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Feature-selective responses in macaque 
visual cortex follow eye movements during 
natural vision

Will Xiao    1,2  , Saloni Sharma    1, Gabriel Kreiman    3,4  
& Margaret S. Livingstone    1,4

In natural vision, primates actively move their eyes several times per second 
via saccades. It remains unclear whether, during this active looking, visual 
neurons exhibit classical retinotopic properties, anticipate gaze shifts or 
mirror the stable quality of perception, especially in complex natural scenes. 
Here, we let 13 monkeys freely view thousands of natural images across 
4.6 million fixations, recorded 883 h of neuronal responses in six areas 
spanning primary visual to anterior inferior temporal cortex and analyzed 
spatial, temporal and featural selectivity in these responses. Face neurons 
tracked their receptive field contents, indicated by category-selective 
responses. Self-consistency analysis showed that general feature-selective 
responses also followed eye movements and remained gaze-dependent 
over seconds of viewing the same image. Computational models of 
feature-selective responses located retinotopic receptive fields during 
free viewing. We found limited evidence for feature-selective predictive 
remapping and no viewing-history integration. Thus, ventral visual neurons 
represent the world in a predominantly eye-centered reference frame during 
natural vision.

We see the world as stable, yet our eyes are in constant motion. How 
does the brain account for the movements of its visual sensor to enable 
stable visual perception? The question of visual stability dates back 
centuries to von Helmholtz, Descartes and Alhazen1,2. The primate 
ventral visual pathway, specialized in the processing of detailed visual 
features3, is a candidate for contributing to the stable perception of 
what is where. Ventral visual processing culminates in the inferior tem-
poral cortex (IT) which, in two to three synapses, reaches the entorhinal 
cortex containing grid cells that code for spatial gaze direction4 and 
the hippocampus harboring place cells and episodic memory5,6, both 
plausibly involving gaze-independent
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Most studies on ventral visual neurons use passive-viewing experi-
ments, in which images are presented in the receptive field (RF) of 
a neuron while the subject fixates. Some studies examining active 

vision found V1 and IT responses to be retinotopic7–9. In particular, 
DiCarlo and Maunsell8 showed that IT responses were near-identical 
during free and passive viewing. Other studies reported neurons that 
remap their spatial RFs around saccade time in ventral areas V2 (ref. 10) 
and V4 (refs. 11–13). Perisaccadic RF remapping, first reported in the 
lateral intraparietal (LIP) area14, is best established in the LIP, frontal 
eye fields15,16 and superior colliculus17,18 (see reviews19–22). Remapping 
is posited to contribute to visual stability by allowing the comparison 
and integration of the pre- and postsaccadic scenes1,20,22.

Because remapping studies have probed neurons with simple tran-
sient stimuli (for example, light spots), it remains unknown whether 
remapped RFs transport feature information across saccades19–21. 
Moreover, stable visual perception may leverage a persistent scene 
rich in framing cues19,20,22–25. Studies have investigated feature-selective 
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image onset, remained elevated as the monkey explored the image 
and returned to baseline after image offset.

Face-neuron responses were gaze-specific
To study how neuronal responses interact with eye movements and stim-
ulus content, we first focused on face-selective neurons (face neurons, 
for brevity). During passive fixation, face neurons respond more to faces 
than nonface objects32. During free viewing, eye movements can bring a 
face into and out of a neuron’s spatial RF. Thus, we categorized fixations 
as face or nonface by whether the face region of interest (ROI) overlapped 
the RF (Fig. 2a). We recorded neurons from three face patches in three 
monkeys (CIT in M1 and AIT in M2 and M3). To functionally identify face 
neurons recorded in multielectrode arrays, we calculated a face selectiv-
ity index (FSI) using responses during the ‘zeroth fixation’, the period 
between the image onset and the first eye movement. In this period, the 
onset of a random image placed either a face or a nonface in a neuron’s 
RF depending on where the monkey happened to be looking. Thus, the 
zeroth fixation was analogous to passive viewing. We defined face neu-
rons as those with zeroth-fixation FSI at least 0.2 (vertical dashed line in 
Fig. 2b), that is, at least 50% higher responses to faces than to nonfaces. 
Across sessions, we recorded 6,312 neurons from face-patch arrays. Of 
these neurons, 2,683 (42.5%) passed the FSI threshold.

Parafoveally previewing a stimulus before fixating it leads to better 
perception, both during reading and specifically for faces33–35. There-
fore, we asked whether face neurons were more selective during active 
viewing, or ‘nonzeroth fixations’, compared with passive-viewing-like 
zeroth fixations. Neurons had correlated FSI in the two conditions 
(Fig. 2b; r = 0.63, n = 6,312, one-tailed P < 10−4; all P values here and 
below were based on permutation tests with 10,000 permutations 
unless noted otherwise). Few neurons had
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 significantly different FSI 

between zeroth and nonzeroth fixations (Fig. 2b; 39 of 2,683 (1.5%) 
face neurons and 108 of 6,312 (1.7%) neurons in face-patch arrays; all 
statistical significance values here and below were at false discovery 
rate
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 (FDR)-corrected P < 0.01).
We next examined the dynamics of face-neuron activity. 

Face-selective responses followed image onsets (Fig. 2c, top row) and 
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neuronal activity in primates freely viewing natural stimuli26–31. Inter-
preting these data is challenging due to the admixture of eye move-
ments, stimulus features and selectivity in stochastic single-trial 
responses.

Here, we analyzed neuronal responses in six ventral visual areas in 
monkeys freely viewing natural images, assessing selectivity in space, 
in time and to stimulus features. We further tested specific hypotheses 
about predictive remapping and trans-saccadic integration. The results 
summarize 679 experimental sessions, containing 883 h of recording 
from 13 monkeys making 4.6 million fixations on thousands of natural 
images. We found that neurons throughout the ventral visual path-
way selectively responded to retinotopic stimulus features, showing 
limited evidence for predicting future RF features or integrating the 
viewing history.

Results
In each session, a monkey viewed a sequence of natural images that 
repeated in a pseudorandom block fashion (Fig. 1a). Each image presen-
tation lasted up to 1.5 s typically (in 410 of 679 sessions; range 0.3–60 s 
in other sessions) and was interrupted if the monkey looked away from 
the image. The images were typically shown at a size of 16 × 16 degrees 
of visual angle (dva; 487 of 679 sessions; range 8 × 8 to 26 × 26 dva in 
other sessions). Monkeys naturally looked around the images without 
training, examining each image with varied looking patterns across 
image repeats (Fig. 1b, inset). An average fixation lasted 276 ± 49 ms; 
an average saccade took 50 ± 5 ms and subtended 5.4 ± 0.9 dva (all 
mean ± s.d. across subjects; Fig. 1c–e).

