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CHAPTER 4

A quantitative theory of immediate visual recognition
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CenterAU :2 for Biological and Computational Learning, McGovern Institute for Brain Research, Computer Science and
Artificial Intelligence Laboratory, Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, 43

Vassar Street # 46-5155B, Cambridge, MA 02139, USA

Abstract: HumanAU :3 and non-human primates excel at visual recognition tasks. The primate visual system
exhibits a strong degree of selectivity while at the same time being robust to changes in the input image. We
have developed a quantitative theory to account for the computations performed by the feedforward path
in the ventral stream of the primate visual cortex. Here we review recent predictions by a model instan-
tiating the theory about physiological observations in higher visual areas. We also show that the model can
perform recognition on datasets of complex natural images at a level comparable to psychophysical meas-
urements on human observers during rapid categorization tasks. In sum, the evidence suggests that the
theory may provide a framework to explain the first 100–150ms of visual object recognition. The model
also constitutes a vivid example of how computational models can interact with experimental observations
in order to advance our understanding of a complex phenomenon. We conclude by suggesting a number of
open questions, predictions, and specific experiments for visual physiology and psychophysics.

Introduction

The primate visual system rapidly and effortlessly
recognizes a large number of diverse objects in
cluttered, natural scenes. In particular, it can easily
categorize images or parts of them, for instance as
an office scene or a face within that scene, and
identify a specific object. This remarkable ability is
evolutionarily important since it allows us to dis-
tinguish friend from foe and identify food targets
in complex, crowded scenes. Despite the ease with

which we see, visual recognition — one of the key
issues addressed in computer vision — is quite
difficult for computers. The problem of object rec-
ognition is even more difficult from the point of
view of neuroscience, since it involves several levels
of understanding from the information processing
or computational level to circuits and biophysical
mechanisms. After decades of work in different
brain areas ranging from the retina to higher cor-
tical areas, the emerging picture of how cortex
performs object recognition is becoming too com-
plex for any simple qualitative ‘‘mental’’ model.

A quantitative, computational theory can pro-
vide a much-needed framework for summarizing
and integrating existing data and for planning,
coordinating, and interpreting new experiments.
Models are powerful tools in basic research, inte-
grating knowledge across several levels of analysis
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— from molecular to synaptic, cellular, systems
and to complex visual behavior. In this paper, we
describe a quantitative theory of object recogni-
tion in primate visual cortex that (1) bridges sev-
eral levels of understanding from biophysics to
physiology and behavior and (2) achieves human
level performance in rapid recognition of complex
natural images. The theory is restricted to the
feedforward path of the ventral stream and there-
fore to the first 100–150ms of visual recognition; it
does not describe top-down influences, though it
should be, in principle, capable of incorporating
them.

In contrast to other models that address the
computations in any one given brain area (such as
primary visual cortex) or attempt to explain a
particular phenomenon (such as contrast adapta-
tion or a specific visual illusion), we describe here a
large-scale neurobiological model that attempts to
describe the basic processes across multiple brain
areas. One of the initial key ideas in this and many
other models of visual processing (Fukushima,
1980; Perrett and Oram, 1993; Mel, 1997; Wallis
and Rolls, 1997; Riesenhuber and Poggio, 1999)
come from the pioneering physiological studies
and models of Hubel and Wiesel (1962).

Following their work on striate cortex, they
proposed a hierarchical model of cortical organ-
ization. They described a hierarchy of cells within
the primary visual cortex: at the bottom of the
hierarchy, the radially symmetric cells behave sim-
ilarly to cells in the thalamus and respond best to
small spots of light. Second, the simple cells which
do not respond well to spots of light require bar-
like (or edge-like) stimuli at a particular orienta-
tion, position, and phase (i.e., white bar on a black
background or dark bar on a white background).
In turn, complex cells are also selective for bars at
a particular orientation but they are insensitive to
both the location and the phase of the bar within
their receptive fields. At the top of the hierarchy,
hypercomplex cells not only respond to bars in a
position and phase invariant way like complex
cells, but also are selective for bars of a particular
length (beyond a certain length their response
starts to decrease). Hubel and Wiesel suggested
that such increasingly complex and invariant ob-
ject representations could be progressively built by

integrating convergent inputs from lower levels.
For instance, position invariance at the complex
cell level could be obtained by pooling over simple
cells at the same preferred orientation but at
slightly different positions. The main contribution
from this and other models of visual processing
(Fukushima, 1980; Perrett and Oram, 1993; Mel,
1997; Wallis and Rolls, 1997; Riesenhuber and
Poggio, 1999) has been to extend the notion of
hierarchy beyond V1 to extrastriate areas and
show how this can explain the tuning properties of
neurons in higher areas of the ventral stream of the
visual cortex.

