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Abstract

Nearly every living human has benefited from curriculum training.

Curricula, which enable learners to acquire complex skills by training

them on a series of simpler subtasks that slowly increase in difficulty,

are ubiquitous in both education and psychology, where such methods

are generally referred to as shaping. In recent years, many attempts

have been made to use ideas from curriculum learning within the

realm of machine learning to train better models in a more

sample-efficient manner.

We show that, in complex multi-task robotic reinforcement learning

problems where rewards are sparse and the probability of successfully

executing a task at random is negligible, some form of curriculum

training is necessary to achieve strong performance in a

sample-efficient manner. Moreover, we demonstrate that successful

curricula provide two distinct services:

Most importantly, they must serve as a form of Signal Engineering,

granting the agent a meaningful reward signal early in training which

serves as a substitute for a dense reward. Second, to continue to learn

later in training, curricula must provide a source of guided exploration,

presenting the agent with regions in task space which are difficult but
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learnable and reinforcing existing skills to avoid forgetting.

Through experiments, we show that failing to provide either of

these services results in a less effective curriculum, with inadequate

signal engineering resulting in no meaningful learning in the more

complex setting. These results encourage a more principled

development of sparse-reward curricula which explicitly solve both

subproblems of curriculum learning, allowing ever more general agents

to solve pressing robotics problems.

iv



Contents

1 Introduction 1

2 Background 3
2.1 Markov Decision Processes and Reinforcement Learning 4
2.2 Multi-Task Reinforcement Learning . . . . . . . . . . . 7
2.3 Curriculum Learning in Supervised Domains . . . . . . 9
2.4 Curriculum Reinforcement Learning . . . . . . . . . . . 11
2.5 Benchmarks for Curriculum Learning . . . . . . . . . . 15

3 Methods 17
3.1 Multi-Goal Reinforcement Learning . . . . . . . . . . . 17
3.2 The panda-gym Environment . . . . . . . . . . . . . . 18
3.3 Off-Policy Reinforcement Learning . . . . . . . . . . . 21
3.4 Curriculum Methods . . . . . . . . . . . . . . . . . . . 23
3.5 Experimental Details . . . . . . . . . . . . . . . . . . . 29

4 Results 32
4.1 curriculumReach Results . . . . . . . . . . . . . . . . 34
4.2 curriculumPush Results . . . . . . . . . . . . . . . . . 37

5 Discussion 42
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Analogies to Supervised Curricula . . . . . . . . . . . . 44

v



5.3 Limitations and Future Directions . . . . . . . . . . . . 45
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Appendix 48

References 55

vi



Listing of figures

2.1.1 A graph describing the loop for collecting a trajectory
in an MDP. After an initial state is sampled from ρ, the
policy predicts for the current state an action at, which is
used to compute rewards and the subsequent state. This
process repeats indefinitely, or until a terminal state is
reached. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 A visualization of curriculum guiding and denoising, copied
with minor alterations from [33]. Data subsets early in
the curriculum (bottom) have smooth objectives which
move the parameters to good regions of parameter space.
Later datasets (middle) guide the model’s parameters to
regions closer to the global optimum of the final task (top). 10

2.4.1 A graph representation of experience augmentation. . . 12
2.4.2 A graph representation of [30]. . . . . . . . . . . . . . . 13
2.4.3 A graph representation of [8]. It is worth noting that,

while the horizontal arrows refer to directed edges, the
vertical arrows reflect the structure of the sampling func-
tion f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



2.5.1 Examples of two example environments from TeachMyA-
gent [26]. Both tasks require agents of various embodi-
ments to traverse a obstacle-riddled scene for as long as
possible, while simultaneously minimizing torque. . . . 16

3.1.1 An example goal-conditioned MDP, with initial agent
position in blue and goal in green. For two different
tasks, the goal may change position, but the environ-
ment otherwise remains unchanged. . . . . . . . . . . . 18

3.2.1 The panda-gym environment [11] The robotic arm is
placed on a table, which serves as its workspace. For
later experiments, note that the axes of the task space
are given above. . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 An example of a HER-augmented trajectory. An agent
rolls out a trajectory with some goal m (left), poten-
tially failing to reach it. However, this sample does
demonstrate a successful trajectory for a different goal
m′ (right). Then we may add both each real transition
sample (m, st, at, rm(st, at), st+1) and each reconstructed
transition sample (m′, st, at, rm′(st, at), st+1), with the lat-
ter representing a successful trajectory. . . . . . . . . . 24

4.1.1 (Top) Percent of successful trajectories and (Bottom) av-
erage reward incurred over 1000 random tasks in curriculumReach. 34

4.1.2 Each heatmap shows the achieved reward for each method’s
policy for 1002 (x, y) goal positions in the task space for
for three heights z—low height (row 1), medium height
(row 2), and hight height (row 3). . . . . . . . . . . . . 36

viii



4.1.3 The learning curves for each algorithm on the curriculumReach
task. Dark lines reflect the mean evaluation performance
of 5 independent trials, with shaded regions denoting the
maximum and minimum success rate achieved at each
epoch. over five trials . . . . . . . . . . . . . . . . . . . 37

4.2.1 (Top) Percent of successful trajectories and (Bottom) av-
erage reward incurred over 1000 random tasks in curriculumPush. 38

4.2.2 Each heatmap shows the achieved reward for each method’s
policy on 1002 goal positions in the task space, with ini-
tial object position on the top-left of the task space (first
row), center of the task space (second row), and bottom-
right of the task space(third row). . . . . . . . . . . . . 40

4.2.3 The learning curve for each method on the more complex
curriculumPush environment. . . . . . . . . . . . . . . 41

A.0.1Each heatmap shows the achieved reward for each method’s
policy for 100 goal positions in the task space with initial
object position on the top-left (first row), mid-top-left
(second), center (third), mid-bottom right (fourth), and
bottom-right of the task space(fifth). . . . . . . . . . . 49

A.0.2Final evaluation success rate for each model on the curriculumReach
and curriculumPush tasks. Models were evaluated on
1000 random goals, with the proportion of successful
episodes being presented above. . . . . . . . . . . . . . 50

A.0.3Final evaluation rewards for each model on the curriculumReach
and curriculumPush tasks. Models were evaluated on
1000 random goals, and rewards range from -50 to 0. . 50

ix



Acknowledgments

An enormous thank you to my advisor, Gabriel Kreiman, for taking
me on and helping me develop the ideas for this proejct; to Joshua
Smith and Karthik Desingh for your incredible support and
mentorship over the years; to Boling Yang for introducing me to
curriculum learning and bearing with me as I blundered through code
and AWS documentation (and still do); to Markus Grotz for your
support and encouragement, and for helping me get swipe access to
the espresso room; to Abhishek Gupta, Henri Fung, Soofiyan Atar,
Chahyon Ku, Nirmal Raj, Bahaa Aldeeb, and all those at UW and
UMN whom I worked with and learned from.

Thank you to all of my teachers and mentors here at Harvard, both
in the statistics department and beyond; to my friends, for providing,
at times, both a support system and a diversion; to Andrew Rossi, for
patiently listening as I ranted about this project more times than I
can count; and, of course, to my family, my parents Jane and Jake,
and my brother and sister, Eddie and Lily, for being infinitely
supportive and understanding—I wouldn’t be here without you.

x



This willingness continually to revise one’s own location in order to
place oneself in the path of beauty is the basic impulse underlying
education. One submits oneself to other minds (teachers) in order
to increase the chance that one will be looking in the right direction
when a comet makes its sweep through a certain patch of sky.