We recorded extracellular single- and multi-unit activity (hereaf-
ter, neurons) using chronically implanted multielectrode arrays. The 
recordings spanned six visual areas: V1, V2, V4 and the posterior, central 
and anterior divisions of IT (PIT, CIT and AIT). Most data were collected 
in CIT and AIT (eight and seven monkeys; neuron and monkey numbers 
included are noted per plot; see the Methods for detailed inclusion 
criteria), followed by V4 (three monkeys), V1 (two), V2 and PIT (one 
each). Ventral visual neurons were generally more active during image 
presentations (Fig. 1f,g): mean 
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Fig. 1 | Overview of the free-viewing experiment. a, Monkeys freely viewed 
images presented in a random sequence. A fixation dot was displayed before 
some image presentations. b, The gaze trajectory in an example presentation. 
The inset shows gaze trajectories for the same image across repeat presentations 
in one experimental session. Colors indicate different presentations; dots, 
fixations. c–e, Distributions of fixation durations (c), saccade durations (d) and 
saccade sizes (e). Thin lines indicate individual monkeys; thick lines, across-

monkey averages. f, Image-onset-aligned spike rasters and average FRs for an 
example AIT neuron. Red and pink ticks indicate image onset and offset times; 
pink-shaded regions, the typical image presentation cadence in this session. 
g, Mean normalized FRs per visual area, using presentations lasting 1.5 s for 
illustration. Values of n correspond to the number of neurons/monkeys per visual 
area. The shading indicates the bootstrap 95% CI of the mean.
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appeared to precede fixation onsets (Fig. 2c, bottom row). To account 
for the possibility that the apparent predictive responses arose from 
consecutive face fixations, we divided saccades into four categories 
by the start and end fixation category (Fig. 2d). Face-neuron responses 
followed the fixation category across saccades (Fig. 2e). For example, 
in nonface-to-face saccades, face-neuron activity increased around 
fixation onset, whereas in face-to-face saccades, responses were lower 
than responses following nonface-to-face saccades, consistent with 
response adaptation. Responses following nonface-to-face saccades 
were higher than nonface-to-nonface responses, and the differences 
became statistically significant before fixation onsets (Fig. 2e). Sig-
nificant prefixation differences persisted for large (≥4 dva) saccades 
(Extended Data Fig. 1), indicating that presaccadic RF overlap with 
postsaccadic faces did not fully explain the prefixation differences. 
To further assess these putative predictive responses, we next sought 
a metric that did not require binary delineations of neuronal RFs and 
preferred image features.

General feature-selective responses were gaze-specific
We devised a general readout for selective responses using the preva-
lent return fixations. Monkeys and humans repeatedly foveate parts 
of visual scenes above chance frequency in diverse task contexts 
including free viewing36. Figure 3a shows example return-fixation 
pairs (distance ≤ 1 dva) in a session, within an image presentation 
and between repeats. If neurons selectively respond to retinotopic 
features, responses should be similar between return fixations. To 
quantify this, we calculated response correlations between each pair 
of return fixations, across pairs. This measure is analogous to the 
self-consistency calculated between trial split halves during passive 
viewing, but because freely viewing monkeys can revisit each image 

location a different number of times, we calculated self-consistency 
for per-fixation (single-trial) responses.

We used self-consistency to identify neurons with robust feature 
selectivity. Of all 66,260 neurons across sessions, 26,975 (40.7%) had 
return-fixation self-consistency r ≥ 0.1 and
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(Fig. 3b). We focused on these neurons throughout the study because 
all analyses relied on feature selectivity. Although the threshold r = 0.1 
is lower than typical values in passive-viewing studies, the single-trial 
activities considered here are necessarily more stochastic than stand-
ard trial-averaged responses.

To distinguish gaze specificity from overall feature selectivity, we 
compared response self-consistency between return fixations or any 
two fixations (nearby or not) on the same image (Fig. 3c). Of the 26,975 
feature-selective neurons, 95.7% showed higher self-consistency dur-
ing return fixations, and 60.7% reached statistical significance. Thus, 
almost all feature-selective neurons were specific to the gaze location.

To study the dynamics of gaze-specific responses, we calculated 
self-consistency for response time courses aligned to fixation onsets 
(Fig. 3d–h). The first two subplots in Fig. 3e illustrate the responses of 
an example neuron 200 ms before and after return-fixation onsets; 
the responses correspond to purple bars in Fig. 3d. Responses were 
more self-consistent after fixation onsets than before (r = 0.57 versus 
0.29). Although the self-consistency was positive even before fixation 
onsets, consecutive fixations (that is, separated by one saccade) were 
often nearby (Fig. 1e), introducing correlations. To discern the contri-
bution from the previous fixation, we examined responses following 
previous-return fixations (green in Fig. 3d,e). Comparing responses 
paired by previous-return fixations to those paired by current-return 
fixations, self-consistency was higher prefixation (Fig. 3e, third versus 
first subplot; r = 0.59 versus 0.29) and lower postfixation (second 
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Fig. 2 | Face-selective neurons responded according to whether fixations 
placed RFs on a face or not. a, Fixations were categorized as face or nonface per 
neuron based on RF overlap with face ROIs, here illustrated for a foveal RF 5 dva 
in diameter for the same image as in Fig. 1b. The two dark-shaded areas indicate 
face ROIs; dots, fixations; colors, categories (orange, face; blue, nonface). b, 
Neuronal face selectivity was quantified by an index (FSI) and compared between 
zeroth and nonzeroth fixations (respectively, x and y axes). Each dot corresponds 
to a neuron. The top and right subplots show marginal distributions. Neurons 
colored dark red had significantly different FSI between zeroth and nonzeroth 
fixations (P < 0.01, two-tailed permutation test, FDR-corrected). The diagonal 
dashed line corresponds to identity; vertical dashed line, zeroth-fixation 

FSI = 0.2. c, Responses per category for face-selective neurons, aligned to image 
onsets (top row) or nonzeroth fixation onsets (bottom row). Each column 
corresponds to a monkey. The n indicates the number of face neurons. d, An 
example saccade is shown for each of the four categories defined by the start 
and end fixation categories. e, Responses per saccade category for the same 
neurons as in c. Horizontal bars indicate time bins where responses were 
significantly greater for nonface-to-face versus nonface-to-nonface saccades 
(lower solid bars) or face-to-face versus face-to-nonface saccades (upper open 
bars). In panels c and e, lines and shading indicate the median ± median absolute 
deviation (m.a.d.) across neurons.
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versus fourth subplots; r = 0.57 versus 0.35). These relations hold for 
most neurons in the same session (Fig. 3f).

We evaluated the dynamics of gaze-specific responses at a higher 
resolution by calculating self-consistency in 50-ms sliding time bins 
(Fig. 3g, dashed lines). Responses to current-return fixations (purple) 
became more self-consistent following fixation onsets. Conversely, for 
previous-return fixations (green), self-consistency decreased after the 
(current) fixation onset. To further control for the nonpaired fixation, 
we excluded return-fixation pairs (current or previous) where the 
nonpaired fixations (preceding or following) were within 4 dva. This 
decorrelation procedure specifically reduced self-consistency in the 
nonpaired period (compare solid and dashed lines in Fig. 3g). Thus, 
we used the decorrelated self-consistency in subsequent analyses 
(Figs. 3h, 4a and 5a–c).

Figure 3h shows the average decorrelated self-consistency time 
courses for visually selective neurons, separately per visual area. The 
responses showed gaze specificity across areas. This conclusion did not 
change for within- and between-presentation return fixations analyzed 
separately (Extended Data Fig. 2a).