A number of biologically inspired algorithms
have been described (Fukushima, 1980; LeCun et
al., 1998; Ullman et al., 2002; Wersing and Ko-
erner, 2003), i.e., systems which are only qualita-
tively constrained by the anatomy and physiology
of the visual cortex. However, there have been very
few neurobiologically plausible models (Olshausen
et al., 1993; Perrett and Oram, 1993; Mel, 1997;
Wallis and Rolls, 1997; Riesenhuber and Poggio,
1999; Thorpe, 2002; Amit and Mascaro, 2003) that
try to address a generic, high-level computational
function such as object recognition by summariz-
ing and integrating a large body of data from
different levels of understanding. What should a
general theory of biological object recognition be
able to explain? It should be constrained to match
data from anatomy and physiology at different
stages of the ventral stream as well as human per-
formance in complex visual tasks such as object
recognition. The theory we propose may well be
incorrect. Yet it represents a set of claims and
ideas that deserve to be either falsified or further
developed and refined.

The scope of the current theory is limited to
‘‘immediate recognition,’’ i.e., to the first
100–150ms of the flow of information in the ven-
tral stream. This is behaviorally equivalent to con-
sidering ‘‘rapid categorization’’ tasks for which
presentation times are fast and back-projections
are likely to be inactive (Lamme and Roelfsema,
2000). For such tasks, presentation times do not
allow sufficient time for eye movements or shifts of
attention (Potter, 1975). Furthermore, EEG stud-
ies (Thorpe et al., 1996) provide evidence that the
human visual system is able to solve an object
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detection task — determining whether a natural
scene contains an animal or not — within 150ms.
Extensive evidence shows that the responses of in-
ferior temporal (IT) cortex neurons begin
80–100ms after onset of the visual stimulus (Per-
rett et al., 1992). Furthermore, the neural re-
sponses at the IT level are tuned to the stimulus
essentially from response onset (Keysers et al.,
2001). Recent data (Hung et al., 2005) show that
the activity of small neuronal populations in IT
(�100 randomly selected cells) over very short
time intervals from response onset (as small as
12.5ms) contains surprisingly accurate and robust
information supporting visual object categoriza-
tion and identification tasks. Finally, rapid detec-
tion tasks, e.g., animal vs. non-animal (Thorpe et
al., 1996), can be carried out without top-down
attention (Li et al., 2002). We emphasize that none
of these rules out the use of local feedback —
which is in fact used by the circuits we propose for
the two main operations postulated by the theory
(see section on ‘‘A quantitative framework for the
ventral stream’’) — but suggests a hierarchical
forward architecture as the core architecture un-
derlying ‘‘immediate recognition.’’

We start by presenting the theory in section ‘‘A
quantitative framework for the ventral stream:’’
we describe the architecture of a model imple-
menting the theory, its two key operations, and its
learning stages. We briefly review the evidence
about the agreement of the model with single cell
recordings in visual cortical areas (V1, V2, V4) and
describe in more detail how the final output of the
model compares to the responses in IT cortex
during a decoding task that attempts to identify or
categorize objects (section on ‘‘Comparison with
physiological observations’’). In section ‘‘Perform-
ance on natural images,’’ we further extend the
approach to natural images and show that the
model performs surprisingly well in complex rec-
ognition tasks and is competitive with some of the
best computer vision systems. As an ultimate and
more stringent test of the theory, we show that the
model predicts the level of performance of human
observers on a rapid categorization task. The final
section discusses the state of the theory, its limi-
tations, a number of open questions including

critical experiments, and its extension to include
top-down effects and cortical back-projections.