Elaine Scarry

1
Introduction

If you are reading this, you have almost certainly been trained using a
curriculum.

In the United States, every child enrolled Public School is tasked
with developing English fluency through an ordered set of standards.
By one model [29], students in Kindergarten learn to describe objects
by color or texture, and to predict the meanings of words through
context in conversation. The next year, they must extend these
abilities to simple texts, and to begin the process of learning abstract
reasoning by sorting objects into ephemeral categories like ‘living
things’ or ‘birds’. By the time they graduate high school, they should
hopefully posses a complex understanding of the language, enabling
them to study specialized fields, intuit new words’ meanings,
understand idioms and references to significant works, and to
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communicate complex ideas to others.
In other words, at each stage of their development students are

given subtasks, related to but distinct from the end goal of developing
general competence in the English language. This set of ordered
tasks, which we call a curriculum, has enabled modern humans to
quickly learn a variety of subjects, resulting for most in better results
than if self-taught.

It is unsurprising, then, that those interested in teaching machines
have also considered whether ideas from curriculum learning can
improve learning speed and performance in their own domains. In this
thesis, we hope to describe in some detail the ways which this
structured view of skill acquisition has been applied to machine
learning domains, focusing in particular on methods unique to
reinforcement learning. At the core of this paper are questions
relevant to modern robotics research:

• What causes curriculum methods to succeed or fail?

• How does reward sparsity impact the learning process?

• How can we gain an intuitive sense of whether a curriculum
method will perform well on relevant robotics tasks?

We focus on sparse-reward robotics tasks, which are entering
increasing prominence in modern robotics research due to being
incredibly general and simple to define, even for complex systems.
Our results show that, in this setting, successful curricula can be seen
to provide two services: signal engineering and guided exploration. We
show that, when either of these components is missing from an
autocurriculum method, performance on the goal task suffers, and
these problems compound when the complexity of the environment
increases.

Thank you for reading.
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2
Background

In the following chapter, we provide background on reinforcement
learning in the single- and multi-task settings. We also describe the
trajectory of curriculum learning research, beginning with supervised
learning domains and proceeding to the sparse-reward multi-task
reinforcement learning setting, which will encompass our experiments.

Note that throughout this paper, we refer to the set of distributions
over a (possibly infinite) set S as ∆S. In the discrete case where
|S| = n ∈ N, this is simply the set of categorical distributions

[p1, p2, . . . , pn] s.t. ∀i ∈ {1, . . . , n}pi ≥ 0,
n∑

i=1

pi = 1.

When sampling from a distribution with probability density f , we
overload notation by letting f(x) denote the density of x and x ∼ f
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denote a variable sampled from a distribution with PDF f .

2.1 Markov Decision Processes and Reinforce-
ment Learning

Central to this work is the Markov Decision Process (MDP), a model
for describing general tasks that require an agent to repeatedly recieve
signals from the environment and interact with the world via actions.

Formally, we define an MDP as follows:

Definition 2.1.1 (Markov Decision Process). A Markov Decision
Process is a tuple M = (S,A, P, r, ρ, γ), where S and A are sets
called the state space and action space, P (s, a) : S ×A → ∆S and
r(s, a) : S ×A → R are called the transition and reward functions,
respectively, ρ ∈ ∆S defines an initial state distribution, and γ ∈ (0, 1)

is called the discount factor.

Intuitively, S and A describe the space of all states and actions
available to the agent, P (·|s, a) describes the transition dynamics upon
taking action a in state s, r(s, a) assigns a reward for taking action a

in state s, ρ is a distribution describing where the agent begins in the
environemnt, and γ is a discount factor weighting how heavily future
rewards should be considered in decision-making (see figure 2.1.1).

One can consider this tuple as specifying the environment of the
MDP—where and how agent may move, and what dynamics govern
how the state changes when actions are taken—but it does not
describe the behavior of the agent itself. To do so, we must also
introduce the idea of a policy:

Definition 2.1.2 (Policy). A policy π is a function π : S → ∆A.
Intuitively, π encodes the actions of an agent operating in an MDP.
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Figure 2.1.1: A graph describing the loop for collecting a trajectory in an
MDP. After an initial state is sampled from ρ, the policy predicts for the cur-
rent state an action at, which is used to compute rewards and the subsequent
state. This process repeats indefinitely, or until a terminal state is reached.

When at state s, π(s) describes the chance of the agent taking each
available action. Having now an environment and an agent to act in
it, we can begin to collect experience samples from the MDP:

Definition 2.1.3 (Trajectory). For any MDP m = (S,A, P, r, ρ, γ)
and policy π, we can collect a trajectory

τ = (s0, a0, r0, s1, a1, r1, . . . )

by the following scheme:

1. Sample an initial state s0 ∼ ρ.

2. For t = 0, 1, 2, . . . :

(a) Sample an action from the policy at ∼ π(st).

(b) Collect a reward rt = r(st, at).

(c) Transition to the next state by sampling from the
transition distribution st+1 ∼ P (st, at).

As an abuse of notation, we will often write τ ∼ (π,M), or simply
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τ ∼ π when the MDP is clear from context, to describe collecting a
trajectory sample by this process.

We can also describe the value of a state under a policy as follows:

Definition 2.1.4 (Value). The value of a state s under policy π is
the expected total discounted reward collected by a policy beginning
in that state. Formally:

V π(s) = Eτ∼π

[
∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
.

This definition captures two important notions of value. First, the
quality of a state depends, not only on how good the state is in
isolation, but also on how it may lead to more rewards in the future.
Second, future states are discounted by a γt term, causing rewards far
in the future to impact the value less than rewards in the present.
How much these rewards are discounted depends on γ, with choices
close to 1 causing long-term rewards to be more impactful, and with
choices close to 0 yielding a myopic value assignment.

We can also define a related notion of the state-value, encoded by
the Q function:

Definition 2.1.5 (Q-Function). The state-value Qπ(s, a) of a
state-action pair (s, a) under policy π is the expected total discounted
reward collected by a policy beginning in state s and taking action a.
Formally:

Qπ(s, a) = Eτ∼π

[
∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

]
.

The Q-function is connected to the Value function by the
relationship

V π(s) = Ea∼π [Q
π(s, a)] .
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That is, the value of a state is equal to the weighted average of the
state-action value over all possible actions, weighted by the
probability of policy π taking each action.

With the notion of value defined, we can now state the complete
reinforcement learning objective:

Definition 2.1.6 (Reinforcement Learning (RL) Objective). The
goal of Reinforcement Learning is to find a policy which maximizes
the expected value when placed in states sampled from the initial
distribution ρ.

That is, given some policy space Π, we seek

argmax
π∈Π

Es0∼ρ [V
π(s0)] .

2.2 Multi-Task Reinforcement Learning

We can generalize the above problem to describe settings with
multiple tasks.

Definition 2.2.1 (Multi-Task Markov Decision Process (MTMDP)).
A Multi-Task MDP is a tuple (T , g), where T is a set of MDPs called
the task space and g ∈ ∆T specifies a distribution over the task space,
called the ground truth distribution.