Precise spatial selectivity and no fixation integration
The self-consistency measure furnished a readout for the spatial preci-
sion of free-viewing responses. We assessed whether closer-by fixations 
had higher self-consistency by varying the threshold that defined return 
fixations. The self-consistency increased for closer-by fixations (that is, 
lower thresholds; Fig. 4a) down to 1/4 dva 
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across all areas, approaching 

our eye-tracking resolution. Thus, ventral visual neurons had surpris-
ingly precise spatial selectivity during free viewing.

Neuronal responses that reflected each gaze change are in princi-
ple compatible with integration over fixations to provide a useful stable 
representation37. If the responses integrated over fixations, as the mon-
key continued to view an image, increasingly similar responses should 
accompany different fixation locations, and the gaps should narrow 
(Fig. 4b, right, alternative hypothesis H1) among the self-consistency 
for return fixations ≤1 dva apart, all fixations on the same image and 
distant fixations >8 dva apart. In contrast, under the null hypothesis 
of retinotopic responses (Fig. 4b, left, H0), the three self-consistency 
measures should remain different. We tested both hypotheses for 
presentations lasting 1.5 s, our most common design (Fig. 4c; Extended 
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Fig. 3 | Response self-consistency during return fixations indicated gaze 
specificity. a, Example return-fixation pairs, each comprising two nearby 
fixations (within 1 dva) on an image within or across presentations. Dots indicate 
fixations; color, different presentations; black lines, return-fixation pairs; arrows, 
two example fixation sequences meeting in a return-fixation pair. b, Distribution 
across neurons of return-fixation self-consistency. Red indicates neurons 
deemed visually selective. c, Self-consistency per neuron between return 
fixations (x axis) or any two fixations on the same image regardless of distance  
(y axis). Each dot indicates a neuron, showing 5,000 examples; dark red, neurons 
with statistically significant differences between return-fixation and same-image 
self-consistency (P < 0.01, one-tailed permutation test, FDR-corrected); dashed 
line, identity. d, Schematics illustrating two rules to pair responses and calculate 
self-consistency. Orange and blue indicate the example fixation sequences in 
panel a; purple and green bars, responses paired based on the respective rule, 
‘the current (previous) fixations are (were) return fixations’. e–g, Illustration 
of how we quantified self-consistency. e, Each dot indicates a neuron’s FRs in a 

return-fixation pair. The x and y axes correspond to each of the two fixations. The 
four subplots show responses 200 ms preceding or following fixation onsets, 
paired by the current or previous fixations. Because FRs were discrete and often 
overlapped, dots were slightly jittered for visualization purposes only. f, Self-
consistency for all neurons in the example session. The x and y axes correspond 
to the two response time bins; colors, the pairing rules; each dot within a color, 
a neuron; square markers, the example neuron in e; dashed line, identity. g, 
Self-consistency for responses in 50-ms sliding bins, averaged over neurons in 
the example session. Dashed lines correspond to all return-fixation pairs; solid 
lines, decorrelated pairs. h, Mean decorrelated self-consistency time courses 
over monkeys and neurons, separately per visual area. The n values indicate the 
number of neurons/monkeys per visual area; shading, the bootstrap 95% CI of 
the mean; horizontal bars, time bins with significantly higher self-consistency 
for current- than previous-return fixations (purple) or vice versa (green; P < 0.01, 
one-tailed permutation test, FDR-corrected).
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Data Fig. 3 shows the results for other presentation times with sufficient 
data.) The self-consistency measures remained different throughout 
an image presentation, consistent with the null, retinotopic, hypoth-
esis and contradicting the hypothesis of an integrating stable repre-
sentation. However, the null hypothesis does not predict the drop in 
self-consistency throughout a presentation, a drop that may relate to 
the overall FR decrease during a presentation (Fig. 1f,g).

Limited evidence for predictive remapping
We asked whether our data provided any evidence in the ventral stream 
for predictively remapping neurons, which respond to stimuli in the 
future RF before saccade onset and may contribute to visual stability. 
Predictive remapping responses should have negative latencies relative 
to fixation onsets. The self-consistency time courses (Fig. 3h) supplied a 
measure for feature-selective response latency. We determined the time 
responses became better explained by the current fixation than the pre-
vious one, that is, the crossing point of the previous- and current-return 
self-consistency curves (Fig. 3g,h). The population latency distribution 
was mostly positive, was typical of ventral visual areas and increased 
along the processing hierarchy (Figs. 5a,b, left). A minority of neurons 
showed negative latencies (gray brackets in Fig. 5a,b). The fraction of 
negative-latency neurons ranged from none in PIT to 11% (6% to 15%) 
in AIT and 15% (0% to 45%) in V1 (mean and bootstrap 95% confidence 
interval (95% CI)). The negative latencies ranged from −4 ms (−9 to 
−1 ms) in V1 to −32 ms (−41 to −23 ms) in V2 (mean and bootstrap 95% CI; 
Fig. 5b, right). Because saccades took 50 ms on average (Fig. 1d) and we 
estimated latency relative to fixation onsets (that is, saccade offsets), 
these latency values do not anticipate saccade onsets, although a small 
number of neurons had latencies around −50 ms (for example, Fig. 5c). 
To cross-examine other evidence for the negative-latency neurons, we 
pooled all time-resolved analyses for only these neurons (Extended 
Data Fig. 4). Their self-consistency time courses crossed over before 
fixation onset, by construction (Extended Data Fig. 4e). The subset of 
face neurons responded early to nonface-to-face saccades (Extended 
Data Fig. 4a,b) as did face neurons overall (Fig. 2). RF modeling analyses, 
described below (Figs. 6 and 7), also allowed negative-latency neu-
rons suggestive evidence for predictive responses (Extended Data 
Fig. 4c,d,f–j). Thus, a minority of neurons might respond before fixation 

onsets, although not before saccade onsets as in classical predictive 
remapping14,20,22.

Short of negative latency, fixation-specific responses could be 
faster than image-onset responses. We directly compared the fixation- 
and image-onset latencies in 787 neurons for which we could estimate 
both with bootstrap s.d. < 25 ms. The two latencies covaried across neu-
rons (Fig. 5c; r = 0.27, P < 10−4). Fixation-onset latencies were statistically 
smaller than image-onset latencies by 19 ± 29 ms (mean ± s.d. across 
neurons; P < 10−62, one-tailed Wilcoxon signed-rank test), a modest 
population-level difference below the variance of individual estimates.

We derived latency as an indirect measure from self-consistency. To 
more directly test for predictive remapping, we identified ‘matched sac-
cades’, pairs of saccades whereby a monkey started from nearby (≤1 dva) 
locations to acquire divergent (≥4 dva) targets (Fig. 5d). Matched sac-
cades provided natural experiments to control, per saccade, for the pre-
saccadic retinotopic stimulus. In the face-specific analysis, we looked 
for a nonface-to-nonface saccade (match) for each nonface-to-face 
saccade (template). Figure 5e shows category-average responses 
as in Fig. 2e but for matched saccades. Figure 5f shows the fraction 
of neurons with significantly higher responses to nonface-to-face 
than nonface-to-nonface saccades, separately per monkey. Without 
matching saccades, this fraction exceeded the chance level before 
fixation onsets in all monkeys (Fig.  5f, left), consistent with the 
population-level statistics (Fig. 2e). With matched saccades, more 
neurons than chance showed statistical differences only after fixa-
tion onsets (Fig. 5f, right). Thus, individual face neurons did not show 
significant predictive responses after accounting for the presaccadic  
stimulus.

