer had 10 units, corresponding to the 10 possible ragam classifications. The softmax

activation function was used, which is typical for multi-class classification tasks as it outputs

a probability distribution over the classes summing to 1. [10]

Finally, the model was compiled with the Adam optimizer, a popular choice for many

types of neural networks due to its adaptive learning rate capabilities, making it efficient

for problems with large datasets and parameters, like this dataset of thousands of rows of

numerical feature vectors, with fifty columns each. The learning rate was set to 0.001 and

the loss function used was sparse categorical crossentropy, which is suitable for multi-

class classification tasks where the labels are provided as integers (as opposed to one-hot

encoded vectors). The model’s performance was evaluated using the accuracy metric.

However, in the first few passes of the network, I noticed that the validation loss stalled

around 2.2 and the validation accuracy did not increase past 33% due to early stopping

after 27 epochs. While 33% accuracy is not anything to write home about in a 10 ragam

classification problem, it is considerably higher than the random guessing score of 10%, and

along with the initially decreasing validation loss for the first 20 epochs, suggested that the

model was actually learning something from the data. This suggested that I needed a more

sophisticated model capable of learning deeper feature representations and more resistant

to overfitting.

Restructuring and Hyperparameter Tuning

To achieve this, I made several adaptations to my next model. The first enhancement was

the addition of a Dense layer with 64 units and ReLU (Rectified Linear Unit) activation. The

ReLU activation introduces non-linearity to the model, allowing it to learn more complex

patterns in the data. This layer served as a hidden layer, increasing the model’s capacity to
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represent and learn from the input data. I next included a dropout layer, which is a form

of regularization used to prevent overfitting. Dropout works by randomly setting a fraction

of input units to 0 at each update during training time, which helps to prevent neurons

from co-adapting too much. Next, I added a new dense layer with 32 units, also with ReLU

activation, further increasing the model’s depth. The final layer was left unchanged, as the

task was still about classifying ten ragams and generating a probability distribution over

them. During compilation, I reduced the learning rate to 0.0003, thinking the lower learning

rate might offer more fine-grained updates during training, potentially leading to better

convergence.

However, during training, I noticed that while training accuracy was slightly higher, val-

idation accuracy was essentially unchanged from the previous model, suggesting overfitting.

Training and validation loss also decreased slightly faster.

To improve the performance of the model, I significantly increased its complexity in

the following ways, akin to the approach used by Hebbar and Jagtap. I began the model

with a Dense layer comprising 512 units, which also serves as the input layer due to the

input shape parameter being specified. This layer has a substantial number of neurons,

allowing the model to learn a high level of detail and complexity from the input data.

Following the first dense layer was another with 256 units, a third dense layer with 128

units, and a fourth with 64. Again, ReLU was the chosen activation function, consistent

with the model’s strategy to stack layers with non-linear activations. This design choice

gradually reduced the dimensionality of the representations, focusing the model’s learning

on the most salient features. Once again, I utilized a softmax activation and output layer

with ten classes, compiled the model with the Adam optimizer set to default parameters,

and adjusted the early stopping callback to have a patience of 5 epochs to prevent the model

from learning noise in the training data.

This time, during the training process, the training loss significantly decreased from

8.2653 in the first epoch to 0.1764 by the 50th epoch, indicating substantial learning and
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improvement in the model’s performance. Validation accuracy saw a notable increase from

20.94% in the first epoch to 94.89% in the final epoch, reflecting the model’s enhanced

ability to generalize to unseen data. This consistent improvement in both training loss and

validation accuracy over the epochs suggests that the model was effectively learning from

the data, capturing the underlying patterns without significant overfitting occurring.

Encouraged by these training results, I maintained this model architecture but ex-

panded to a set of fifteen ragams. These ragams were kalyani, bhairavi, mohanam, carukesi,

todi, varali, nattakurinji, kamavardhini, shankarabharanam, hindolam, shanmukhapriya, rit-

igaula, arabhi, anandabhairavi, and simhendramadhyamam. These are some of the most

frequently occurring ragams in Carnatic concerts, so a model capable of recognizing them

could immediately be useful for real-world demonstrations to users familiar with Carnatic

music. When training this fifteen ragam model, over the course of 42 epochs (out of an

initially planned 250), the training loss decreased from 5.1784 to 0.2451, indicating that the

model was effectively learning from the training data. Furthermore, the validation accuracy

improved from 17% to 87%, showcasing the model’s increasing proficiency in generalizing

to unseen data. However, training was halted prematurely at the 42nd epoch due to early

stopping, triggered by a lack of improvement in the validation loss, suggesting that further

training might not have led to better generalization.

Setting up Feature Importance Mapping

Lastly, I re-appended the original numerical feature names (Chroma, RMSE etc.) to a list,

as they had been removed in the training data, such that they could later be mapped to the

weights to which the trained model had converged. This would allow us to understand what

specific aspects of the audio file the model had been considering when making its prediction,

and hypothesize what aspects of Carnatic music might explain these relative weights. In

some sense, this exercise could help me understand the ”computational essence” of a ragam.

This is an interesting philosophical question, as Carnatic music teachers always emphasize
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capturing the ”essence” of the ragam while singing, and this feature map would let me

understand the quantitative physical phenomena to which they are probably referring.

The results of these ANN model implementations, their performance on unseen testing

data, and the relative feature importance will be discussed in the results chapter of this

report.

5.3 Recurrent Neural Networks (RNNs)

RNNs introduce the concept of memory into neural networks, allowing for the processing

of sequences of data. The key feature of an RNN is the hidden state ht, which captures

information from all previously seen elements in the sequence.

The basic RNN update equation is:

ht = σ(Whht−1 +Wxxt + b) (5.1)

where:

• ht is the hidden state at time t,

• xt is the input at time t,

• Wh is the weight matrix for the hidden state,

• Wx is the weight matrix for the input,

• b is the bias.

[4]

5.4 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) networks are a special kind of Recurrent Neural Network

(RNN) capable of learning long-term dependencies. They are designed to avoid the long-
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term dependency problem in traditional RNNs, making them particularly useful for tasks

involving sequential data such as time series analysis, natural language processing, and audio

data.

LSTMs enhance RNNs with mechanisms called gates, enabling the network to better

regulate the flow of information. An LSTM unit typically includes a cell state ct, and three

gates: forget gate ft, input gate it, and output gate ot.