A quantitative framework for the ventral stream

Organization of the ventral stream of visual cortex

Object recognition in cortex is thought to be me-
diated by the ventral visual pathway (Ungerleider
and Haxby, 1994). Information from the retina is
conveyed to the lateral geniculate nucleus in the
thalamus and then to primary visual cortex, V1.
Area V1 projects to visual areas V2 and V4, and
V4 in turn projects to IT, which is the last exclu-
sively visual area along the ventral stream (Felle-
man and van Essen, 1991). Based on physiological
and lesion experiments in monkeys, IT has been
postulated to play a central role in object recog-
nition (Schwartz et al., 1983). It is also a major
source of input to prefrontal cortex (PFC) that is
involved in linking perception to memory and ac-
tion (Miller, 2000).

Neurons along the ventral stream (Perrett and
Oram, 1993; Logothetis and Sheinberg, 1996; Tan-
aka, 1996) show an increase in receptive field size
as well as in the complexity of their preferred
stimuli (Kobatake and Tanaka, 1994). Hubel and
Wiesel (1962) first described simple cells in V1 with
small receptive fields that respond preferentially to
oriented bars. At the top of the ventral stream, IT
cells are tuned to complex stimuli such as faces and
other objects (Gross et al., 1972; Desimone et al.,
1984; Perrett et al., 1992).

A hallmark of the cells in IT is the robustness of
their firing over stimulus transformations such as
scale and position changes (Perrett and Oram,
1993; Logothetis et al., 1995; Logothetis and She-
inberg, 1996; Tanaka, 1996). In addition, as other
studies have shown, most neurons show specificity
for a certain object view or lighting condition
(Hietanen et al., 1992; Perrett and Oram, 1993;
Logothetis et al., 1995; Booth and Rolls, 1998)
while other neurons are view-invariant and in
agreement with earlier predictions (Poggio and
Edelman, 1990). Whereas view-invariant recogni-
tion requires visual experience of the specific novel
object, significant position and scale invariance
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seems to be immediately present in the view-tuned
neurons (Logothetis et al., 1995) without the need
of visual experience for views of the specific object

at different positions and scales (see also Hung et
al., 2005).

In summary, the accumulated evidence points to
four, mostly accepted, properties of the feedfor-
ward path of the ventral stream architecture: (a) a
hierarchical build-up of invariances first to posi-
tion and scale and then to viewpoint and other
transformations; (b) an increasing selectivity, orig-
inating from inputs from previous layers and ar-
eas, with a parallel increase in both the size of the
receptive fields and in the complexity of the opti-
mal stimulus; (c) a basic feedforward processing of
information (for ‘‘immediate recognition’’ tasks);
and (d) plasticity and learning probably at all
stages with a time scale that decreases from V1 to
IT and PFC.

Architecture and model implementation

The physiological data summarized in the previous
section, together with computational considera-
tions on image invariances, lead to a theory that
summarizes and extends several previously existing
neurobiological models (Hubel and Wiesel, 1962;
Poggio and Edelman, 1990; Perrett and Oram,
1993; Mel, 1997; Wallis and Rolls, 1997; Ri-
esenhuber and Poggio, 1999) and biologically mo-
tivated computer vision approaches (Fukushima,
1980; LeCun et al., 1998; Ullman et al., 2002). The
theory maintains that:

One of the main functions of the ventral stream
pathway is to achieve an exquisite trade-off be-
tween selectivity and invariance at the level of
shape-tuned and invariant cells in IT from which
many recognition tasks can be readily accom-
plished; the key computational issue in object rec-
ognition is to be able to finely discriminate
between different objects and object classes while
at the same time being tolerant to object transfor-
mations such as scaling, translation, illumination,
viewpoint changes, changes in context and clutter,
non-rigid transformations (such as a change of fa-
cial expression) and, for the case of categorization,
also to shape variations within a class.

The underlying architecture is hierarchical, with
a series of stages that gradually increase invariance
to object transformations and tuning to more spe-
cific and complex features.

There exist at least two main functional types of
units, simple and complex, which represent the re-
sult of two main operations to achieve selectivity
(S layer) and invariance (C layer). The two corre-
sponding operations are a (bell-shaped) Gaussian-
like TUNING of the simple units and a MAX-like op-
eration for invariance to position, scale, and clut-
ter (to a certain degree) of the complex units.