In this setting, a policy is now a function POLICY : T −→ ΠT ,
where ΠT describes the union of all policy spaces for each task in T .
For any task m ∈ T , POLICY(m) = πm provides a policy for the
corresponding MDP.

It is worth noting that, so long as the discount factor γ is constant
across every task in T , a Multi-Task MDP (T , g) can be reduced to a
single MDP by defining
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• S =
⋃

m∈T Sm,

• A =
⋃

m∈T Am,

• P (s, a) = Pm(s, a) for all s, a ∈ m, m ∈ T , and 0 otherwise.

• r(s, a) = rm(s, a) for all s, a ∈ m, m ∈ T , and 0 otherwise.

• ρ(s) = g(m)ρm(s) for all s ∈ Sm, m ∈ T , and 0 otherwise.

Even if the discount factors are unequal, the problem still nearly
reduces to the standard RL problem, though the value function must
instead be defined with task-dependent discounting. In general, we
have the following objective:

Definition 2.2.2 (Multi-Task Reinforcement Learning (MTRL)
Objective). Analogous to the single-task setting, Multi-Task RL seeks
to find a policy which maximizes the value of trajectories collected by
the policy, with task importance weighted by the ground truth
distribution. That is, given a policy space P ⊆ {f : T → ΠT } we seek

argmax
POLICY∈P

Em∼g,s0∼ρm

[
V POLICY(m)
m (s0)

]
.

Some papers which focus on exploration or zero-shot generalization
rather than performance on a single goal task may forgo g entirely. In
these cases, some other metric is used to analyze how expressive or
generalizable the policy is, rather than the metric given above.
However, for the purposes of our problem, we take performance to
ultimately depend on some ground-truth distribution of tasks at test
time.

Having described the relevant formalism for our problem, we now
proceed with a review of curriculum learning literature in the
supervised and reinforcement learning settings.
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2.3 Curriculum Learning in Supervised Domains

Most early work on curriculum learning sought to create analogues for
human curricula in supervised learning domains. That is, in settings
where one is given a sample of training data drawn from some ground
truth distribution of features {xi}i∈I ∼ DGT and regression targets
{yi}i∈I ∼ f(y|xi)ϵ, a curriculum seeks to order these data so that the
agent can learn a function f̂(xi) ≈ yi—for example, by training a deep
neural network—more efficiently than if trained on the full dataset in
random order.

Bengio et al. (2009) [6] first describe the standard formulation of
the curriculum learning paradigm, noting two potential benefits:

1. A curriculum can act as a continuation method, or a strategy for
minimizing non-convex criteria by iteratively optimizing
smoother objectives which slowly approach the full objective.

2. Curricula can serve as a regularizers, smoothing out bad local
minima and thus yielding a better final optimum.

Wang et al. summarize these two motivations in curriculum
learning as guiding and denoising [33]. A curriculum guides in that it
proposes surrogate objectives which hopefully have optima in
parameter space that are close to the optimal parameters for the full
task, and it denoises by making these surrogate objectives simpler
than the final task, either by smoothing the function, removing
ambiguous samples, or so on (see figure 2.3.1).

Still, though curriculum methods are intuitively appealing and have
seen success in data-rich domains such as noisy computer vision tasks
(e.g. [12]) and complex language tasks like machine translation ([22]),
other work casts doubt on their efficacy as a general tool.
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Figure 2.3.1: A visualization of curriculum guiding and denoising, copied
with minor alterations from [33]. Data subsets early in the curriculum (bot-
tom) have smooth objectives which move the parameters to good regions of
parameter space. Later datasets (middle) guide the model’s parameters to re-
gions closer to the global optimum of the final task (top).

Wu et al. (2021) [34], for instance, untertook a large-scale
evaluation of supervised curriculum methods on standard image
classification tasks (CIFAR10, CIFAR100, FOOD101, FOOD101N),
finding that curricula produced mixed results.

In settings with high label noise or limited compute budgets,
curriculum methods did indeed dramatically outperform standard
training. However, in the ‘standard setting’ where training is not
limited by compute or annotation quality, curriculum learning
resulted in no performance benefits relative to a random ordering, or
even to so-called ‘anti-curriculum’ learning, where data is presented in
the reverse of the order proposed by the curriculum.

Thus, for many supervised learning tasks, curriculum learning does
not seem to yield a significant benefit to final performance, keeping it
from becoming a ubiquitous module added to supervised learning
tasks. When it is used in general settings, it is most likely to help by
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increasing sample efficiency, such as during active learning [28].

2.4 Curriculum Reinforcement Learning

In the reinforcement learning setting, results have been more
dramatic. However, its potential usefulness has been qualified by the
fact that, compared to the supervised setting, a much more diverse set
of algorithms can all be seen as training agents via curricula. Thus, it
is difficult to develop a useful theory for analyzing curricula in general.

Paraphrasing a survey of curriculum learning by Narvekar et al.
(2021) [19], we define curriculum learning in the MTRL setting as
follows:

Definition 2.4.1 (Multi-Task RL Curriculum). Let (T , g) be an
MTMDP, DT the set of all transition samples (s, a, r, s′) from tasks in
T , and P(DT ) the power set of of DT . A curriculum C = (V , E , f, T )
is a directed acyclic graph, with V being the set of vertices,
E ⊆ {(x, y) ∈ V2 s.t. x ̸= y} a set of directed edges, and
f : V → P(DT ) a function mapping vertices to subsets of transition
samples in the task space. There must also exist a single sink node
vs ∈ V corresponding to the goal task.

This dense formalism has a reasonable visual interpretation—each
vertex describes a set of samples on which to train a policy. These
samples could be specific sets of transition samples, entire trajectories,
or even groups of samples from different tasks. We can train an agent
using such a curriculum by alternating between walking to a vertex,
training using some algorithm on the corresponding experience
samples, and then moving along a directed edge to another vertex
until reaching the final node corresponding to the goal task.

Still, this definition encompasses a range of possible algorithms. We
describe a few common categories below:
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2.4.1 Experience Augmentation

Some of the lowest-intervention curriculum strategies seek to adjust
an agent’s learning by adjusting its experience of the world, without
changing anything in the environment itself. In these settings, an
agent often contains a memory B (called a replay buffer), and
optimization is performed on batches sampled from this buffer.

In standard RL, this sample is chosen randomly. Experience
Augmentation methods instead impact the batch choice by, for
example:

• Weighting some samples over others.

• Altering the rewards from some experience samples.

• Duplicating or removing experience samples.

Figure 2.4.1: A graph representation of experience augmentation.

Approaches like Prioritized Experience Replay [27]), for example,
make it more likely to sample experiences related to high TD-errors.
Others, like Hindsight Experience Replay (see chapter 3 for details)
[3] and its successor Curriculum-Guided Hindsight Experience Replay
[10] also alter the rewards to reflect successful goals which differ from
those sought during training.

In all cases, a curriculum is formed by giving to the agent at each
step of optimization samples which are judged, by some metric, to
cause the agent to learn better than a randomly-generated batch.
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2.4.2 Self-Play

Self-Play methods propose tasks by reframing goal selection as an
adversarial game between two agents in the same body. Though this
is especially common in multiplayer competitive games like
hide-and-seek [4] and fencing [35], there also exist related methods for
single-player tasks ([9], [20]).