LSTM Update Equations

The LSTM update equations are as follows:

ft = σ(Wf [ht−1,xt] + bf ) (5.2)

it = σ(Wi[ht−1,xt] + bi) (5.3)

c̃t = tanh(Wc[ht−1,xt] + bc) (5.4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5.5)

ot = σ(Wo[ht−1,xt] + bo) (5.6)

ht = ot ⊙ tanh(ct) (5.7)

[4]

where:

• [ht−1,xt] denotes the concatenation of ht−1 and xt,

• ⊙ denotes the Hadamard product (element-wise multiplication),

• W and b with subscripts denote the weight matrices and bias vectors for each gate,

• c̃t is the candidate cell state.
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5.5 LSTM Applicability

LSTMs, with their complex gating mechanisms, provide a powerful tool for modeling se-

quential data, building on the fundamental principles of linear algebra and neural network

design. Their ability to capture long-term dependencies makes them a cornerstone of mod-

ern sequential data processing and prediction tasks. Despite their typical association with

sequential data, LSTM models can still be effective for tasks involving non-sequential vec-

tor data, such as the numerical features extracted from audio files in ragam identification.

LSTMs are renowned for their ability to capture long-term dependencies and temporal dy-

namics, which can be crucial for understanding the intricate nuances present in audio signals.

In the context of Carnatic music, where melodies unfold over time with intricate variations,

LSTMs can leverage their memory cells to retain relevant information from past observa-

tions, allowing them to discern subtle patterns and transitions that are characteristic of

different ragams. By learning to associate specific combinations of numerical features with

ragam labels over time, LSTMs can effectively capture the underlying structure and com-

plexity of Carnatic music compositions, leading to accurate identification of ragams based

on the extracted audio features.

5.6 LSTM Implementation Details

As with the ANN models, I loaded in the numerical feature vectors and labels for all audio

splits for a pool of two ragams into X and y data frames in Python, once again performing

a 90% - 10% train-test split of the data and converting all ragam names to integers in the

y data-frame. These two ragams were nilambari and todi.

The first LSTM model I designed was a binary classification model with the goal of dis-

tinguishing the Todi from nilambari. These ragams were both among the 33 most commonly

occurring ragams mentioned earlier, and I thought they would be good candidate ragams for

the first experiment as they sound very different. Todi, with its flattened second and sixth
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degrees, resembles the minor scale in Western music, with a darker and more melancholic

sound. On the other hand, Nilambari, with its flattened third and sixth degrees, tends to

evoke a sense of tranquility and serenity.

This two ragam LSTM model was once again implemented using keras. The model

was constructed using the Sequential API in Keras, tailored for sequential data process-

ing. It began with a first LSTM layer featuring 128 units, an input shape of (50, 1), a

dropout rate of 5%, and a recurrent dropout of 25%, set to return full sequences. This

was followed by a second LSTM layer with 64 units, configured to output a single vec-

tor by setting return sequences=False. A dense layer with 2 units and a softmax ac-

tivation function was added as the output layer, suitable for binary classification. The

model was compiled using the Adam optimizer with a learning rate of 0.0003, employing

sparse categorical crossentropy as the loss function and tracking accuracy as the per-

formance metric. An early stopping callback was initialized to monitor the validation loss

and halt training if no improvement was observed over 5 epochs, to mitigate overfitting. [10]

Due to LSTM units being more computationally intensive, this model took significantly

longer to train than the ANN models. Over 18 epochs, the model’s training loss decreased

from 1.6930 to 0.1385, and its training accuracy improved from 40.94% to 95.74%, indi-

cating effective learning and adaptation to the training data. Meanwhile, the validation

accuracy increased from 53.33% to 94.29%, with validation loss reducing from 0.9955 to

0.2224, showing the model’s growing ability to generalize to unseen data. Despite these ini-

tial improvements, early stopping was triggered at the 18th epoch, suggesting that further

training did not significantly enhance validation performance.

Given the success of this model, I scaled up to five ragams, kalyani, bhairavi, latangi,

nattaikurinji, and mohanam. During training, over 52 epochs, at which point early stopping

was triggered, the training loss of the model decreased from 1.5902 to 0.3286, and its training

accuracy increased from 24.05% to 88.63%. Similarly, the validation loss decreased from

1.5409 to 0.2857, while the validation accuracy improved from 28.44% to 90.56%. These
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changes indicate that the model effectively learned from the training data, as evidenced by

the consistent decrease in loss and increase in accuracy. Additionally, the model’s ability to

generalize to unseen data improved, as shown by the enhancements in validation accuracy.

With that being said, this represented a roughly 5% drop in validation accuracy from

the two-model case, which is to be expected given the increased problem complexity. To

accommodate the increasing problem complexity, in my next edition of the model, which

aimed to classify ten ragams, I incorporated a larger LSTM input layer with 256 units. These

ten ragams, once again selected from the pool of the thirty-three most commonly-occurring

ragams, were kalyani, bhairavi, mohanam, nattakurinji, carukesi, kapi, varali, kamavardhini,

shankarabharanam, and hindolam. During training, over the course of the 94 epochs prior

to early stopping, the model’s training loss steadily declined from 2.2713 to 0.3099, and

its training accuracy increased from 13.67% to 90.28%. Concurrently, the validation loss

decreased from 2.2428 to 0.2471, while the validation accuracy improved from 16.94% to

92.61%. These changes signify that the model was effectively learning from the training

data, as evidenced by the consistent decrease in loss and increase in accuracy across both

training and validation sets.

The results of the LSTM models described here, as well as their performance on unseen

testing data, will be discussed in the results chapter that follows.

5.7 Bridge from LSTMNetworks to Transformer Mod-

els

Transformers use parallel processing and self-attention mechanisms to handle sequences,

significantly improving over RNNs and LSTMs in many aspects. A transformer model

consists of an encoder and decoder, each containing multiple layers of multi-head attention

and feed-forward networks, along with positional encoding. Carnatic music ragams are

intricate melodic frameworks that require understanding nuanced sequences and patterns,
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making them ideal candidates for Transformer-based models.

Self-Attention Mechanism

The self-attention mechanism allows each position in the sequence to attend to all positions

in the previous layer simultaneously:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Multi-Head Attention

Multi-head attention runs several attention operations in parallel:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

headi = Attention(QWQ
i , KW

K
i , V W

V
i )

[5]

5.8 BERT and Sequence Classification

BERT (Bidirectional Encoder Representations from Transformers) is a Transformer-based

model pre-trained on a large corpus, which has shown great success in various NLP tasks,

including sequence classification. BERT’s ability to capture deep contextual relationships

within sequences makes it well-suited for classifying ragams in Carnatic music. The model’s

bidirectional nature and fine-tuning capabilities allow it to learn the subtle nuances and

complex patterns characteristic of ragams, offering a promising approach to this unique

classification task. [5]

Transformers, despite being primarily designed for sequential data processing, offer unique
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advantages for handling non-sequential vector data in tasks like ragam identification. Trans-

formers are renowned for their attention mechanisms, which enable them to focus on relevant

information within the input data, irrespective of its sequential nature. In the context of

ragam identification, where the relationships between different numerical features may be

complex and non-linear, Transformers can leverage their attention mechanisms to identify

salient features that are indicative of specific ragams. By attending to relevant feature

combinations and capturing global dependencies within the input data, Transformers can

effectively learn to differentiate between different ragams based on the extracted numerical

feature vectors. Additionally, Transformers’ capacity for hierarchical representation learning

allows them to capture abstract relationships and patterns within the data, enabling them

to discern subtle distinctions between ragams that may not be apparent from individual

feature values alone. Overall, Transformers offer a powerful framework for modeling com-

plex relationships within non-sequential vector data, making them well-suited for tasks like

ragam identification in Carnatic music compositions.