Two basic operations for selectivity and invariance

The simple S units perform a TUNING operation
over their afferents to build object-selectivity. The
S units receive convergent inputs from retinotop-
ically organized units tuned to different preferred

stimuli and combine these subunits with a bell-
shaped tuning function, thus increasing object se-
lectivity and the complexity of the preferred stim-
ulus. Neurons with a Gaussian-like bell-shaped
tuning are prevalent across cortex. For instance,
simple cells in V1 exhibit a Gaussian tuning
around their preferred orientation; cells in AIT
are typically tuned around a particular view of
their preferred object. From the computational
point of view, Gaussian-like tuning profiles may be
the key in the generalization ability of the cortex.
Indeed, networks that combine the activity of sev-
eral units tuned with a Gaussian profile to differ-
ent training examples have proved to be a
powerful learning scheme (Poggio and Edelman,
1990).

The complex C units perform a MAX-like oper-
ation over their afferents to gain invariance to
several object transformations. The complex C

units receive convergent inputs from retinotopi-
cally organized S units tuned to the same preferred

stimulus but at slightly different positions and
scales and combine these subunits with a MAX-like
operation, thereby introducing tolerance to scale
and translation. The existence of a MAX operation
in visual cortex was proposed by Riesenhuber and
Poggio (1999) from theoretical arguments [and
limited experimental evidence (Sato, 1989)] and
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was later supported experimentally in both V4
(Gawne and Martin, 2002) and V1 at the complex
cell level (Lampl et al., 2004).

A gradual increase in both selectivity and in-
variance, to 2D transformations, as observed
along the ventral stream and as obtained in the
model by interleaving the two key operations, is
critical for avoiding both a combinatorial explo-
sion in the number of units and the binding prob-
lem between features. Below we shortly give
idealized mathematical expressions for the opera-
tions.

Idealized mathematical descriptions of the two

operations: In the following, we denote by y the
response of a unit (simple or complex). The set of
inputs to the cell (i.e., pre-synaptic units) are de-
noted with subscripts j ¼ 1, y N. When presented
with a pattern of activity x ¼ (x1, y, xN) as input,
an idealized and static description of a complex
unit response y is given by:

y ¼ max
j¼1;...;N

xj (1)

As mentioned above, for a complex cell, the in-
puts xj are retinotopically organized (selected from
an m�m grid of afferents with the same selectiv-
ity). For instance, in the case of a V1-like complex
cell tuned to a horizontal bar, all input subunits
are tuned to a horizontal bar but at slightly differ-
ent positions and scales. Similarly, an idealized
description of a simple unit response is given by:

y ¼ exp �
1

2s2
XN

j¼1

ðwj � xjÞ
2

 !
(2)

s defines the sharpness of the TUNING of the unit
around its preferred stimulus corresponding to the
synaptic strengths w ¼ (w1, y, wN). As for com-
plex cells, the subunits of the simple cells are also
retinotopically organized (selected from an m�m

grid of possible afferents). In contrast with com-
plex cells, the subunits of a simple cell have differ-
ent selectivities to increase the complexity of the
preferred stimulus. For instance, for the S2 units,
the subunits are V1-like complex cells at different
preferred orientations. The response of a simple
unit is maximal when the current pattern of input
x matches exactly the synaptic weights w (for in-
stance the frontal view of a face) and decreases

with a bell-shaped profile as the pattern of input
becomes more dissimilar (as the face is rotated
away from the preferred view).

Both of these mathematical descriptions are
only meant to describe the response behavior of
cells at a phenomenological level. Plausible bio-
physical circuits for the TUNING and MAX opera-
tions have been proposed based on feedforward
and/or feedback shunting inhibition combined
with normalization [see Serre et al. (2005) and ref-
erences therein].

Building a dictionary of shape-components from V1

to IT

The overall architecture is sketched in Fig. 1 and
reflects the general organization of the visual cor-
tex in a series of layers from V1 to IT and PFC.
Colors encode the tentative correspondences be-
tween the functional primitives of the theory
(right) and the structural primitives of the ventral
stream in the primate visual system (Felleman and
van Essen, 1991) (left, modified from Gross, 1998).
Below we give a brief description of a model in-
stantiating the theory. The reader should refer to
Serre (2006) for a more complete description of the
architecture and detailed parameter values.

The first stage of simple units (S1), correspond-
ing to the classical simple cells of Hubel and
Wiesel, represents the result of the first tuning op-
eration. Each S1 cell is tuned in a Gaussian-like
way to a bar (a gabor) of one of four possible
orientations. Each of the complex units in the sec-
ond layer (C1), corresponding to the classical com-
plex cells of Hubel and Wiesel, receives, within a
neighborhood, the outputs of a group of simple
units in the first layer at slightly different positions
and sizes but with the same preferred orientation.
The operation is a nonlinear MAX-like operation
[see Eq. (1)] that increases invariance to local
changes in position and scale while maintaining
feature specificity.