Leveraging matched saccades, we devised an analogous con-
trol for the self-consistency analysis (Fig. 5g–i). For each (current) 
return-fixation pair, we tried to match each constituent saccade as 
above and further required the two match saccades not to comprise 
a (current) return-fixation pair. If prefixation responses contained 
predictive components, possibly mixed with retinotopic contents, 
prefixation self-consistency should be higher for actual return-fixation 
pairs than nonreturn match pairs. Figure 5h, left, compares previous- 
and current-return self-consistency, showing neuron-level statisti-
cal test results to complement the population-level tests in Fig. 3h. 
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Figure 5h, right, and 5i compare matched saccades and show that no 
individual neuron had significantly higher self-consistency before 
fixation onsets than explained by presaccadic inputs. Thus, we did not 
find feature-selective predictive remapping responses in individual 
ventral visual neurons.

Computational models predicted per-fixation responses
The results so far showed that, during free viewing, ventral visual neu-
rons were selective to stimulus features in space and time just as for 
during passive viewing, encouraging us to test whether deep neural 

network (DNN)-based, image-computable models for passive-viewing 
responses38 could also predict free-viewing responses. We adapted 
these models to predict per-fixation responses from an image patch 
(for example, 4 × 4 dva) anchored to the fixation (Fig. 6a). A pretrained 
DNN (a vision transformer (ViT)39) converted each image patch into a 
feature vector. We fit a linear mapping from feature vectors to neu-
ronal responses and evaluated predictions using cross-validation (CV) 
across images.

While previous work validated similar models on trial-averaged 
passive-viewing responses, we found the models also predicted 

d

Current > previous return Current return > match

i

h

b c

Fixation-aligned responses

Return-fixation pair Match pair
(nonreturn)

Nonface→face

Match: nonface
→nonface

e

g

a

−250 0 250

Time relative to fixation onset (ms)

0

1

N
or

m
al

iz
ed

 F
R 

(a
.u

.) M1, n = 1,746

−250 0 250

M2, n = 466

−250 0 250

M3, n = 324
Nonface→face > nonface→nonface
Unmatched Matched

f

−250 0 250

Time relative to fixation onset (ms)

0

10–2

10–1

Fr
ac

tio
n 

si
gn

ifi
ca

nt

M1
M2

M3

−250 0 250

−250 0 250

Time relative to fixation onset (ms)

0

10–2

10–1

Fr
ac

tio
n 

si
gn

ifi
ca

nt

V1
V2
V4

PIT
CIT
AIT

−250 0 250

0 125

Fixation-onset latency (ms)

0

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

V1, n = 14/2
V2, n = 28/1
V4, n = 449/3
PIT, n = 9/1
CIT, n = 3,512/5
AIT, n = 546/4

−250 0 250

Time relative to fixation onset (ms)

0

0.2

Se
lf-

co
ns

is
te

nc
y 

(r
) V1

n = 132/2
Return
Match

−250 0 250

V2
n = 335/1

V4
n = 1,392/3

−250 0 250 −250 0 250

PIT
n = 198/1

−250 0 250

CIT
n = 13,674/8

−250 0 250

AIT
n = 7,452/7

0 100

Latency (ms)

AIT

CIT

PIT

V4

V2

V1

0 0.5

Fraction latency < 0
–50 0

Latency (ms)

n = 3/1

n = 2/1

n = 2/2

n = 0

n = 35/5

n = 71/4

0 250

Stimulus-onset latency (ms)

−50

150

Fi
xa

tio
n-

on
se

t l
at

en
cy

 (m
s) n = 787, r = 0.25, P < 1 × 10–4

Fig. 5 | Limited evidence for predictive remapping. a, Mean cumulative 
distribution per area of response latencies following fixation onset. Shading 
indicates the bootstrap 95% CI of the mean; gray horizontal bracket, neurons 
with latency < 0 further characterized in the right two plots in panel b. b, Mean 
estimates per area for latency (left), the fraction of neurons with negative 
latencies (middle) and latency for those neurons (right; numbers indicated). 
Larger dots and error bars indicate overall mean ± bootstrap 95% CI; smaller 
dots, means per monkey. c, Comparison of response latency following image 
and fixation onsets. Each dot indicates a neuron; error bars, bootstrap s.d.; 
colors, visual areas as in a and b; gray shading, identity ± 25 ms; the P value, 
one-tailed permutation test. d, Schematics of how saccades were matched for 
the face-specific analysis. Each nonface-to-face saccade was matched with a 
nonface-to-nonface saccade that started nearby (≤1 dva) and ended far away 
(≥4 dva). e, Face-neuron responses per monkey and saccade category. Lines 
and shading indicate the median ± m.a.d. across neurons. f, The fraction of 

neurons that responded significantly more to nonface-to-face versus nonface-
to-nonface saccades when for unmatched (left) and matched (right) saccades. 
To visualize small P values, the y axis is linear for P = 0–0.01 and log-scaled for 
P = 0.01–1. Statistical tests were per-neuron Mann–Whitney U tests (unpaired 
samples) when saccades were unmatched and Wilcoxon ranked-sum tests 
(paired samples) when saccades were matched (both one-tailed P < 0.01, 
FDR-corrected). Colors indicate monkeys; the shading, the bootstrap 95% CI. 
g, Schematics showing how saccades were matched for the self-consistency 
analysis. Individual saccades were matched as above, and we further required 
the match-saccade pair not to constitute a return-fixation pair. h, Plots showing 
the fraction of neurons with significantly higher self-consistency in current-
return pairs than previous-return pairs (left), or current-return pairs than 
match pairs (right). Colors indicate visual areas. i, Self-consistency time courses 
for current-return-fixation pairs and match pairs. In panels h and i, lines and 
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single-trial free-viewing responses (Fig.  6b and Extended Data 
Fig. 5). Models captured a similar fraction of the explainable (that is, 
self-consistent) responses during passive-viewing-like zeroth fixations 
and free viewing (nonzeroth fixations). Model fits varied across visual 
areas, although areas were not directly comparable due to variations 
in images, data size (number of fixations) and modeling choices such 
as the DNN layer and image-patch size.

Models revealed retinotopic RFs
The models provided a means to infer neuronal RFs during free view-
ing: models should predict a neuron’s responses using stimulus fea-
tures within the RF, but not outside. To test this, we partitioned the 
scene centered on each fixation into a grid of 2 × 2-dva image patches 
at 1-dva intervals (Fig. 6c). A model used image patches at each offset 
from fixation to predict neuronal responses across fixations; separate 
models were fit on patches at different offsets. We empirically found it 
helpful to regularize the models by sharing linear mapping coefficients 
(representing a neuron’s feature selectivity) across offsets, resulting in 
a metric reminiscent of reverse correlation. This procedure generated 
a model-fit map that should correspond to a neuron’s spatial RF. Using 
simulated responses, we validated that this mapping procedure recov-
ered the location and approximate size of ground-truth RFs (Extended 
Data Fig. 6).