5.9 BERT Implementation Details

I once again implemented this model in a Colab python notebook, using the Hugging Face

transformers library. Hugging Face is a company and online community that provides a

vast collection of pre-trained models designed to simplify the use of state-of-the-art natural

language processing (NLP) models. BertForSequenceClassification is a model architec-

ture provided by Hugging Face’s transformers library, specifically designed for the task of

sequence classification, such as sentiment analysis or spam detection. It leverages the BERT

model, fine-tuning it for classification tasks by adding a classification layer on top of the

pre-trained BERT model’s output.

Much as with the prior two models, a data frame was created from feature data X and

labels y, with the dataset subsequently split into training and test subsets using the same
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90% - 10% split as before. The training data was then separated into features (X train)

and labels (Y train), with a similar process for the test data. The features were reshaped

to match the expected input format for BERT, and a dictionary once again mapped ragam

names to integer labels.

The numerical features were converted into a text format, which was then tokenized

using the BertTokenizer from the Hugging Face library. This tokenizer was configured to

handle the text data, ensuring uniform sequence lengths and converting the data into a

format compatible with BERT. The tokenized data was wrapped in TensorDataset objects,

and DataLoader instances were prepared for efficient batch processing during training and

evaluation.

BertForSequenceClassification was then instantiated from the pre-trained ’bert-base-

uncased’ model, configured for a binary classification task with two output labels: the

ragams kalyani and bhairavi, two extremely popular and common ragams. The AdamW

optimizer was employed to optimize the model parameters, with a predefined learning rate

and epsilon value.

The training loop involved setting the model to train mode, iterating over batches of

data, computing the loss, performing backpropagation, and updating the model parameters

using the optimizer. After each epoch, the average training loss was calculated and reported.

During training, I observed that over the course of four epochs, the BERT model demon-

strated significant learning and improvement in performance, as evidenced by the consistent

decrease in training loss. Initially, the loss was relatively high at 0.6350 in the first epoch,

but as the model underwent training, it rapidly assimilated the patterns in the data, leading

to a reduction in loss to 0.4361 by the second epoch. This trend of decreasing loss continued

in subsequent epochs, with the loss further reducing to 0.3542 in the third epoch and ulti-

mately reaching 0.2863 by the fourth and final epoch. This progression indicates effective

learning and optimization of the model’s parameters.

While the two ragam transformer model showed promise and evidence of learning, I
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was not able to replicate this success for larger pools of ragams. Training loss decreased

much more slowly for a three ragam model, and essentially flat-lined for a five ragam model.

Compounding the issue was the length of time each BERT model took to fine-tune and train.

Transformer models, like BERT, typically take longer to train than LSTM and simpler ANN

models due to their complex architecture and the extensive number of parameters involved.

Transformers use self-attention mechanisms to process input data in parallel rather than

sequentially, which, despite being efficient at capturing long-range dependencies in my ragam

audio data, requires significant computational resources. Additionally, the pre-training and

fine-tuning stages of models like BERT involve processing vast amounts of text data, further

contributing to the training duration.

The results of the Transformer models described here, as well as their performance on

unseen testing data, will be discussed in the results chapter that follows.

5.10 Why LSTMs and Transformers for Non-Sequential

Data?

Given that LSTMs and Transformers are typically applied to sequential, time-series data,

their application here to the numerical features vector input data instead of the spectrogram

data might be surprising. After all, the mel-spectrograms are in fact sequential data, whereas

there is no inherent order to the fifty columns of statistics in the numerical features vector.

You could scramble the order of the columns in the vector, so long as you keep the ground

truth ragam label in column 51. So why am I training these models on non-sequential data?

Feeding non-sequential data to LSTM and Transformer models can lead to superior

performance for a number of reasons. Firstly, these models are adept at representation

learning, capturing essential patterns and relevant information regardless of data sequence.

Their proficiency in understanding temporal context and complex feature interactions allows

them to discern nuanced patterns, making them particularly effective for tasks requiring a
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deep understanding of temporal dependencies, such as ragam identification. Additionally,

the flexibility and hierarchical feature learning capabilities of these models, especially trans-

formers, enable them to process information across various abstraction levels.

However, I noted that LSTM and Transformer models either failed to train on or per-

formed poorly with spectrogram data, likely due to several factors. Spectrograms, which

represent audio signals in the time-frequency domain, present unique challenges that may

not align well with the sequential processing strengths of LSTMs and Transformers. These

models might struggle with extracting meaningful features from the frequency information

in spectrograms due to their inherent design for temporal data. The high dimensionality of

spectrograms poses additional challenges, potentially leading to inefficient data processing

and overfitting. Moreover, the transformation into spectrograms might result in the loss

of crucial temporal dynamics, impeding the models’ ability to leverage their strength in

capturing long-range dependencies. It’s also possible that numerical features derived from

spectrograms could more effectively encode key information, making them more suitable

for LSTM and Transformer models. Lastly, the suboptimal performance might stem from

inadequate model architecture and hyperparameter optimization on my part, for handling

spectrogram data effectively.

5.11 Convolutional Neural Networks (CNNs)

Now, we will introduce the mathematics behind Convolutional Neural Networks and the

implementation details for this model in my project. The three models described up until

this point all made use of the numerical features vector representation of the audio splits;

the CNN model will make use of the mel-spectrogram image data that I have described in

detail in chapter four of this report.

Convolutional Neural Networks (CNNs) are a specialized kind of neural network for

processing data that has a known grid-like topology, such as images. CNNs make use of a
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mathematical operation called convolution, which, in the context of neural networks, can be

thought of as a weighted sum of inputs like in traditional neurons, but with a key difference:

the weights (or the convolutional filter) are shared across the input space.

This weight sharing significantly reduces the number of parameters that need to be

learned, making CNNs much more efficient than fully connected networks for tasks like

image recognition. Additionally, CNNs are designed to automatically and adaptively learn

spatial hierarchies of features, from low-level edges and textures to high-level patterns and

object classes.

In a CNN, a convolutional layer consists of several convolutional filters that are applied

to the input images (or feature maps from the previous layer) to produce feature maps.

These feature maps then pass through non-linear activation functions, just like in traditional

neural networks. Pooling layers are often added after convolutional layers to reduce the

dimensionality of the feature maps, helping to make the network more computationally

efficient and less prone to overfitting.