At the next simple cell layer (S2), the units pool
the activities of several complex units (C1) with
weights dictated by the unsupervised learning
stage (see below), yielding selectivity to more com-
plex patterns such as combinations of oriented
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lines. Simple units in higher layers (S3 and S4)
combine more and more complex features with a

Gaussian tuning function [see Eq. (2)], while the
complex units (C2 and C3) pool their afferents
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Fig. 1. Tentative mapping between structural primitives of the ventral stream in the primate visual system (Felleman and van Essen,

1991) (left) and functional primitives of the theory. The model, which is feedforward (apart from local recurrent circuits), attempts to

describe the initial stage of visual processing and immediate recognition, corresponding to the output of the top of the hierarchy and to

the first 150ms in visual recognition. Colors encode the tentative correspondences between model layers and brain areas. Stages of

simple cells with Gaussian-like tuning (plain circles and arrows), which provide generalization (Poggio and Bizzi, 2004), are interleaved

with layers of complex units (dotted circles and arrows), which perform a MAX-like operation on their inputs and provide invariance

to position and scale (pooling over scales is not shown in the figure). Both operations may be performed by the same local recurrent

circuits of lateral inhibition (see text). It is important to point out that the hierarchy is probably not as strict as depicted here. In

addition there may be cells with relatively complex receptive fields already in V1. The main route from the feedforward ventral pathway

is denoted with black arrows while the bypass route (Nakamura et al., 1993) is denoted with green arrows. Learning in the simple unit

layers from V2/V4 up to IT (including the S4 view-tuned units) is assumed to be stimulus-driven. It only depends on task-independent

visual experience-dependent tuning of the units. Supervised learning occurs at the level of the circuits in PFC (two sets of possible

circuits for two of the many different recognition tasks — identification and categorization — are indicated in the figure at the level of

PFC). (AdaptedAU :1 with permission from Serre et al., 2007a, Fig. 1.)
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through a MAX-like function [see Eq. (1)], pro-
viding increasing invariance to position and scale.
In the model, the two layers alternate (see Ri-
esenhuber and Poggio, 1999). Besides the main
route that follows stages along the hierarchy of the
ventral stream step-by-step, there are several
routes which bypass some of the stages, e.g., di-
rect projections from V2 to posterior IT (bypass-
ing V4) and from V4 to anterior IT (bypassing
posterior IT cortex). In the model, such bypass

routes correspond, for instance, to the projections
from the C1 layer to the S2b and then C2b layers.
Altogether the various layers in the architecture —
from V1 to IT — create a large and redundant
dictionary of features with different degrees of se-
lectivity and invariance.

Although the present implementation follows
the hierarchy of Fig. 1, the ventral stream’s hier-
archy may not be as strict. For instance there may
be units with relatively complex receptive fields
already in V1 (Mahon and DeValois, 2001; Victor
et al., 2006). A mixture of cells with various levels
of selectivity has also commonly been reported in
V2, V4, and IT (Tanaka, 1996; Hegdé and van
Essen, 2006). In addition, it is likely that the same
stimulus-driven learning mechanisms implemented
for the S2 units and above operate also at the level
of the S1 units. This may generate S1 units with
TUNING not only for oriented bars but also for
more complex patterns (e.g., corners), correspond-
ing to the combination of LGN-like, center-sur-
round subunits in specific geometrical
arrangements. Indeed it may be advantageous for
circuits in later stages (e.g., task-specific circuits in
PFC) to have access not only to the highly invar-
iant and selective units of AIT but also to less
invariant and simpler units such as those in V2 and
V4. Fine orientation discrimination tasks, for in-
stance, may require information from lower levels
of the hierarchy such as V1. There might also be
high level recognition tasks that benefit from less
invariant representations.

Learning

Unsupervised developmental-like learning from V1

to IT: Various lines of evidence suggest that visual

experience, both during and after development,
together with genetic factors, determine the con-
nectivity and functional properties of cells in cor-
tex. In this work, we assume that learning plays a
key role in determining the wiring and the synaptic
weights for the model units. We suggest that the
TUNING properties of simple units at various levels
in the hierarchy correspond to learning that com-
binations of features appear most frequently in
images. This is roughly equivalent to learning a
dictionary of image patterns that appear with high
probability. The wiring of the S layers depends on
learning correlations of features in the image that
are present at the same time (i.e., for S1 units, the
bar-like arrangements of LGN inputs, for S2 units,
more complex arrangements of bar-like subunits,
etc.).