Figure 6d shows the model-mapped RF for an example CIT neuron 
using fixation-onset-aligned responses. The RF contains a focal region 

of high model fit about 3 dva across. RFs inferred from free-viewing 
data were consistent with conventionally mapped RFs in this and other 
arrays (Extended Data Fig. 7; example neuron from Pa array 1). All 
well-fit RFs are summarized per array in Extended Data Fig. 8.

The model-based mapping method allowed us to directly examine 
remapping during natural image free viewing. We modeled responses 
in rolling time bins aligned to saccade onsets and used image patches 
anchored to the pre- or postsaccadic fixation point (FP 1 or FP 2) to map 
RFs in the pre- or postfixation retinotopic space (RF 1 or RF 2). Figure 6e 
shows the two sets of spatiotemporal RFs for the example neuron 
in Fig. 6d. The RFs were focal and shifted from RF 1 to RF 2 around 
75–125 ms after the saccade onset, consistent with typical latencies in 
CIT plus an average saccade duration around 50 ms.

To summarize the RF dynamics across neurons, we quantified RF 
presence using its consistency over CV splits, regularized via Gauss-
ian fits (Fig. 6f). Each time bin and retinotopic map (for example, RF 1 
or RF 2) was quantified independently to allow for potential RF shifts 
nonparallel to the saccade11,12,40. Across visual areas, RF 1 was more 
evident before the saccade, and RF 2 was more evident after the sac-
cade (Fig. 6f).

Similar to the self-consistency in Fig. 3h, the RF evidence was 
nonzero even outside the corresponding fixation period. This could 
indicate predictive RF remapping, memory responses or shared fea-
tures between successive fixations. To distinguish these possibilities, 
we evaluated control RFs anchored to the midpoint of FPs 1 and 2, 
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Fig. 6 | Computational models predicted per-fixation responses from 
stimulus features and revealed gaze-locked RF. a, Illustration of image-
computable models for per-fixation free-viewing responses. The models 
comprised a pretrained, fixed neural network (NN) feature extractor and a 
different linear mapping fit to each neuron’s responses. Model inputs were 
fixation-centered image patches, shown here for an example fixation sequence 
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monkey. c, Illustration of model-based RF mapping. The eye-centered image per 
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a feature vector. Model fit to neuronal responses was separately assessed at each 
offset from the fixation. d, Model-inferred RF for an example CIT neuron using 
fixation-onset-aligned responses. e, Model-inferred RFs for the same neuron 
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(P < 0.01, one-tailed permutation test, FDR-corrected).
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reasoning that the midpoint should contain common features between 
FPs 1 and 2. RF 2 evidence exceeded the midpoint control only after 
saccade onsets at the population level (Fig. 6f, top horizontal purple 
bars), even when we restricted the analysis to well-fit neurons (normal-
ized model fit ≥ 0.5; Extended Data Fig. 9a). Thus, RF modeling did not 
indicate predictive remapping beyond retinotopic features shared 
across each saccade.

Modeling showed no perisaccadic RF prediction or expansion
Figure 6 represented RFs 1 and 2 in different maps because saccade 
vectors varied during free viewing. To more intuitively visualize several 
hypotheses about perisaccadic responses, we aligned saccades by shift-
ing, rotating and scaling them into normalized vectors such that RFs 1 
and 2 were located at relative positions 0 and 1 in a joint map (Fig. 7a). 
Regions in this joint map readily represent three hypotheses about 
perisaccadic responses (Fig. 7b): predictive forward remapping14,20,22, 
perisaccadic RF expansion41 and viewing-history integration (Fig. 4c). 
RFs in the joint map were quantified using model fit. To control for the 
RF 1 stimulus, we again compared original (template) and match sac-
cades analogous to Fig. 5d–i. RF maps for the original saccades revealed 
both RF 1 and RF 2 (Fig. 7c, top row). For match saccades, models used 
stimulus features along the original saccades to predict match-saccade 
responses, so the maps should show a weaker RF 1 (because matching 
was imperfect) and no RF 2. The results confirmed this expectation 
(Fig. 7c, bottom row).

We tested for perisaccadic expansion via the RF evidence (that 
is, model fit) at the midpoint between RFs 1 and 2 (relative position 
0.5; Fig. 7b–d). Wang et al.41 showed that LIP neurons responded to 

midpoint stimuli at times between peak RF 1 and RF 2 responses. For 
neurons across ventral visual areas, the midpoint RF evidence peaked 
with RFs 1 and 2 (Fig. 7d), unlike LIP RF expansion and consistent with 
the spatial spread of classical RFs or feature similarity between the 
midpoint and RF contents.

The maps suggested some evidence consistent with RF 2 predic-
tion (Fig. 7b,c, top). This evidence was not fully due to stimulus auto-
correlation, which should cause symmetrical artifacts corresponding 
to prediction and history integration; instead, there was stronger 
evidence for a predictive RF 2 than an RF 1 memory (Fig. 6f and Fig. 7c, 
top row). Population-level statistical tests identified a time window  
(−50 to 0 ms to saccade onsets) in which V4 neurons had significantly 
higher predictive RF 2 evidence than for match saccades, even after 
adjusting for overall lower model fits due to imperfect matching 
(Fig. 7d). Considering only well-fit neurons, the V4 population still 
showed predictive RF 2 activity, while the V2 and AIT populations 
additionally showed statistically significant differences −25 to 25 ms 
relative to saccade onset (Extended Data Fig. 9b). Thus, modeling sug-
gested some evidence for predictive remapping, although the putative 
predictive effects were modest compared with retinotopic effects 
(compare the solid and dashed purple lines in Fig. 7d before and after 
saccade onset). No similar evidence was found for history integration 
in any area (compare solid and dashed green lines in Fig. 7d).

Discussion
We developed two independent analysis approaches for visual 
responses during natural image free viewing; these methods can 
benefit future studies during natural behaviors. The self-consistency 
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measures quantify feature selectivity and its spatiotemporal specific-
ity. The image-computable models capture feature selectivity, pre-
dict single-trial responses and map spatiotemporal RFs using natural 
images, extending existing methods that require simplified stimuli9,42. 
Self-consistency measures and model-based RFs corroborate each 
other and enable hypothesis testing about perisaccadic response prop-
erties during natural vision.