The transition from fully connected layers to convolutional layers marks a significant shift

in neural network architecture, enabling the effective processing of spatial data and leading

to breakthroughs in fields such as computer vision. Through the lens of linear algebra, both

fully connected and convolutional layers can be understood as transformations of input data,

guided by learned weights, to capture and utilize complex patterns in the data.

1. Convolution Operation

The convolution operation is central to CNNs. It involves sliding a filter or kernel over the

input data and computing the dot product of the filter and local regions of the input. This

operation is crucial for feature extraction from the input data.
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2. Mathematical Representation

Consider an input image represented as a 2D matrix I of sizeM×N and a filter F represented

as a 2D matrix of size K ×K. The convolution operation is defined as:

(S ∗ F )(i, j) =
K−1∑
u=0

K−1∑
v=0

I(i+ u, j + v) · F (u, v) (5.8)

where (S ∗ F )(i, j) is the output of the convolution at position (i, j). [4]

3. Feature Learning

Through the convolution operation, the CNN learns to detect various features in the input

data. Multiple filters can be used to detect different features, creating a set of feature maps.

4. Pooling

Pooling layers follow the convolutional layers and serve to reduce the dimensionality of the

feature maps. This reduction helps in achieving abstraction in feature representation.

5. Max Pooling

Max pooling is a common pooling operation that selects the maximum element from the

region of the feature map covered by the pool. Mathematically, it is represented as:

Pmax(i, j) = max
0≤u<P,0≤v<P

S(i · P + u, j · P + v) (5.9)

where P is the size of the pooling region. [4]

6. Fully Connected Layers

After several convolutional and pooling layers, CNNs typically include fully connected layers.

These layers connect every neuron in one layer to every neuron in the next layer and are
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crucial for classification tasks.

7. Mathematical Representation

In a fully connected layer, the operation can be represented as:

Y = f(WX + b) (5.10)

where X is the input vector, W is the weight matrix, b is the bias vector, and f is the

activation function. The output Y is used for classification or regression tasks.

Applications to Ragam Identification

Overall, CNNs are highly effective for ragam recognition due to their capacity to extract

hierarchical feature representations from audio data. In Carnatic music, CNNs can capture

the intricate melodies of ragams through operations like convolution, non-linearity, and

pooling. By analyzing the frequency-time domain of mel-spectrograms, CNNs can discern

nuanced ragam-specific motifs, enabling automated classification of ragams based on their

unique musical characteristics.

5.12 2-D Convolutional Neural Network Implementa-

tion Details

The first model attempted was a binary classification CNN model aiming to distinguish

between clips in the ragam nilambari and the ragam bhupalam. The code for this model

begins in the cell of the notebook linked here. The architecture is a sequential Keras

Convolution2D model with two layers, ReLu activation functions, flattening, and 2 dense

layers with softmax output classification activation function. The Keras sgd optimizer was
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used to calculate gradient with a learning rate of .01. Binary cross entropy and accuracy

were used for the loss and accuracy metrics during training with a batch size of ten, twenty

epochs, and a validation split of 10% (the existing train-test-split was 9:1). Categorical

accuracy is simply defined as the number of correct predictions divided by the total number

of predictions, a standard measure of accuracy in previous studies in ragam recognition. The

labels were encoded from the ragam names ‘nilambari’ and ‘bhupalam’ to the numbers 0 and

1. However, in the first few passes of the network, I noticed that learning was not occurring,

and that accuracy was remaining consistently at .3, well below even the random guess

percentage of 50% that one would expect to be the lower bound of a binary classification

problem. I also noticed that the validation loss remained relatively uniform over the epoch

progression, suggesting that overfitting was likely occurring. After discussions with Dr.

Kreiman, I altered the model parameters by adding max-pooling layers, changing the loss

metric to categorical cross-entropy, and reducing the learning rate to .001.

Thus, the next experiment was to expand the architecture of the binary classification

problem to accommodate multi-category classification, specifically for classifying songs span-

ning the pool of ten ragams randomly selected for CNN experimentation mentioned above.

Using the same architecture as in the binary classification case leads to vastly reduced learn-

ing and accuracy scores, averaging about 35% validation and testing accuracies after 20

epochs in this newly expanded pool. To address this, I changed the model parameters by

adding two more 2D CNN layers with ReLu activation functions and MaxPooling to improve

learning, adding a larger dense layer to prevent overfitting, changing the output dense layer

to size 10, and changing the kernel initializer to sample from a uniform distribution. While

this improved learning to over 80%, I noticed that validation loss remained constant and

testing accuracy was still too low.

To address this issue, in my next and final CNN model, I added an even bigger 2D CNN

layer to improve feature learning and implemented early stopping with dynamic learning

rate adjustment. Essentially, learning would be terminated if validation loss did not drop
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for four epochs, and the learning rate would be adjusted by a factor of 0.1 for every epoch

where validation loss did not directly decrease.

Applying similar processes to the data as described above, including encoding the ten

ragams under consideration by the digits 0-9, and deploying this larger model architecture

with early stopping and dynamic learning rate reduction achieved better results, which will

be described in the results chapter of this report that follows. The ragams included in this

ten ragam model were mohanam, nilambari, ahiri, amruthavarshini, bhupalam, kalyanavas-

antam, manirangu, revati, simhendramadhyamam, and yamunakalyani.
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Chapter 6

Results

6.1 Overview

Results across all four models were quite promising. The models I created yielded test

accuracies (performance on unseen data) north of 90%, with some above 95%, suggesting

they could be highly effective at detecting Carnatic ragams in the real world. In this section,

I state the results and walk through some salient visualizations for each model.

While reading through this section, please refer to the methods chapter for implementa-

tion details of any models whose results are stated here. 1 2

6.2 Artificial Neural Network (ANN) Model Results

10-Ragam Model

Initial Loss and Accuracy Curves:

As stated in the methods section, in the initial ANN models with simpler architectures,

training and validation loss stalled, and the accuracy did not increase beyond 33%, which

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language and visualizations in this chapter come from my Neuro 240 final report, which I

produced for Dr. Kreiman in 2023, and which is cited in my bibliography below.
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while better than a random guessing score of around 10% for a 10 ragam classification model,

was not useable. The figures below demonstrate the loss and accuracy curves from one of

these initial, simplistic models.
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(a) Loss Curves for Initial ANN Models

(b) Accuracy Curves for Initial ANN Models

Figure 6.1: Loss and Accuracy Curves for Initial ANN Models
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Confusion Matrix:

However, after significantly scaling up the complexity of the ANN models, validation accu-

racy increased to 95% and training loss decreased markedly. As can be seen in the following

picture, testing accuracy for the ten-ragam model was evaluated to be 93.6% on the unseen

data, showing that this ten-ragam model was highly effective at identifying ragams under

real-world conditions.