Sukhbaatar et al. (2018) [30], for instance, instantiate two agents
which they call Alice and Bob. Bob is the agent which we seek to
learn a multi-goal MTMDP, where a ‘goal’ is a desirable subset of the
state space. Play alternates between Alice, who tries to manipulate
the state space into a position that Bob will fail to reach, and Bob,
who nevertheless attempts to maneuver to the same place as Alice.

Tasks are clearly solvable since both agents share the same body,
but they grow more difficult as one learns to outpace the other. Thus,
a curriculum emerges in which one agent’s success leads the other to
become better at foiling them, until they each can set and reach many
goals.

Figure 2.4.2: A graph representation of [30].

2.4.3 Unsupervised Environment Design (UED)

Unsupervised Environment Design [8] tackles the curriculum learning
problem by adding a new system, the environment designer, whose
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goal is to propose tasks m ∈ T which challenge the learner while still
remaining feasible. It is a more significant intervention than either
experience augmentation or self-play because it requires the ability to
construct an environment with certain features at will, usually based
on a continuous task vector.

Some methods, like ALP-GMM [24] and RIAC [5] (see chapter 3),
accomplish this by proposing tasks based on a measure of Absolute
Learning Progress (ALP), a statistic which is high for some task when
the current policy receives different rewards on it than it has in the
past. Thus, these methods keep a model of task difficulty which is
used to generate new environments.

Others use a more complex learning loop. Dennis et al. (2020) [8],
for instance, add an environment adversary which is itself a
reinforcement learning agent. The environment adversary seeks to
generate tasks which another agent, the antagonist, can learn, but
which the protagonist (our goal model) cannot. Both the environment
adversary and antagonist are granted reward equal to the regret
between the protagonist and antagonist’s achieved awards on the task,
and the protagonist is granted the negation of this reward. Thus, a
curriculum emerges where, as the antagonist and protagonist become
better at existing tasks, the environment adversary suggests tasks at
which it thinks only one agent will succeed.

Jiang et al. (2020) [13] also notes that, in settings where the
environment is stochastic or partially observable, aleatoric
parameters—parameters which remain uncertain regardless of
curriculum experience—may cause a policy to perform suboptimally in
ways which may not have been the case if trained on the full problem.
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Figure 2.4.3: A graph representation of [8]. It is worth noting that, while
the horizontal arrows refer to directed edges, the vertical arrows reflect the
structure of the sampling function f .

2.5 Benchmarks for Curriculum Learning

Because of the diversity of curriculum methods, it is difficult to
evaluate whether a curriculum method is likely to be successful on a
particular problem.

Currently, the most comprehensive comparison of multiple
curriculum learning methods is a 2021 benchmark by Romac et al.
(2021) [26]. It tests a large number of autocurriculum methods on two
Gym [32] environments which are survival-based autoscrollers, with
tasks specifying various environment parameters, such as the distance
between obstacles (see figure 2.5.1). In both cases, the goal is to move
as far right as possible in 2000 timesteps while minimizing applied
torque.

Though these problems offer a strong testbed for evaluating
environment design methods, they each differ from the sparse robotics
setting in meaningful ways. First, both environments employ a dense,
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Figure 2.5.1: Examples of two example environments from TeachMyAgent
[26]. Both tasks require agents of various embodiments to traverse a obstacle-
riddled scene for as long as possible, while simultaneously minimizing torque.

survival-based reward, being rewarded for moving forward and
penalized for using torque. Thus, they are a poor analogue for tasks
where locating a reward signal may be difficult.

Second, because the task space impacts the transition dynamics of
the system, a number of methods which have proven useful in robotics
applications, including self-play and experience augmentation, cannot
be applied to these environments. In general, any method which
conceptualizes tasks as ‘goal’ positions which can be altered
independently of the rest of the environment cannot be tested using a
framework like the above. Even in curriculum learning papers
centering robotics, algorithms are typically evaluated against a small
number of methods which are similar in approach. Thus, it is not
clear where new methods stand compared to all potential curricula.

Therefore, in the following experiments, we attempt to dissect how
curriculum methods impact performance on two sparse-reward
robotics tasks, paying special attention to environment design and
experience augmentation algorithms.
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3
Methods

In the following chapter, we describe the methods used in this thesis,
including environments, algorithms, and experimental design.

3.1 Multi-Goal Reinforcement Learning

In our experiments, we consider a special case of the MTMDP setting
in which the state space, action space, transition dynamics, and
discount factor are constant across all tasks. Thus, only the rewards,
and hence the value function, change from task to task.

We can think of this problem as goal-conditioned reinforcement
learning, where the goal is given to be some desirable subset of the
state space that the agent must reach (see figure 3.1.1 for a concrete
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Figure 3.1.1: An example goal-conditioned MDP, with initial agent position
in blue and goal in green. For two different tasks, the goal may change posi-
tion, but the environment otherwise remains unchanged.

example).
As Schaul et al. (2017) [29] show, one can learn in such

goal-conditioned settings a single Universal Value Function
Approximator V (s,m, θ) and corresponding goal-conditioned policy
π(m, s), rather than a set of independent policies and value functions.
This is not surprising, given that this problem is equivalent to a
regular MDP as described in chapter 2. More details on the practical
implementation of these functions is provided below.

3.2 The panda-gym Environment

There are a number of common libraries used for simulating robotic
reinforcement learning tasks in Python, including MuJoCo [31],
IsaacGym [16], and PyBullet [7]. For this paper, we use a library
called panda-gym [11], which is a lightweight package implementing
multiple goal-conditioned robotics tasks using the Gymnasium API
[32] and simulating physics through PyBullet (see figure 3.2.1).

Each task uses the Franka Emika Panda robotic arm, a popular
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Figure 3.2.1: The panda-gym environment [11] The robotic arm is placed
on a table, which serves as its workspace. For later experiments, note that the
axes of the task space are given above.

robotic arm for manipulation tasks. Actions can be taken to be either
joint motions or end-effector displacement—for the sake of simplicity,
the latter is used throughout our experiments. The task-specific state
spaces are described in the following subsections.

We consider two tasks, chosen due to differences in task complexity
and reward sparsity.

3.2.1 curriculumReach

The Reach task requires the robot end-effector to navigate to a
specified region in space, called the goal, within 50 timesteps.
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In our experiments, we parametrize the state as a 6-dimensional
vector [

rx, ry, rz, gx, gy, gz

]
where [rx, ry, rz] is the 3D-coordinate of the arm’s end-effector, and

[gx, gy, gz] is the location of the goal. At each timestep, the agent
receives a reward of −1 if it is more than threshold = 0.05 away
from the goal, and otherwise it receives a reward of 0 and the episode
terminates.

The default PandaReach-v3 environment randomly sets goals, so
some minor alterations were made to enable curriculum learning. In
particular, rather than randomly generating goal positions on reset, a
task vector m ∈ B ⊆ R3, where B is a box of reachable goals, must be
submitted upon reset to specify the goal location for the next
trajectory. For our experiments, we take the task space to be the
default box [−.15, .15]× [−.15, .15]× [0, .3].