Ventral visual neurons are often approximated as retinotopic fea-
ture detectors, a classical model derived from experiments that delib-
erately minimize eye movements and spatiotemporal context. Studies 
using natural viewing conditions have hinted at nonclassical response 
properties26–31 but have not compared rigorous retinotopic models. 
Results here show that ventral pathway neurons retain key retinotopic 
properties during free viewing, although we found two deviations from 
strict retinotopy. First, FRs and selectivity decreased during an image 
presentation (Figs. 1g and 4c). Future work is needed to test whether 
this is explainable by adaptation mechanisms43,44. Second, we did not 
entirely rule out predictive remapping, though any predictive compo-
nents are likely subsidiary to retinotopic responses. Latency estimates 
(Fig. 5a–c) suggest that a minority of neurons may predictively respond 
before fixation onset. Modeling results with population-level statistics 
indicate that V2, V4 and AIT may contain predictive responses (Fig. 7d 
and Extended Data Fig. 9b). Meanwhile, two analyses that more tightly 
controlled for the presaccadic stimulus did not find individual predic-
tive neurons (Fig. 5d–i). Caution is needed with negative statistical 
results; future work using more data or better computational models 
may offer stronger evidence for predictive responses in the ventral 
pathway during natural vision. Our results are compatible with some 
neurons mixing predictive with retinotopic responses among mostly 
retinotopic neurons and consistent with reports that natural condi-
tions suppress remapping through simultaneous stimuli, landmarks 
and background illumination21,25,45,46.

Indeed, viewing conditions distinguish this work from most 
remapping studies, which use dynamic, simple probes on an otherwise 
empty screen21. While dynamic scenes are relevant to many behaviors, 
much vision occurs in static environments. Further, natural scenes are 
feature-dense and continuously stimulate neuronal RFs, underscoring 
the need for remapping theories to account for feature selectivity20,21,35. 
Whether remapping transports feature information is an open ques-
tion19–21. Our results show that the ventral visual pathway, traditionally 
associated with feature processing, evinces limited feature-selective 
predictive remapping. Static images hinder direct tests of non-
predictive or memory remapping, which has been reported in V4  
(refs. 11,12,42), MST47, frontal eye fields16 and superior colliculus18,25, 
and proposed to enable a transient spatiotopic representation25,48,49. A 
testable hypothesis is that memory remapping can enhance response 
selectivity, but we found similar face selectivity during zeroth and 
nonzeroth fixations (Fig. 2b) and reduced response self-consistency for 
nonzeroth fixations (Fig. 4c and Extended Data Fig. 2b,c). Our RF model 
(Figs. 6 and 7) opens future directions to assess memory remapping 
and transient spatiotopic integration using movie free viewing29,31,50.

The brain need not store a detailed, stable map of the visual world. 
Perception does not include a veridical image, a truism evident in 
idioms such as ‘out of sight, out of mind’. Vision research abounds in 
findings of imperfect visual stability51, such as inattentional (change) 
blindness52, memoryless visual search53 and perisaccadic mislocali-
zation54. Detailed visual memory is unnecessary when we can easily 
re-fixate19,36. However, behaviors such as the multi-step saccade task55 
show spatiotopic visual information can be preserved across eye move-
ments. While the nature and contents of stable vision are unclear, our 
results suggest that the brain does not stabilize the rich representations 
of ventral vision.

Finally, we underscore the value of testing theories of brain func-
tion during natural behaviors. Reductionist experiments illuminate 
the mechanisms of cognition only insofar as the isolated facets reflect 

how the brain operates during normal conditions. The brain evolved 
for behavior, with which neuroscience should start and end50,56. Natu-
ral behavior is a source for generating hypotheses and should be the 
final test for principles gleaned from artificial experiments. We have 
developed flexible analyses that can be applied to study visual response 
properties across brain areas during natural behaviors.
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Methods
Experiment details
Subjects. All procedures were approved by the Harvard Medical 
School Institutional Animal Care and Use Committee (protocol num-
ber IS00001049) and conformed to




 National Institutes of Health 

guidelines provided in the Guide for the Care and Use of Laboratory 
Animals. Eleven adult Macaca mulatta (one female, ten males; 5–13 kg; 
2–17 years old) and two adult male Macaca nemestrina (13 and 15 kg; 
12 and 14 years old) were socially housed in standard quad cages on 
12/12-h light/dark cycles. Detailed information per session on animal 
sex and age is included in the raw data available on the DANDI archive 
(Data availability). No statistical methods were used to predetermine 
sample sizes but our sample sizes are similar to those reported in 
previous publications (for example, refs. 8,27,42). Data collection and 
analysis were not performed blind to the conditions of the experiments.

Surgical procedures. Animals were implanted with custom-made 
titanium or plastic headposts. After several weeks of fixation training, 
the animals underwent secondary surgeries for array implantation. 
All surgeries were done under full surgical anesthesia using sterile 
technique.

Physiological recording. Animals were implanted with custom float-
ing microelectrode arrays (32 channels, MicroProbes, or 128 chan-
nels, NeuroNexus) or microwire bundles (64 channels; MicroProbes). 
Each animal received 1–5 arrays throughout data collection spanning 
3 years. Neural signals were amplified and sampled at 40 kHz using 
OmniPlex data acquisition systems (Plexon). Multi-unit spiking activity 
was detected using a threshold-crossing criterion. Channels containing 
separable waveforms were sorted online using a template-matching 
algorithm. The numbers of neurons were reported as sums over ses-
sions. Neural signals were synchronized by 
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
TTL events to task and 

eye-tracking data, and synchronized image-onset event times were 
refined using photodiode signals. We measured and corrected for fixed 
lags in the eye-tracking signals as described below.

Behavioral task. Monkeys performed a free-viewing task with a range 
of parameters, all documented in a standard format in the shared data 
on DANDI (Data availability). As an overview, images were typically 
presented at a size of 16 × 16 dva, while some experiments used other 
sizes ranging from 8 × 8 to 26 × 26 dva. Most experiments used a 1.5-s 
presentation duration, while some used other durations ranging from 
0.3 to 60 s. Images were pseudorandomly ordered in a block design and 
repeated when all images had been shown once. In most experiments, 
the image position was randomly shifted in each presentation to encour-
age free looking, because most monkeys have been extensively trained 
to fixate. Monkeys were rewarded at fixed intervals with a drop of juice 
for maintaining their gaze within a window around the image. Task 
control was handled by a MATLAB-based toolbox, NIMH MonkeyLogic57. 
The task-control software monitored and recorded eye-tracking signals.

Eye tracking. Monocular eye-tracking signals were acquired at 1 kHz 
from infrared eye trackers (ISCAN or EyeLink) without digital smooth-
ing or filtering. Analog outputs from ISCAN trackers were sampled 
at a higher rate (1 kHz) than the camera frame rates (60 Hz, 120 Hz 
and 240 Hz, respectively, for three rigs), while the EyeLink 1000 cam-
era sampled at a native 1-kHz frame rate. Because any tracking signal 
delay would lead to apparent predictive responses in the analyses, we 
empirically measured the end-to-end lag with a mechanized model 
eye rotating on a crankshaft. Eye-tracking signals were compared with 
signals from a potentiometer attached to the crankshaft to measure 
lag. The trackers had consistent delays of 46 ± 0.2 ms (60 Hz ISCAN; 
mean ± s.d. over 1.5-s signal segments), 37 ± 1.3 ms (120 Hz ISCAN), 
24 ± 1.2 ms (240 Hz ISCAN) and 5 ± 0.8 ms (EyeLink 1000). The manufac-
turer specification is 0.25-dva resolution for the EyeLink 1000 system 
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and 0.5 dva for the ISCAN systems. We did not independently measure 
the tracking precision. We calibrated the tracking using a projective 
transform before each session and during sessions as needed.