Figure 6.2: Testing accuracy printed by the model during evaluation

This highly effective performance of the 10-ragam ANN model on unseen testing data

can be seen in greater detail in the following confusion matrix. The numbers along the

diagonal reflect correct classifications with the off-diagonal numbers reflecting the incorrect

classifications.
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Figure 6.3: Confusion Matrix showing the True vs. Predicted labels in the unseen testing
data

As you can see from the high counts across the diagonal in the confusion matrix above,

the ten-ragam model reliably classified most audio splits of unseen, real-world testing data

into the correct ragams.

15-Ragam Model

Loss and Accuracy Curves:

As stated in the implementation section in the methods chapter, training accuracy greatly

increased and loss was significantly reduced with the new model architecture. This is demon-

strated by the curves below.
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(a) Loss Curve for 15-ragam ANN Model

(b) Accuracy Curves for 15-ragam ANN Model

Figure 6.4: Loss and Accuracy Curves for 15-ragam ANN Model
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AUC-ROC Curve:

This 15-ragam model ultimately achieved 86% testing accuracy on the unseen audio splits in

the testing data. This is a promising result, as I did not encounter any models in my survey

of the literature that could reliably identify 15 ragams, let alone 15 of the most popular

ragams in all of Carnatic music, as this model does. [10]

Below is an Area Under the Receiver Operating Curve (AUC-ROC Graph), showing

the AUC to be .93. The ROC curve plots the True Positive Rate (TPR) against the False

Positive Rate (FPR) at different classification thresholds. The AUC, or ”Area Under the

Curve,” represents the degree to which the model is capable of distinguishing between classes

(ragams). The higher the AUC, the better the model is at correctly predicting ragams as

themselves. The score ranges from .5, suggesting random guessing, to 1, which represents

perfect predicting power.

An AUC of 0.93, as we have here, means that the model has a 93% chance of correctly

distinguishing between a randomly chosen positive instance and a randomly chosen negative

instance. This is generally considered to be a good performance, indicating that the model

has a high predictive accuracy in classifying these 15 ragams.

The ROC curve helps visualize the trade-off between the true positive rate and the false

positive rate. A model with high classification accuracy will have a ROC curve that hugs

the upper-left corner of the plot, indicating a high true positive rate and a low false positive

rate across various threshold values.
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Figure 6.5: Area under the ROC Graph

Confusion Matrix:

The performance of the model on the testing data can further be seen in the confusion

matrix below.
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Figure 6.6: Confusion Matrix showing the True vs. Predicted labels in the unseen testing
data

Note the high counts across the diagonal in the confusion matrix above, showing that

the model reliably classified unseen testing data audio clips into their correct ragams.

Feature Importances:

After evaluating the 15-ragam ANN model, it became possible to visualize the relative

importance of the various numerical features to the model’s prediction. Below is a graph of

the relative importance of all the features extracted.
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Figure 6.7: Feature Importance Map, showing which numerical features most inform ragam
predictions

As I have mentioned earlier in this paper, this process allowed me to develop an un-

derstanding of the ”computational essence” of ragams, by seeing what aspects of the audio

file the model deems important to the classification. I found these results fascinating and

developed some intuition for why the model might be assigning these relative weights based

on my knowledge of Carnatic music.

Features with High Importance:

The high importance of the 10th MFCC (0.26378018) could indicate that this particular cep-

stral coefficient captures a critical aspect of the variation between different ragams. MFCCs

are known to be effective in capturing timbral and spectral properties of audio signals, and
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certain coefficients might be more relevant than others for distinguishing between specific

types of music or vocal styles present in different ragams. Chroma CENS features with high

importance scores (2nd: 0.26727563, 4th: 0.2691906) suggest that these specific pitch classes

play a significant role in differentiating between ragams. The prominence of these specific

Chroma CENS features could be related to the tuning or the characteristic intervals used in

the ragams.

The RMS energy feature (0.19124618) having a relatively high importance score could

relate to dynamics and loudness variations within the performances of different ragams, and

the mean of magnitudes (0.19124618) also showing high importance suggests that the overall

intensity of spectral magnitudes, possibly related to the loudness or energy of the signal,

plays a significant role in classifying ragams, which makes sense as certain ragams such as

athana are naturally much more strident than others.

Features with Low Importance:

The relatively low importance of spectral roll-off (0.04749999) might indicate that the point

below which a certain percentage of the total spectral energy is contained is not as distinc-

tive for the classification of these particular ragams. This could be because ragams, given

their harmonic complexity, might not be as effectively differentiated by the spectral shape’s

skewness alone. The relatively low importance assigned to the Zero-Crossing rate also makes

sense, as the percussive and tempo elements, which ZCR captures, are far less likely than

the Chroma or CENS features to be capturing melodic information from which a ragam

prediction can be generated.
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6.3 Long Short-Term Memory (LSTM) Model Results

2-Ragam Model

Loss and Accuracy Curves

As described in the methods section, the 2-ragam LSTM model learned effectively from the

data, with consistently decreasing loss and accuracy increasing all the way to 98%. This can

be seen in the loss and accuracy curves below.
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(a) Loss Curve for 2-ragam LSTM Model

(b) Accuracy Curves for 2-ragam LSTM Model

Figure 6.8: Loss and Accuracy Curves for 2-ragam LSTM Model

Confusion Matrix

The testing accuracy for the 2-ragam model distinguishing between todi and nilambari was

an impressive 98%, meaning that this model was highly effective.
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Figure 6.9: Confusion Matrix for 2-ragam LSTM Model

This impressive testing accuracy can be seen in the confusion matrix above, whose high

diagonal counts demonstrate that this model hardly ever misclassified nilambari as todi, or

vice versa.

10-Ragam Model

Confusion Matrix

As I described in the methods section, the LSTM models trained on five and ten ragams also

learned effectively from the data, reaching testing accuracies of 90% and 92% respectively.

Below is a confusion matrix demonstrating the performance of the 10-ragam LSTMmodel

on unseen, real-world testing data.
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Figure 6.10: Confusion Matrix for 10-ragam LSTM Model

As you can see from the high diagonal counts in this visualization, the 10-ragam LSTM

model was generally effective at classifying testing data audio splits into the correct ragam,

though slightly less so than in the 10-ragam ANN case. Even so, based on my review of the

literature, this is the largest pool of ragams on which LSTM models have shown high testing

accuracy thus far. Furthermore, the 98% testing accuracy obtained in my 2-ragam model is

one of the most accurate LSTM models developed for real-world Carnatic audio data thus

far. [10]
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6.4 Transformer (BERT) Model Results

2-Ragam Model

AUC/ROC Curve

The 2-ragam transformer model seemed to learn quite effectively from the data during train-

ing, as described in the methods chapter. Ultimately, during evaluation, the testing accuracy

on unseen data was found to be 88.5%. While this absolutely shows evidence of the model

learning and working effectively, this performance lags that of the ANN and LSTM mod-

els, perhaps because the transformer model, which is extremely data and computationally

intensive, was not supplied with sufficient training data. The AUC score for this model was

.86, which shows that the model has quite accurate predictive power. The ROC curve can

be seen below.