3.2.2 curriculumPush

The Push task requires the robot to push a small box placed on a flat
surface from a start position [o

(0)
x , o

(0)
y , 0] to a goal position [gx, gy, 0]

within some square of feasible positions B. This task is more complex
than the reach task in that the agent must learn to perform two
distinct behaviors to succeed. First, in order to learn how its position
can impact the object’s position, it must learn how to move reach the
box. Then, second, it must learn how to manipulate the box to reach
the goal position.

We represent the state with a 12-dimensional vector

[
rx, ry, rz, vx, vy, vz, ox, oy, oz, gx, gy, gz

]
where [rx, ry, rz] is the robot end-effector position, [vx, vy, vz] is its

velocity, [ox, oy, oz] is the current object location, and [gx, gy, gz] is the
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goal location. It is worth noting that gz = 0 for all goals. However,
since oz may be non-zero as a result of the robot’s moves, both
parameters were kept for the sake of completeness. Likewise, the
agent receives a reward of −1 until the distance between the box
center and goal position is less than threshold = 0.05, at which point
it receives a 0 reward and the episode terminates.

As in curriculumReach, we alter the PandaPush-v3 environment
so that we may specify a task by a 4-dimensional vector
[o

(0)
x , o

(0)
y , gx, gy] specifying the object start position and goal. Thus, it

also reflects a larger, more challenging task space than
curriculumPush. Like above, we let both the object and goal
locations range anywhere in the default box [−.15, .15]× [−.15, .15].

3.3 Off-Policy Reinforcement Learning

Many algorithms for Multi-Task curriculum learning allow the agent
to be trained by an off-policy algorithm, which we define as follows:

Definition 3.3.1 (Off-Policy Agent). A learning algorithm is called
off-policy if it can learn the optimal value (and a policy which
optimizes that value) independently of the policy used to take actions
in the world.

These algorithms learn from a memory of samples (st, at, rt, st+1)

collected under multiple policies stored in a common replay buffer,
and thus any agent can add additional samples to this buffer without
compromising training. Off-policy algorithms include Deep Q
Networks (DQN), Deep Deterministic Policy Gradient (DDPG), and
Soft Actor-Critic (SAC).

Because the original panda-gym paper finds that DDPG
significantly outperforms SAC and TD3 over all environments in
terms of sample complexity and final performance, we use DDPG as
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our learner across all experiments. We describe the algorithm in more
detail below:

3.3.1 Deep Deterministic Policy Gradient (DDPG)

DDPG [15] is an off-policy learning algorithm intended for continuous
action spaces. Paraphrasing the guide from Spinning Up in Deep RL
[1], it seeks to learn the optimal Q function

Q∗(s, a) = Es′

[
r(s, a) + γmax

a′∈A
Q∗(s′, a′)

]
and use this to find a policy by taking

π∗(s) = max
a∈A

Q∗(s, a).

To approximate Q∗ given the replay buffer D, we perform steps of
gradient descent with the following loss:

L(ϕ,D) = E(s,a,r,s′)∼D

[(
Qϕ(s, a)−

(
r(s, a) + γI(s′ is terminal)max

a′∈A
Qϕ(s

′, a′)

))2
]

By the Bellman equations, the left and right terms should be equal.
Thus, minimizing their squared distance should move Q towards an
optimum.

To improve training stability, we instantiate two networks for Q,
one of whose parameters ϕtarg (the target network) are updated at a
delayed rate. When the first network updates its parameters, the
target network is updated by polyak averaging [23], or taking only a
weighted proportion of the new parameters for updating:

ϕtarg ← pϕtarg + (1− p)ϕtarg.

To choose our policy, we perform gradient descent on its parameters
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to optimize

max
θ

Es∼ρ [Qϕ(s, πθ(s))]

where the expectation is approximated using a batch of experience
samples from trajectories sampled from the environment. Also, as
with the Q network, we add a target policy network with parameters
θtarg to increase training stability when calculating the Q function
loss, which is also updated via Polyak averaging.

Finally, to encourage exploration, we add during training noise ϵ to
our policy, so that actions are carried out with

π′(s) = πθ(s) + ϵ.

Using the recommendation from the original DDPG paper,
time-correlated Ornstein Uhlenbeck (OU) Action Noise (an
approximation of Brownian motion) is used as our noise term. At test
time, the deterministic policy is used.

3.4 Curriculum Methods

In the following section, we describe the algorithms used for
curriculum learning. Each takes the agent to be a DDPG agent, as
specified above. For specific hyperparameters, see section 3.5.

3.4.1 Hindsight Experience Replay (HER)

Hindsight Experience Replay (HER) [3], which falls under the
experience augmentation umbrella described in chapter 2, has proven
to be a powerful method for generating reward signals in
sparse-reward tasks, such as those common in robotics. All of the
baseline results in the original panda-gym paper use HER, and initial
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experiments using only DDPG yield no meaningful reward signal over
a large number of episodes in the curriculumPush task.

HER works by augmenting an agent’s replay buffer with successful
trajectories, even when the policy does not reach its intended goal.
For instance, in the curriculumReach task, after collecting a
trajectory, we may not reach the intended goal position. However, if
we imagine that the goal was instead wherever the end effector ended
up, we would have gathered a successful demonstration of this goal.
HER works by adding both the real experience and the imagined
experience to the dataset buffer, allowing for the agent to always gain
a sample with a meaningful reward (for a concrete example, see figure
3.4.1).

Figure 3.4.1: An example of a HER-augmented trajectory. An agent rolls
out a trajectory with some goal m (left), potentially failing to reach it.
However, this sample does demonstrate a successful trajectory for a dif-
ferent goal m′ (right). Then we may add both each real transition sam-
ple (m, st, at, rm(st, at), st+1) and each reconstructed transition sample
(m′, st, at, rm′(st, at), st+1), with the latter representing a successful trajec-
tory.

The complete algorithm is laid out below (alg. 1). This algorithm
forms an implicit curriculum by populating the agent’s memory with
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samples corresponding to ‘easy’ goals, in the sense that they are
reachable by the agent moving under its current policy. Thus, as the
agent masters more tasks, its buffer will begin to reflect increasingly
difficult problems.

Still, it is worth noting that this algorithm is not without
limitations. First, it requires that the user be able to supply and
annotate rewards for trajectories relative to arbitrary tasks without
actually running them in the environment. In some settings, where the
explicit form of the reward function is unknown, this may be difficult.

Second, in some settings, there is not always a way to transform
every unsuccessful trajectory into a meaningful successful one. In the
curriculumPush environment, for instance, a trajectory that fails to
move the box at all can only represent a task where the initial object
position is already the goal, and thus cannot inform how the robot
should manipulate the box.

3.4.2 Absolute Learning Progress Gaussian Mixture Model
(ALP-GMM)

ALP-GMM [24] is an unsupervised environment design method that
samples tasks based on a measure called the Absolute Learning
Progress (ALP). Formally, the ALP of a task that has been seen at
least twice, with most recent cumulative rewards rnew and rold, is said
to have

alpnew = |rnew − rold|.

In continuous settings, we loosen this definition to accept the newest
rold within some ball of the new task when determining its ALP.