Quantification and statistical analysis
Fixation detection and selection. Fixations and saccades were 
detected offline using ClusterFix58 with default parameters. ClusterFix 
clips outliers (3 s.d.) and downsamples the tracking signals to 30 Hz to 
improve the signal-to-noise ratio. ClusterFix uses k-means clustering on 
four parameters (distance, velocity, acceleration and angular velocity) 
to detect fixations. A fixation was included in the analyses if it lasted at 
least 100 ms and landed in the image.

Neuron selection. During preprocessing, we removed units with no 
spikes in the second half of each session or mean FRs more than 50% 
different between the first and second half of each session because 
these units were likely artifacts. All analyses except in Figs. 1g and 3b con-
cerned the subset of visually selective neurons based on self-consistency 
criteria r ≥ 0.1 and P < 0.01, as described in the main text. To ensure mean-
ingful comparisons across time and conditions, each analysis (plot and 
associated statistics) only included neurons with valid values in all time 
bins and conditions; invalid values resulted when there were too few 
return-fixation pairs (at least two are needed to calculate correlations) 
or when FRs did not vary across the fixations qualifying for an analysis 
(variations are needed to calculate normalized FRs and correlations). 
Finally, because we calculated statistics weighing monkeys equally (see 
Center estimates and statistical tests), monkeys with few neurons in a 
region contributed noisy estimates that disproportionately affected the 
population averages. Therefore, we excluded, plot-by-plot, monkeys 
that contributed fewer than 5% of the median neuron number across 
monkeys per region. This criterion affected only 0–0.2% of neurons.

Per-neuron parameter estimates (latency and RF). We analyzed 
fixation-aligned responses in a fixed time window in Figs. 2b, 3b,c 
and 5b. To select the time window, we estimated the response latency 
per neuron using the crossing point between two return-fixation 
self-consistency time courses, as described in Figs. 3d–g and 4a–c 
and further below. We selected reliable latency estimates using the 
conservative criteria of bootstrap s.d. < 25 ms and no other crossing 
points within 100 ms of the latency. The estimates for most neurons 
(94.3%) did not meet these strict criteria (also compare n values in 
Figs. 5a and 3h). Thus, we also considered responses pooled over neu-
rons first per electrode, then per array. We imputed missing values 
using results from first the same electrode (4.1%), then the same array in 
each session (20.0%) and finally the same array across sessions (51.4%). 
For the remaining 19.8% of neurons, we set the latency to a default value 
per region (40, 40, 50, 65, 80 and 100 ms, respectively, for V1, V2, V4, 
PIT, CIT and AIT). The latency was lower-bounded at 40 ms. Imputed, 
default and clipped values are not reported as results (Fig. 5a–c).

We used neuronal RF locations in the analyses in Figs. 2, 5d–f, 6b  
and 7. The RF per neuron was estimated based on a Gaussian fit to 
the model-based RF described in Fig. 6d and further below. We only 
included reliable RF estimates that had peak unnormalized model 
performance r ≥ 0.2, goodness-of-fit r ≥ 0.7 and coverage (that is, defi-
nite integral of the Gaussian fit within the mapping window of −7 to 
7 dva) ≥ 0.5. As with latency estimates, we imputed the 63.9% missing 
values from first the same electrode (8.9%), then the same array in each 
session (21.4%) and finally the same array across sessions (12.7%). For 
the remaining 21.0% of neurons, we used by default a foveal RF with 
a radius (s.d.) of 2 dva because most arrays had RFs near the fovea 
(Extended Data Fig. 8).

Face-specific analysis. Face ROIs were either manually drawn for data-
sets containing both monkey and human faces or detected as bounding 
boxes using a pretrained face-detection neural network (RetinaFace59) 
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for datasets containing human faces only. Fixations were classified as 
face fixations per neuron by whether a fixation landed within 1 s.d. of 
the neuronal RF center. To more closely match the face and nonface 
conditions, we considered only nonface fixations on images containing 
faces. The FSI was calculated using responses in the 150-ms window fol-
lowing the latency of each neuron. FSI was calculated as (a − b)/(a + b), 
where a and b correspond to face and nonface fixation responses, 
respectively. FSI calculation excluded face-to-face saccades to avoid 
response adaptation effects. Response time courses were normalized 
for each face neuron by the minimum and maximum FRs over time 
across the four saccade categories (Fig. 2d,e).

Return-fixation self-consistency. The main elements of the 
return-fixation self-consistency have been described in the main text 
(Fig. 3). We calculated self-consistency using per-fixation (nonaver-
aged) responses aligned to fixation onsets. Figure 3b,c used responses 
in the 200-ms window following the latency of each neuron. Figure 4c 
used responses in 200-ms bins with 50-ms steps. Other self-consistency 
time courses used 50-ms time bins with 25-ms steps. In Fig. 4c, two 
response time bins were paired if any two fixations overlapping the 
bins satisfied the pairing rule (return, same image or distant).

Response latency estimates. The fixation-onset response latency was 
estimated as the nearest time point to a central time (default is zero, the 
fixation-onset time) that the current-return self-consistency exceeded 
the previous-return self-consistency, both using decorrelated pairs. 
To assess the uncertainty in the estimates, we obtained 200 bootstrap 
samples of each underlying self-consistency time course by sampling 
with replacement the return-fixation pairs. We selected low-variance 
estimates based on half of the bootstrap samples and reported the 
standard deviation across the unused samples in Fig. 5c. To regular-
ize the process, we started by estimating latency for array-averaged 
responses (32 or 64 electrodes, depending on array type). If we could 
estimate a latency and it had no other crossing points within 100 ms on 
either side, we used this latency as the central time for further estimates 
in this array. In the same way, we proceeded hierarchically down the 
levels of banks (32 electrodes), electrodes (one or more sorted units) 
and, finally, units. This hierarchical procedure is independent across 
bootstrap samples.

To estimate the image-onset response latency, we also used 
self-consistency instead of the more traditional average FRs to be 
more comparable to the fixation-onset latency. Here, we calculated 
self-consistency time courses using zeroth fixations only. The latency 
was estimated as the time self-consistency rose above half of the peak 
self-consistency, again nearest a central time that was zero by default. 
We assessed the uncertainties and hierarchically set the central time 
as above.

Computational model of neuronal responses. The computational 
models comprised a pretrained (‘task-optimized’) DNN, which extracts 
a vector representation of image features, and a linear mapping fit to the 
responses per neuron, following previous work (for example, ref. 60). 
We used a pretrained ViT39 
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(the instance ‘vit_large_patch16_384’ in the 

Python library ‘pytorch image models’61) and extracted features from 
the layer ‘blocks.13.attn.qkv’ (relative depth 0.55). The features were 
averaged over the sequence dimension into a 3,072-dimensional vector.