Figure 6.11: AUC/ROC Curve for 2-ragam Transformer Model

Confusion Matrix

The effective testing performance of the two-ragam transformer model can further be seen in

the normalized confusion matrix below. Note that while the model almost always identifies
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bhairavi correctly, it misclassifies kalyani nearly 20% of the time.

Figure 6.12: Confusion Matrix for 2-ragam Transformer Model

3-Ragam Model

Confusion Matrix

However, the testing accuracy began to break down as I scaled the model to identify more

ragams. The testing accuracy for the 3-ragam case was measured to be 60%, which, while

much better than a random guess score of 33%, is still not sufficiently high. In the five-

ragam case, the model apparently did no learning at all and produced a discouraging 20%

test accuracy, likely for the reasons described in the transformer section of the methods

chapter. The confusion matrix below demonstrates this degradation in performance for the

three-ragam case.
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Figure 6.13: Confusion Matrix for 3-ragam Transformer Model

While these test accuracies are not comparable to those of the LSTM and ANN networks,

this is still a promising result because it shows the potential of transformer models to learn

to identify ragams, which has not yet been demonstrated in the literature. As they are

today’s cutting-edge model framework, transformers, and their attention mechanisms will

continue to be applied in music classification tasks for the foreseeable future. [5]
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6.5 Convolutional Neural Network (CNN) Model Re-

sults

2-Ragam Model

Loss and Accuracy Curves

As can be seen in the graphs below, the model saw promising training and validation perfor-

mance, decreasing from over .8 model loss after the first epoch and decreasing to .3 model

loss by the 20th epoch. Model training accuracy also improved from just about the 50%

random guess level to well over 90% by the 20th epoch. On the out-of-sample testing data,

the model performed with 95.8% testing accuracy.
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(a) Loss Curve for 2-ragam CNN Model

(b) Accuracy Curves for 2-ragam CNN Model

Figure 6.14: Loss and Accuracy Curves for 2-ragam CNN Model

Furthermore, I was able to index the data points and retain the indices for which points

had been sorted into train and which into test. Using these indices, I was able to determine

for which points the ragam label corresponding to the maximum predicted probability index
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was not equal to the true label. This allowed me to inspect the misclassified spectrograms

specifically. Using a librosa inverse function going from a mel-spectrogram to audio data,

applying the Griffin-Lim algorithm (GLA), an algorithm used for audio signal processing,

specifically for reconstructing a signal from its short-time Fourier transform computed during

mel-spectrogram construction, it was possible to examine the audio for the misclassified

tracks.

Introduction to Griffin-Lim Algorithm

The Griffin-Lim algorithm is a method used for phase reconstruction in audio signal process-

ing. It essentially tries to estimate the phase of the time-domain signal from its magnitude

spectrogram representation. Given a magnitude spectrogram |X|, where X is the Short-

Time Fourier Transform (STFT) of the original audio signal x, the Griffin-Lim algorithm

iteratively updates the phase of X to minimize the discrepancy between the reconstructed

signal and the original signal. [13]

Let X = |X| · eiθ denote the complex STFT of the original audio signal x, where θ repre-

sents the phase information. The Griffin-Lim algorithm estimates the phase θ by iteratively

updating it to minimize the discrepancy between the reconstructed signal x̂ and the original

signal x:

θ(t+1) = arg min
θ

∥x− ISTFT(|X| · eiθ(t))∥22

where ISTFT denotes the Inverse Short-Time Fourier Transform. This optimization

problem is typically solved iteratively using gradient descent methods. This example is on a

magnitude spectrogram |X|, but it might just as well apply to a mel-spectrogram |M |. [13]
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Implementation in Python

I then implemented the Griffin-Lim algorithm in Python, using NumPy for numerical com-

putations and librosa for audio processing. The implementation involves initializing the

phase of the time-domain signal, iteratively updating the phase using the Griffin-Lim algo-

rithm, and converting the reconstructed signal back to the time domain, where it can be

listened to as a librosa audio object.

By inspection, despite my efforts during the data preprocessing stage to remove such

tracks, it became clear that many of the misclassified tracks corresponded to applause,

percussion sections, or other such clips where a human listener may not have been able to

determine the ragam of the song being played either, due to the absence of melody. This

suggested that the true testing accuracy of the model for real-world applications was likely

greater than 96% in this binary classification case.

Further inspection of the misclassifications yielded the following plots, and an ROC curve

with an area of .99, which was an extremely promising result. The graph of this curve can

be seen below.

Figure 6.15: Confusion Matrix for 3-ragam Transformer Model
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10-Ragam Model

The 10-ragam model showed clear evidence of learning from the data, including training and

validation loss decreasing from 1.9 to .3, a training accuracy of 93%, and validation accuracy

eclipsing 90%. Below are graphs of the training results, showing clear improvement in model

loss and accuracy over the twenty epochs:

(a) Loss Curve for 10-ragam CNN Model

(b) Accuracy Curves for 10-ragam CNN Model

Figure 6.16: Loss and Accuracy Curves for 10-ragam CNN Model
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Testing accuracy for out-of-sample unseen data was measured at 90%. Once again, mis-

classified data points were found to skew towards unclassifiable audio clips such as applause,

speeches, and percussion sections, but there was clearly an increase in genuine error rate

that accompanied the expanded pool of ten ragams as well.

A confusion matrix, demonstrating the frequency at which samples of each ragam were

classified as each of the ten ragams under consideration, including the true ragam, is found

below. The fact that some ragams, such as mohanam, have greater numbers of correct

classifications along the diagonal, and elsewhere, is reflective of some ragams being far more

common than others, in my dataset and in the real world. As mentioned before, the intuition

here was that the CNN model would pick up on and learn from this class imbalance.

Figure 6.17: Confusion Matrix for 10-ragam CNN Model
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Chapter 7

Biological Basis for Methods (Aside)

7.1 Overview

As my applied math concentration application area is biology, I wanted to briefly outline

some of the biological inspirations for the methods applied in this project, drawing on the

concepts I have encountered in my life sciences and neuroscience coursework at Harvard with

Dr. Kreiman. I especially want to illustrate how biological vision and hearing mechanisms

inform the models and feature representations I use in this project.