ALP-GMM works by keeping track of the learning progress
associated with each sampled task. In an initial ‘bootstrap phase,’ the
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Algorithm 1 Hindsight Experience Replay (HER)
Input: An off-policy RL algorithm A, sampling strategy S, and
reward function r :

Initialize A and replay buffer R.

for episode= 1, . . . ,M do
Sample a task m ∼ T and initial state s0 ∼ ρm.
Let πm = POLICY(m)
for t = 0, . . . , T − 1 do

Sample action at ∼ πm.
Execute at and observe new state st+1.

end for
for t = 0, . . . , T − 1 do

Calculate rt = rm(st, at).
Store transition (m, st, at, rt, st+1) in R.
Sample a set of replay tasks G ∼ S(episode).
for m′ ∈ G do

r′ = rm′(st, at)
Store (m′, st, at, r

′, st+1) in R.
end for

end for
for n = 1, . . . , N do

Sample a batch B from R.
Perform one step of optimization using A and B.

end for
end for
return POLICY.
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algorithm randomly selects tasks from the space via the ground truth
distribution g. This initializes a history of task-reward pairs which
can be used to calculate learning progress for new tasks.

After this bootstrap phase is over, ALP-GMM instead constructs a
probability distribution fitting the (normalized) ALP over the task
space. A set of Gaussian Mixture Models [25] of between 2 and kmax

Gaussians are fit using standard algorithms (the EM Algorithm, see
[18]).

The model used for sampling is chosen by the Akaike Information
Criterion (AIC) [2], a common heuristic for model selection that
assigns a model f a score based on the complexity of the model
(nparams) and the likelihood of the data in B:

AIC = 2nparams − ln(L(B|f)).

ALP-GMM’s sampling scheme causes tasks which are suddenly
successful after a long period of failure, or conversely which fail after
being learned for some time, to be focused on during training. It
forms a curriculum by always supplying tasks which are both possible
and challenging to the agent, updating its model by recomputing ALP
as the agent masters different region in space.

3.4.3 Robust Intelligent Adaptive Curiosity (RIAC)

Robust Intelligent Adaptive Curiosity (RIAC) also seeks to maximize
learning progress, though rather than fitting a Gaussian mixture, it
instead iteratively splits the task space into subregions differentiated
by learning progress. Like ALP-GMM, it keeps a history of learning
progress across different points in parameter space, but initially all
samples are contained in a single region R0 = T .

The algorithm collects ALP samples for different tasks like
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Algorithm 2 Absolute Learning Progress Gaussian Mixture
Model (ALP-GMM)

Initialize a buffer B of size N , probability of random sampling prnd,
and maximum number of Gaussians kmax. Initialize history H

for i = 1, . . . , N do
Sample a random m ∈ T , and collect τ ∼ (π,m).
Compute ALP of m, and store m,ALPm in B, (m, rm) in H.

end for
for ℓ = 1, 2, . . . do

Fit GMMS with 2 to kmax Gaussians on B.
Take the Gaussian with the highest AIC.
for i = 1, . . . , N do

prnd% of the time, sample a random m ∈ T . Otherwise, sample
m from GMM proportionally to mean ALP.
Collect a new trajectory τ ∼ (π,m).
Compute ALP of m, and store m,ALPm in B, (m, rm) in H.

end for
end for
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ALP-GMM, but it dynamically splits its subregions into smaller ones
when they reach a critical threshold of samples rather than forming a
single model. These splits are chosen to maximize the difference in
ALP between the newly-formed regions, while maintaining a
minimum area in each.

The goal is for uncertainty to be organized into small,
highly-contested regions of task space which are sampled from
disproportionately. We implement the algorithm by [24], which has
some minor modifications from the original algorithm to improve
curriculum quality and reduce the chance of oversplitting the task
space.

3.5 Experimental Details

With minor modifications, we use the parameter settings described in
appendix A of the panda-gym paper [11], which are themselves taken
from Plappert et al. (2018) [21], a similar paper implementing
common robotics tasks on a Fetch robot in Gym with MuJoCo.
DDPG was implemented following a guide by Machine Learning with
Phil [17].

The following section describes the hyperparameters and
implementation details used in the experiments:

3.5.1 Networks

The actor and critic networks of DDPG each parametrized by a
fully-connected network (FCN) with three layers of 256 nodes each
with ReLU activations. The magnitude of each displacement is
constrained to lie in (−1, 1) by the tanh function. DDPG Polyak
averaging of the target network is weighted by p = 0.95. Policy noise
is OU Action noise, following the recommendation given in the
original DDPG paper [15].
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3.5.2 HER

Unlike [11], we use the following HER sampling strategy:

1. If the episode was successful, add only the successful transition
to the buffer.

2. If the episode was unsuccessful, add a single HER replay
corresponding to the goal achieved by the final state.

The authors do not describe in detail their sampling strategy,
specifying only that they generate 4 HER replays for each episode. In
early experiments, adding HER replays from 4 randomly-selected
goals within each trajectory led to catastrophic forgetting in the
curriculumPush task. This is potentially due to the fact that, as
mentioned above, reconstructed goals in early experiences, where the
block does not move throughout the episode, are uninformative.
Populating the majority of the buffer with these samples thus yields
low-quality training data.

After each episode, we perform N = 50 steps of optimization on the
actor and critic. This is chosen to reflect the DDPG training loop,
which performs one step of optimization for each step taken in the
environment (50 for unsuccessful episodes).

3.5.3 Training

We train models using Adam Optimization [14] with a learning rate
LR = 0.001 for both the actor and critic and batch size of B = 256.
Replay buffers store 106 transitions. To encourage exploration, we
take a random action with probability 0.3 at each timestep.

For the curriculumReach task, we train for 50 epochs (sets of 50
episodes). In practice, this is sufficient for the best of our algorithms
(ALP-GMM+HER) to converge to near perfect success rate. For the
curriculumPush task, we train for 1000 epochs.
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With the above parameters, curriculumReach models take around
1 hour to train, and curriculumPush models take around 2 days on a
single NVIDIA RTX 4070 GPU.
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4
Results

In the following chapter, we present our results evaluating various
curriculum methods on the curriculumPush and curriculumReach
environments. We consider five possible curriculum learning
strategies:

1. HER

2. ALP-GMM

3. RIAC

4. ALP-GMM+HER

5. RIAC+HER
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All models are trained using the DDPG agent described in chapter
3. For each experiment, the model parameters used in evaluation is
taken to be those which achieved the highest evaluation performance
throughout training, rather than the learned parameters at the end of
training. Final success rate is calculated by randomly sampling
N = 1000 tasks from the ground truth distribution Unif(T ) and
evaluating each method on this set of tasks.

We analyze performance by three criteria:

1. We compare the success rate of each model against samples
drawn from the ground truth distribution (figures 4.1.1, 4.2.1).

2. We visualize as a heatmap the reward achieved by each agent as
a function of the task (figures 4.1.2, 4.2.2). This allows us to see
qualitatively which regions in task space are mastered by each
policy, and which remain challenging.

3. We assess qualitatively the differences in training curves
between models (figures 4.1.3, 4.2.3).

To find the learning curves, we evaluate every 50 episodes (1 epoch)
on 80 randomly-generated tasks during training. In the
curriculumReach task, 5 experiments are conducted for each
algorithm, and the maximum, mean, and minimum are all shown. For
curriculumPush, only a single run is shown for each algorithm, as
training as few as 3 models with each algorithm would take nearly a
month in continuous compute time, which was unfeasible on a single
laptop.