We chose the DNN model architecture and layer and the regu-
larization hyperparameter for Ridge regression based on a grid search 
over 18 architectures ranging from 8 layers (AlexNet62) to 437 lay-
ers (EfficientNet-L2 Noisy Student, 475 × 475 resolution (ref. 63)) and 
trainable parameter number from 8 million (DenseNet-121 (ref. 64)) to 
480 million (EfficientNet-L2, 475 × 475); over the layers per architecture; 
and over the Ridge regularization parameter (1 to 106 in half-decade 
steps). The parameter search included at least one session per record-
ing array (26 of 679 sessions; 2,379 units). The layer ‘blocks.13.attn.qkv’ 
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(relative depth 0.55) in the model ViT-L/16 384 × 384 performed the best 
overall, reaching 90–100% of the performance of the best-fitting layer 
separately for each visual area. Due to the small performance gap, we 
elected to use the same layer to model all visual areas.

For computational efficiency, we precalculated and cached the 
DNN image representations on a discrete sampling grid, either 4 × 4-dva 
patches in 1-dva steps for fixation-centered models (Fig. 6a,b), or 
2 × 2-dva patches in 0.5-dva steps for inferring RFs (Figs. 6c–e and 7). 
Patches extending beyond the image were padded with gray. Fixation 
locations were indexed to the closest image patch to obtain the cor-
responding feature vectors. Next, a Ridge regression model (regulari-
zation parameter alpha = 105) was fitted between model features and 
neuronal responses. The linear mappings were fitted and evaluated 
using fivefold CV across images. Thus, no return fixations straddled 
the training and testing sets. Model performance was quantified by 
the correlation (Pearson’s r) between predicted and actual responses 
on held-out fixations. Ceiling-normalized model performance (Fig. 6b) 
was calculated by dividing model performance with return-fixation 
self-consistency (excluding any values ≤0), clipping the result between 
0 and 1, then squaring it. This measure, standard in the literature, cor-
responded to the fraction of variance explained up to an optimal linear 
transformation.

Model-based inference of RF structure. We inferred RFs for 
fixation-aligned responses in the 200-ms window following the latency 
of each neuron (Fig. 6c,d). At each fixation, a 15 × 15 array of image 
patches (each 2 × 2 dva) was extracted on a fixation-anchored grid of 
offset locations from −7 to 7 dva in 1-dva steps. Each image patch cor-
responded to a 3,072-dimensional
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 model embedding vector, resulting 

in a 15 × 15 × 3,072 retinotopic stimulus representation analogous to 
a multichannel image. At each of the offset locations, we fitted and 
evaluated a separate linear mapping using CV over images. This process 
resulted in a 15 × 15 × 5 map of model performance per CV split.

To further regularize this map, we took the model weights from 
the location of peak performance and applied the model to held-out 
fixations, projecting the 15 × 15 × 3,072 stimulus representation per 
fixation to a 15 × 15 scalar map per neuron. The map was akin to a 
grayscale image reflecting the selectivity of each neuron in each 
fixation-centered scene. This map was also specific to each response 
window and CV split. These scalar preference maps were correlated 
with neuronal responses in a calculation analogous to reverse correla-
tion to result in an RF map.

To fit Gaussian RF models, we first clipped the maps at 0 because 
negative correlations indicated over-fitting, then squared them 
because doing so resulted in better Gaussian fits empirically.

To quantify the consistent presence of RFs (Fig. 6f), we fitted a 
Gaussian distribution to the inferred RF per CV split and then evalu-
ated the goodness-of-fit (Pearson’s r) on maps from other splits. The 
goodness-of-fit was averaged over 5 × 4 pairs of splits (the pairs were 
directional because each split in turn contributed to the Gaussian fit).

For RFs across saccades (Fig. 6e,f), the above process was repeated 
for two retinotopic spaces anchored to the fixation point either before 
or after the saccade. As controls, a third set of RFs was calculated 
anchored to saccade midpoints. Neuronal responses were aligned to 
saccade onsets in 50-ms bins from −375 to 375 ms in 25-ms steps. Each 
time bin was modeled separately.

RFs along normalized saccades (Fig. 7) were mapped at relative 
positions along saccades from −0.5 to 1.5 in 0.25 steps. Each relative 
position for each saccade was converted to the actual position on 
the image to index the corresponding patch. Then, a map of model 
performance was calculated as above.

Adjusting model fit in match saccades. Because matching saccades 
at the 1-dva threshold did not perfectly reproduce the retinotopic 
stimulation during the original saccades, model fit was slightly lower 
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when using stimulus features along the original saccades to pre-
dict match-saccade responses even in RF 1 (Fig. 7c). We attempted a 
first-order correction of this drop in model performance by linearly 
fitting the match-saccade RF 1 time course to the original-saccade one 
(that is, the two conditions that would ideally be perfectly matched). 
To use the simplest model, we fit linear coefficients on grand average 
time courses over all neurons across areas. The linear fit over 31 time 
points achieved R2 = 0.9984 and a relative deviation of only 1.4 ± 1.1% 
(mean ± s.d. over time points), confirming that this heuristic adjust-
ment was reasonable. Thus, we applied the same transformation to the 
RF 2 time course and performed statistical tests on the adjusted values.

Simulation of responses representing ground-truth RFs. Each simu-
lated RF was discretized into one or more offset locations in 2-dva steps, 
to be indexed into corresponding 2 × 2 image patches aligned to each 
eye position sample. Offset locations were assigned weights based 
on a Gaussian decay profile truncated at 2σ. Responses were simu-
lated for each eye position sample at the native 1-kHz rate, although 
downstream analysis would bin responses into 50-ms time bins. A 
simulated response sample was the weighted sum of the model repre-
sentations of image patches comprising the RF. No stochasticity was 
added. The simulated responses were entered into the same analysis 
pipeline as described above for real data. To prevent trivial fitting by 
the ViT model, the responses were simulated using ResNet-50 (ref. 65) 
embeddings at the layer ‘layer3.4.conv1’. The model implementation and 
ImageNet-pretrained weights were from the Python library ‘torchvision’.

Center estimates and statistical tests. Center estimates (mean or 
median) were taken first over neurons per monkey, then over monkeys. 
The type of spread reported was specified in each case. In Fig. 2c,e, the 
spread (median absolute deviation) indicated the variation across neu-
rons. In other figures, the spread indicated uncertainty (for example, 
95% CI or s.e.m.) in the center estimate by bootstrapping first over 
monkeys, then over neurons per monkey 1,000 times.

We used nonparametric statistical tests without normality assump-
tions. Tests at the neuron level were performed separately per neuron 
per session, and we reported the (FDR-corrected) fraction of neurons 
reaching statistical significance. Because signals from chronically 
implanted arrays were related across days, population-level statistical 
tests always averaged the test statistics (real or permuted) first over 
neurons, then over monkeys, each weighted equally. In tests involv-
ing self-consistency, the unit of permutation was fixation pairs (for 
example, return fixations). In other tests, the unit of permutation was 
the values (for example, model fits). All permutation-based statistical 
tests used 10,000 permutations. P values were corrected per analysis 
to control the FDR at 0.01 using the two-stage Benjamini–Krieger–
Yekutieli procedure.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data necessary to interpret, verify and extend the research in this 
study are freely available at the DANDI archive (https://dandiarchive.
org/dandiset/000628) and OSF (https://osf.io/sde8m/
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Code availability
The code to reproduce the analyses in this paper is shared at https://
github.com/willwx/free_viewing.
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