This section of the report is not directly related to my results in this project, which

appear in the previous chapter. This chapter can be thought of as an informational aside. 1

7.2 Biological Basis for Convolutional Neural Networks

The inception of Convolutional Neural Networks (CNNs) is deeply rooted in the under-

standing of the visual cortex’s structure and function in animal brains. The seminal work

by Hubel and Wiesel in the mid-20th century revealed that neurons in the visual cortex in

cats are sensitive to specific regions of the visual field, known as receptive fields. [11] These

neurons act as localized filters, responding to particular spatial patterns like edges or bars

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
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of light, laying the groundwork for hierarchical and spatial processing of visual information.

As I describe below, CNNs take their inspiration for their convolution operations and filters

from these receptive fields.

7.2.1 Hierarchical Structure of the Visual Cortex

The visual cortex processes visual stimuli through a hierarchical organization, where simple

cells in the primary visual cortex (V1) respond to elementary features like edges and orien-

tations. In contrast, complex cells in higher cortical areas respond to more intricate patterns

formed by combinations of lower-level features. This hierarchical processing facilitates the

decomposition of visual stimuli into progressively abstract feature representations. [11]

Mathematical Model of Receptive Fields

A Gabor filter provides a simplified mathematical model to describe the receptive field of a

simple cell in the visual cortex. The Gabor filter is defined as:

G(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(7.1)

with x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ, where λ is the wavelength, θ is the

orientation, ψ is the phase offset, σ is the Gaussian envelope’s standard deviation, and γ is

the spatial aspect ratio. [4]

These parameters correspond to various characteristics of the receptive field, such as the

preferred orientation (θ), spatial frequency (λ), and spatial extent (σ). The exponential

term represents the spatial envelope of the receptive field, encoding information about the

spatial spread and sensitivity of the neuron’s response. The cosine function captures the

sinusoidal modulation of the neuron’s response to the stimulus, reflecting its sensitivity to

the phase and orientation of visual features. [11]
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7.2.2 Convolution in CNNs: A Biological Analogy

CNNs employ convolution operations with learned filters, akin to the activation of receptive

fields in the visual cortex described above, where each filter detects a specific feature in its

input. This mechanism is reflective of how neurons in the visual cortex respond to particular

patterns within their receptive fields.

Feature Hierarchy in CNNs

CNNs learn a hierarchy of features from input images, like mel-spectrograms, analogous to

the visual cortex’s hierarchical processing. Early layers in a CNN capture basic features

such as edges, while deeper layers synthesize these features into more complex and abstract

representations.

7.2.3 Pooling: Mimicking Complex Cells

Pooling layers in CNNs, especially max pooling, abstract the function of complex cells in the

visual cortex, which are able to maintain their response to a stimulus even if the stimulus

is slightly shifted in position within their receptive field. In other words, the neurons con-

tinue to fire in response to the stimulus regardless of its precise location within their spatial

domain. Similarly in CNNs, max pooling, by down-sampling feature maps, introduces ro-

bustness to small changes and reduces spatial resolution, paralleling the behavior of complex

cells. [4]

Integration into CNN Architecture

The architecture of CNNs integrates these biologically inspired principles—localized recep-

tive fields shared weights for feature detection across different locations, and hierarchical

feature representation—into a trainable model framework. This design allows CNNs to learn

complex visual representations, making them effective for a wide range of image processing
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tasks, akin to the capabilities of biological vision systems.

7.3 Biological Basis for Mel Scale

As I described in the data preprocessing chapter, the mel scale is a perceptual scale of pitches

that mimics the human ear’s response more closely than linearly-spaced frequency bands.

Once again, the formula for converting frequency f to the mel scale, denoted as Mel(f), is

given by:

Mel(f) = 2595 log10

(
1 +

f

700

)
Biologically, the Mel scale is based on research into the frequency discrimination capa-

bilities of the human auditory system. It is inspired by the behavior of the cochlea, the

spiral-shaped organ in the inner ear responsible for converting sound vibrations into neural

signals. The cochlea contains hair cells that are sensitive to different frequencies along its

length. However, the distribution of these frequencies is not linear but rather follows a pat-

tern similar to the logarithmic mel scale, where equal intervals on the scale correspond to

perceptually equal differences in pitch.

This non-linear, logarithmic compression reflects the non-linear nature of human audi-

tory perception, where the perceived difference between two frequencies becomes smaller as

the frequency increases. This allows us to accurately mimic how humans perceive pitch,

making mel-scaled spectrograms especially useful as training data for ragam identification

models, where I am essentially trying to replicate an audio classification task that human

ears and brains are demonstrably effective, with computational methods. Additionally, the

logarithmic compression inherent in the mel scale enhances the discriminative power of the

spectrograms, making them ideal inputs for machine learning models.
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Chapter 8

Live Demonstration of my Model in

Action

8.1 Overview

Having developed the biological basis for mel-spectrograms and Convolutional Neural Net-

works in the previous section, I now provide a link to a video demonstration of my 2-D Con-

volutional Neural Network model working to identify the ragams of songs in real-world Car-

natic music audio data using mel-spectrogram representations. I demonstrate the model’s

efficacy not only on concert audio data but also on a tune I hum into my phone in real time.

In both cases, the model correctly identifies the ragam of the song or melody being played,

a promising result.

Hyperlink: Live Model Demonstration

URL in Plain Text: https://youtu.be/1fyhf3C-mfQ?si=6ubEb9uUtgfsrM7H
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Chapter 9

Discussion

9.1 Overview

In this section, I will first review the significance and implications of my results, which are

described in chapter 6 of this report, before describing some of the potential extensions of

my work to future research. 1 2

Summary of Testing Accuracy Results:

Table 9.1: Testing Accuracy Scores Across Models

ANN LSTM BERT CNN
Small Pool 97% 98% 88% 96%
Medium Pool 94% 90% 20% 92%
Big Pool 86% N/A N/A N/A

1Note that I used ChatGPT to help me write and edit some of the language in this chapter.
2Some of the language in this chapter comes from my Neuro 240 final report, which I produced for Dr.

Kreiman in 2023, and which is cited in my bibliography below.

96



9.2 Models Trained on Numerical Feature Data

ANN Models

Obtaining 93.6% and 86% testing accuracy on a pool of ten and fifteen ragams respectively

is an extremely encouraging result for the ANN models. Not only is the fifteen ragam

model more expansive than any models described in previously published research, but the

ten ragam model is also as accurate on testing data as many models of lesser scope from

previous studies, such as the MIT World Peace University study, which demonstrated similar

accuracy on a pool of seven ragams. [10] This suggests that the numerical feature vectors

I constructed, as well as the hyperparameter tuning and model engineering I conducted,

yielded a more robust and powerful ANN model than has previously been applied to this

task. Furthermore, my analysis of the relative importance of the features extracted for

the vector representation allowed me to understand what the model considers most when

making its ragam prediction, and to think about the ”computational essence” of ragams.