To generate the heatmaps, a random model was chosen from each
experiment, and a trajectory was a collected for each of the 1002 goal
positions, holding in each row a constant z-coordinate or initial object
position, depending on the task. Because the learned policy is
deterministic, it is not necessary to evaluate the model on samples
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from each task setting. Since a failed task incurs a −50 reward, the
dark purple regions reflect tasks which the agent still cannot complete.

To see tables containing the performance statistics captured in the
bar plots below, see figures A.0.3 and A.0.2 in the appendix.

4.1 curriculumReach Results

Below we describe the results of the curriculumReach experiments.

4.1.1 Overall Performance

Figure 4.1.1: (Top) Percent of successful trajectories and (Bottom) average
reward incurred over 1000 random tasks in curriculumReach.

Figure 4.1.1 shows a bar plot of the final performance for each
model.
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We see that, in all cases, the learned models achieve nearly or
greater than 90% success on tasks drawn from the ground truth
distribution, regardless of whether HER is used. The worst-performing
model is ALP-GMM without HER, which achieves an 88.6% success
rate. The model with the highest performance, ALP-GMM+HER,
successfully completes 99% of tasks. In all cases, HER-augmented
algorithms achieve higher performance than those trained without it.

There does not seem to be a meaningful difference in reward that is
not explained by the difference in success rate. Since this reward is
equal to the negative time of completion in the case of a successful
episode, or −50 in an unsuccessful one, we find that no policy learns a
significantly faster strategy for reaching the goal than any other.

4.1.2 Goal Generalization

Figure 4.1.2 shows the reward incurred by each policy for different
goal positions. Each row represents a fixed z-position (height) above
the table. Within each row, the heatmap shows the reward incurred
by the agent when the x and y position of the goal is made the
corresponding point on the heatmap. Visually, we can consider each
heatmap as a slice of the performance in height space, looking directly
downwards onto the table.

We find that, for intermediate heights in the task space, all five
methods yield a policy that can perform well. Nearing the extremes of
the task space, however, RIAC and ALP-GMM+HER perform most
consistently, whereas ALP-GMM in particular suffers.

It is worth noting that, in general, all models perform worse at
extreme low heights than extreme high ones. This may be because
these positions correspond to points touching the table, so only half of
the sphere of valid end-effector states specifying the goal are potential
destinations for the agent.
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Figure 4.1.2: Each heatmap shows the achieved reward for each method’s
policy for 1002 (x, y) goal positions in the task space for for three heights z—
low height (row 1), medium height (row 2), and hight height (row 3).

When models do fail, they tend to do so in contiguous regions,
rather than at random points in space. This supports our intuition
that learning goals in one region should generally help a policy learn
similar goals nearby.

4.1.3 Training Efficiency

Figure 4.1.3 shows the learning curves for each model. While all
models trained with HER have quite similar curves, both ALP-GMM
and RIAC alone improve more slowly, especially in early epochs.

Regardless, it appears as though all algorithms are converging to
the optimal policy, though at different rates. This is most likely a
feature of the simple task, as even random policies are likely to incur
some successful demonstrations due to luck, allowing any agent to
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Figure 4.1.3: The learning curves for each algorithm on the
curriculumReach task. Dark lines reflect the mean evaluation performance
of 5 independent trials, with shaded regions denoting the maximum and mini-
mum success rate achieved at each epoch. over five trials

receive a learning signal relatively early in training.

4.2 curriculumPush Results

Below we describe the results of the curriculumPush experiments.

4.2.1 Overall Performance

The final performance of each model is shown in figure 4.2.1.
We see that, unlike the curriculumReach task, only curricula
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Figure 4.2.1: (Top) Percent of successful trajectories and (Bottom) average
reward incurred over 1000 random tasks in curriculumPush.

utilizing HER are able to learn a successful policy. ALP-GMM+HER
once again learns the best policy, achieving a success rate of 80.3%.

Note that there is always a chance of a randomly-generated object
being placed within threshold = .05 of the goal automatically and
immediately winning (see the yellow circles in figure 4.2.2). Thus,
some of the successes of ALP-GMM and RIAC should be considered
to be essentially chance. These results suggest that HER is a critical
component for learning the curriculumPush task in a sample-efficient
manner, as we discuss further in chapter 5.

RIAC+HER and ALP-GMM+HER also outperform HER on its
own, with ALP-GMM solving over 20% more tasks. Thus, while HER
is necessary for ensuring good performance, it also benefits from an
additional environment designer adaptively-sampling environments.

Like in curriculumReach, the variation in average reward appears
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to be explainable by the success rate, rather than a significant
difference in speed when solving each task.

4.2.2 Goal Generalization

As above, in figure 4.2.2 we see the reward accrued by each successful
policy for fixed initial positions, varying only the goal location to
generate the rewards in the heatmap (see the appendix A for a
visualization of the reward over more initial object positions). Note
that the circular yellow region in each heatmap reflects goals which
are immediately achieved because the object is initialized within the
0.05 threshold.

As the figure shows, all policies perform best in general on samples
where the object begins near the center of the task space. As the
object is placed in more extreme regions of the space, all three
methods struggle, though HER in particular completely fails at each
task. As we will discuss in chapter 5, both ALP-GMM and RIAC may
adaptively weight samples in these difficult regions during training
until they are mastered, whereas HER continues to randomly sample
tasks from (mostly) central regions in task space late in training.

It is worth noting that, though both ALP-GMM and RIAC perform
well in larger regions of goal space than HER alone across all object
initializations, the structure of their performance is qualitatively
different. In particular, where ALP-GMM is successful, it tends to be
similarly successful in contiguous regions in parameter space, and
conversely it tends to fail in coherent regions. In comparison, RIAC
exhibits more ‘holes’ in otherwise good regions of task space. This
may be because, where ALP-GMM fits a smooth function to learning
progress, boosting the likelihood of sampling all trajectories in a
ellipsoid region, RIAC splits the parameter space into arbitrarily
small subregions based on differences in learning progress. It has been
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Figure 4.2.2: Each heatmap shows the achieved reward for each method’s
policy on 1002 goal positions in the task space, with initial object position
on the top-left of the task space (first row), center of the task space (second
row), and bottom-right of the task space(third row).

noted that RIAC also tends to oversplit the task space, yielding at
times suboptimal curricula as a result [26].

4.2.3 Training Efficiency

The training curves for each model are visualized in figure 4.2.3.
Unlike curriculumReach, we see that each model converges to a

different success rate, rather than to optimal performance. This
reflects many difficult RL tasks, in which curricula can be the
difference between a good and a bad policy, rather than simply
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yielding a difference in sample efficiency.
Initially, RIAC+HER performs significantly worse than the other

HER methods. The cause of this performance difference is not
obvious, though perhaps it is a function of early reward sparsity.
Before a reasonable policy is learned, the ALP landscape is
exclusively 0, and so both RIAC and ALP-GMM sample uniformly.
However, when a success is attained, each method adjust their models
differently. ALP-GMM continues to look mostly uniform, with
potentially a small single peak. However, RIAC is likely to split this
region into a smaller subregion, focusing too much attention on that
area of the parameter space rather than continuing to explore.

Figure 4.2.3: The learning curve for each method on the more complex
curriculumPush environment.
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5
Discussion

In the following chapter, we discuss the significance of the results
presented in chapter 4, as well as any limitations and directions for
future research.