This allowed me to see how important Chroma and CENS features were to ragam detection,

as well as RMSE. I was also able to learn that the Zero-crossing rate is typically much

less relevant to the ragam prediction. This is a novel result, as previous applications of

neural networks to ragam identification have typically involved black-box models where the

underlying weights are hidden.

LSTM Models

The 98% and 90% testing accuracies recorded for the two-ragam and the ten-ragam mod-

els respectively were also encouraging results for similar reasons. The combination of my

numerical feature representations and parameter tuning on the LSTM models appears to

have yielded a more accurate LSTM model to classify within small pools of ragams than

any in the literature. While there is a clear degradation in performance as we scale to ten

ragams, I was not able to find a study demonstrating LSTM model efficacy on a pool of
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any more than seven ragams, as I was conducting my research. Thus, these results on the

LSTM models and ANN models constitute meaningful strides toward bigger, more accurate

models capable of classifying the most commonly occurring Carnatic ragams.

Transformer Models

While the results for the transformer models were more limited, especially when compared

to the other architectures, the 88% testing accuracy obtained from the two-ragam model was

a promising result because transformer models have not previously been successfully applied

to the task of identifying ragams. Moreover, the application of a pre-trained BERT model

to numerical feature data representing music audio is certainly novel, and it is exciting to

demonstrate that the model is actually learning from the numerical feature data.

9.3 Models Trained on Image Data

The testing accuracy of over 90% of the ten-ragam CNN model and performance on unseen,

informally recorded music is an encouraging preliminary result for a few reasons. Firstly,

it expands upon the results achieved in the Jagtap study by demonstrating an effective ac-

curacy on real-world concert data, which is not of standardized quality and has not been

curated for ML classification, in the same way that the dataset in that study was. There, the

audio was specially selected to have been recorded under studio conditions and represented

10 highly dissimilar ragams that human listeners could easily distinguish. By demonstrat-

ing model efficacy, even if slightly lower than the 96% testing accuracy achieved in the

Jagtap study, my ten-ragam CNN model makes advancements towards the goal of hav-

ing a Shazam-like application for instant and reliable ragam recognition under a range of

real-world circumstances including recordings of informal home practices, live concerts, and

audio playing from speakers. This could make a big difference to everyone from first-time

listeners to seasoned Carnatic music connoisseurs.
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One of the additional advantages of using massive amounts of real-world data is that my

model is implicitly trained to incorporate biases of loudness, scale, and pitch that may exist

under certain recording conditions or in certain ragams. This is because with over 3000 tracks

in the Sangeethapriya database alone, and over 70,000 overall in my dataset, differences

in recording conditions balance out across ragam categories. This makes it unlikely that

the model is classifying ragams based on such confounding characteristics that could be

associated with certain ragams or recording conditions. Secondly, previous studies have

mainly demonstrated efficacy on common ragams whereas my ten ragam CNN model was

able to successfully classify rare ragams such as ahiri and revati which may have not been

included in previous ragam classification projects. [10] Thirdly, my CNN model was able

to make progress towards addressing the issue of declining classification accuracy as the

number of ragams under consideration increased, showing that implementing larger 2D CNN

architectures, early stopping, and dynamically adjusting learning rates are all effective levers

to pull to ensure persistent categorical accuracy even when the size of the dataset and the

number of possible ragams increases.

9.4 Immediate Implications of my Models’ Results

Human accuracy in ragam identification varies with individual expertise, but most Carnatic

music educators and appreciators with more than a few years of training can reliably classify

songs into one of 150 of the more common ragams, consistently and independently. If

most concerts involve the presentation of 10 pieces, a seasoned listener might go to four

or five concerts before encountering a song whose ragam they struggle to identify. While

my model likely underperforms relative to such experts, it could still benefit early students

for whom identification of any song’s ragam is likely a daunting challenge, as mentioned

in my abstract. Learning to identify ragams is an iterative process of attempting guesses

and internalizing mistakes, and this tool could serve students by instantly providing them
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with the right answer after they make an identification attempt, abbreviating the feedback

cycle, and improving human learning speeds. As I demonstrated in my video walkthrough

in Chapter 8, my model is ready to serve this use case now, which is a very exciting result.

9.5 Possible Extensions and Next Steps

In the longer term, however, there are a few extensions I might consider for future study

of this problem, starting from data collection. Firstly, depending on who is labeling a

track before uploading it to Sangeethapriya.com, certain tracks may be incorrectly labeled,

which could skew models like mine, raising the issue of multi-annotator reliability for ground

truth labels. Separate Carnatic music experts would be expected to nearly always agree on

a classification for a song’s ragam given a 10-second recording, and further studies could

explore the effects of crowdsourcing and consensus annotations for ground truth labels on

the ultimate performance of the model, as opposed to the combination of string parsing and

individual hand-annotations I used to establish ground truth labels in this project. Also

on the point of data and labeling, it would be exciting to repeat these experiments using

the full scope of Harvard’s Rubin collection, as I alluded to in the data sources chapter of

this thesis. Not only would this collection introduce thousands of tracks to the dataset, but

also the fact that they are not available anywhere else would guarantee they are new to the

model, preventing overfitting and improving robustness.

More generally, repeating these experiments with significantly more data is likely to yield

more robust ANN models than can classify over greater pools of ragams without experiencing

degradation in testing accuracy. It is not inconceivable that had I been able to label my

entire set of 72,000 songs, a slightly larger ANN model than the one I designed here might

be able to classify up to 50 of the most commonly occurring ragams, instead of just the top

15.

Additionally, now that we have some sense from the feature importance maps for what
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the model considers most when making a prediction, it would also be interesting to design

a new vector with only the most salient features, such as Chroma and CENS coefficients. It

could be possible that this simpler representation would enable future ANN models to train

more efficiently and to learn patterns in the data more rapidly.

For the LSTM and Transformer models, it would be very interesting to train them

on sequential data in future studies that are perhaps less storage intensive than a mel-

spectrogram. My intuition is still that these models are best equipped to learn patterns

across time-series data, making them ideal for learning the harmonic patterns associated

with ragams in Carnatic music.

For the CNN models, it might be interesting to explore the relationships between the

constructed mel-spectrogram representations for similar ragams. This would allow for fea-

tures such as retrieval of a list of similar ragams when classifying a track, and accompanying

explanations of the often-subtle differences between the correct ragam and such adjacent

ones. Lastly, explorations of changing the recognition window time from 10 seconds could

be fruitful, as many human listeners can reliably classify in 2-5 seconds, especially when

using a ragam’s “tells”, or characteristic melodic phrases within certain ragams that I have

mentioned above. Teaching a model to internalize these tells would require more data and

modified architectures, but could lead to vastly reduced prediction times in general for

ragams that have these “tells,” when one such is perceived.
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