5.1 Discussion

In both experiments, we find that HER assists training in ways
qualitatively-distinct from the UED algorithms ALP-GMM and
RIAC. This can be seen by performance, with both tasks succeeding
more often with HER and a UED method than with either alone, and
also by examining the set of mastered tasks in the heatmaps for both
environments. In the more complex curriculumPush setting, in
particular, incorporating HER is necessary for the model to learn
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anything about how to act in the environment, and RIAC and
ALP-GMM are necessary for it to learn how to perform for a large set
of goals, as evidenced by the heatmaps of reward at extreme regions
of space.

These data suggest that an effective curriculum in sparse-reward
settings must perform two distinct functions:

5.1.1 Signal Engineering

First, it must provide a mechanism for receiving any learning signal at
all. This signal engineering capacity dramatically improves training
efficiency by providing a direction for model improvement when
randomly training on tasks would provide no signal.

In simple cases such as problems with sufficiently dense rewards,
this capacity is less likely to be necessary to achieve success, and
instead assists learning by yielding faster convergence to the optimal
policy. Even in the sparse curriculumReach setting, the likelihood of
randomly solving a task is sufficiently high that a UED method on its
own can still extract a useful signal. However, we see that
incorporating HER significantly improves sample efficiency, as the
buffer immediately receives demonstrations of successful trajectories,
rather than wasting time providing failing examples.

However, when the probability of randomly solving a task becomes
lower, such as in curriculumPush, it becomes difficult to extract a
meaningful reward signal early in training. Though other curriculum
methods like ALP-GMM and RIAC can model the task space after a
signal has been achieved, the ALP will remain 0 for all states until a
successful task is located out of a potentially harsh task space,
hampering training.
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5.1.2 Guided Exploration

Second, to continue to learn later in training without falling into a
local optimum, the curriculum must provide a source of guided
exploration, recommending at later timesteps useful tasks that will
allow the agent to learn difficult edge cases of the environment and to
avoid forgetting. The value of this component of curriculum learning
is especially clear in curriculumPush, where the agent trained using
HER alone plateaus at a 56.7% success rate. As the heatmaps in
figure 4.2.2 show, HER does learn a broadly successful policy for
pushing the block from central regions of the task space, but it
struggles when it is placed in less common regions. UED methods
constantly supply examples which push the model into uncertain
regions of parameter space, yielding as a result a more robust and
general policy.

5.2 Analogies to Supervised Curricula

These two capacities serve as natural analogues for the functions of
guiding and denoising discussed by [33] in chapter 2. From this
perspective, long-horizon sparse RL tasks can be seen as a highly
noisy dataset, with many qualitatively-distinct categories being
collapsed into two classes: successful and unsuccessful. Thus, signal
engineering works to denoise trajectory data by reducing the set of
highly ambiguous failures into clearer successful examples.

Likewise, guided exploration serves to lead the agent to challenging
but learnable regions of parameter space, improving as a result its
learning relative to a random set of tasks. It serves to regularly move
the model parameters to nearby regions in space which are more
capable of performing well on general tasks.

Many existing RL curricula, like in the supervised setting, prioritize
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only one of these objectives. However, where in the supervised setting
this can still yield improvements over training without a curriculum,
such RL curricula may fail to perform well in complex sparse-reward
tasks, as our experiments show. This effect of curricula yielding a
large difference in asymptotic performance is unusual in the
supervised setting, where in general curriculum strategies impact
sample efficiency more than the final network. Thus, the
reinforcement learning problem is somewhat unique in that many
sparse-reward long horizon tasks could see such an increase in
performance by adopting such a general curriculum approach.

5.3 Limitations and Future Directions

It is worth noting some of the limitations of the current approach. For
one, only a small subset of curriculum methods were used, and,
though the results are consistent across two distinct UED algorithms,
they are unified by seeking to produce samples based on a shared
metric—absolute learning progress. It remains future work to perform
a more comprehensive analysis across a greater number of tasks,
though for such an undertaking a compute cluster will surely be
necessary.

In addition, no self-play methods were considered in this work. This
is in part because it is difficult to compare them on an even playing
field with UED and Experience Augmentation methods—self-play
methods often require double or more the number of demonstrations
in the environment, and it is unclear then how to compare sample
complexity between methods. Many self-play methods also are more
difficult to incorporate with experience augmentation methods like
HER due to the presence of multiple agents with different,
interlocking policies. Thus, in such cases, it is difficult to compare
these methods in terms of the metrics used in this thesis.
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They are perhaps best suited for real-world robotics training, in
contexts where it is difficult or impossible to design the environment.
Nevertheless, some of the most dramatic results in curriculum
reinforcement learning can be described as self-play-based, and so
additional work evaluating such methods on robotics tasks, and
perhaps creating self-play methods that more explicitly denoise the
reward space, could be very useful.

5.4 Conclusion

In short, this thesis addresses the problem of curriculum learning in
complex robotics settings, where a single policy must learn to perform
a large set of related tasks.

By evaluating curricula which perform different functions
throughout training, we show that reinforcement learning curricula
can be seen to benefit learning in two complementary ways—signal
engineering and guided exploration. These functions are analogous to
the common strategies for describing curricula in the supervised
setting, though they can be far more impactful in the reinforcement
learning setting due to the inherent size and complexity of the
domain, yielding policies which perform better at test time than
similar models trained without a curriculum.

We show that, for two classes of state-of-the-art curriculum learning
methods, signal engineering is vital for learning successful policies on
difficult multi-goal tasks where reward signals are sufficiently sparse.
Moreover, we show that adding an additional component of the
curriculum which focuses on improving exploration improves the
reward further, resulting in a policy which continues to learn more
generalizable skills throughout training, unlike models trained using
only one component of the curriculum.

These results suggest that, for an RL curriculum to be effective at
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such tasks, it must provide both of these services. With any luck, a
model trained with such a curriculum will allow machine learning
research to tackle ever more complex challenges, enabling robots that
can solve a huge variety of problems in the world.
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A
Appendix

Below is the full visualization of the learned curriculumPush policy,
on 5, rather than 3, initial object positions, as well as tables
containing the final success states and rewards acheived by each
model.
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Figure A.0.1: Each heatmap shows the achieved reward for each method’s
policy for 100 goal positions in the task space with initial object position on
the top-left (first row), mid-top-left (second), center (third), mid-bottom right
(fourth), and bottom-right of the task space(fifth).
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Final Success Rate Attained by Each method
curriculumReach curriculumPush

ALP-GMM+HER 0.990 0.803
HER 0.972 0.568
RIAC+HER 0.977 0.669
ALP-GMM 0.886 0.081
RIAC 0.944 0.081

Figure A.0.2: Final evaluation success rate for each model on the
curriculumReach and curriculumPush tasks. Models were evaluated on
1000 random goals, with the proportion of successful episodes being presented
above.

Final Rewards Attained by Each method
curriculumReach curriculumPush

ALP-GMM+HER -2.688 -17.401
HER -3.613 -28.474
RIAC+HER -3.471 -23.94
ALP-GMM -8.143 -45.95
RIAC -5.101 -45.95

Figure A.0.3: Final evaluation rewards for each model on the
curriculumReach and curriculumPush tasks. Models were evaluated on
1000 random goals, and rewards range from -50 to 0.
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