The wiring of complex cells, on the other hand,
may reflect learning from visual experience to as-
sociate frequent transformations in time, such as
translation and scale, of specific complex features
coded by simple cells. The wiring of the C layers
could reflect learning correlations across time: e.g.,
at the C1 level, learning that afferent S1 units with
the same orientation and neighboring locations
should be wired together because such a pattern
often changes smoothly in time (under translation)
(Földiák, 1991). Thus, learning at the S and C

levels involves learning correlations present in the
visual world. At present it is still unclear whether
these two types of learning require different types
of synaptic learning rules or not.

In the present model we have only implemented
learning at the higher level S areas (beyond S1).
Connectivity at the C level was hardwired based
on physiology data. The goal of this learning stage
is to determine the selectivity of the S units, i.e., set
the weight vector w (see Eq. (2)) of the units in
layers S2 and higher. More precisely, the goal is to
define the basic types of units in each of the S
layers, which constitute a dictionary of shape-
components that reflect the statistics of natural
images. This assumption follows the notion that
the visual system, through visual experience and
evolution, may be adapted to the statistics of its
natural environment (Barlow, 1961). Details about
the learning rule can be found in (Serre, 2006).
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Supervised learning of the task-specific circuits

from IT to PFC: For a given task, we assume that
a particular program or routine is set up some-
where beyond IT (possibly in PFC (Freedman et
al., 2002; Hung et al., 2005), but the exact locus
may depend on the task). In a passive state (no
specific visual task is set) there may be a default
routine running (perhaps the routine: what is out
there?). Here we think of a particular classification
routine as a particular PFC-like unit that com-
bines the activity of a few hundred S4 units tuned
to produce a high response to examples of the
target object and low responses to distractors.
While learning in the S layers is stimulus-driven,
the PFC-like classification units are trained in a
supervised way. The concept of a classifier that
takes its inputs from a few broadly tuned example-
based units is a learning scheme that is closely re-
lated to Radial Basis Function (RBF) networks
(Poggio and Edelman, 1990), which are among the
most powerful classifiers in terms of generalization
ability. Computer simulations have shown the
plausibility of this scheme for visual recognition
and its quantitative consistency with many data
from physiology and psychophysics (Poggio and
Bizzi, 2004).

In the model, the response of a PFC-like clas-

sification unit with input weights c ¼ (c1, y, cn) is
given by:

f ðxÞ ¼
X

i

ciKðx
i; xÞ

where Kðxi;xÞ ¼ exp �
1

2s2
Xn

j¼1

ðxi
j � xjÞ

2

 !
ð3Þ

K(xi,x) characterizes the activity of the ith S4 unit,
tuned to the training example xi, in response to the
input image x and was obtained by replacing the
weight vector w in Eq. (2) by the training example
xi (i.e., w ¼ xi). The superscript i indicates the in-
dex of the image in the training set and the sub-
script j indicates the index of the pre-synaptic unit.
Supervised learning at this stage involves adjusting
the synaptic weights c to minimize the overall
classification error on the training set (see Serre,
2006).

Comparison with physiological observations

The quantitative implementation of the model, as
described in the previous section, allows for direct
comparisons between the responses of units in the
model and electrophysiological recordings from
neurons in the visual cortex. Here we illustrate this
approach by directly comparing the model against
recordings from the macaque monkey area V4 and
IT cortex while the animal was passively viewing
complex images.

Comparison of model units with physiological
recordings in the ventral visual cortex

The model includes several layers that are meant
to mimic visual areas V1, V2, V4, and IT cortex
(Fig. 1). We directly compared the responses of the
model units against electrophysiological record-
ings obtained throughout all these visual areas.
The model is able to account for many physiolog-
ical observations in early visual areas. For in-
stance, at the level of V1, model units agree with
the tuning properties of cortical cells in terms of
frequency and orientation bandwidth, as well as
peak frequency selectivity and receptive field sizes
(see Serre and Riesenhuber, 2004). Also in V1, we
observe that model units in the C1 layer can ex-
plain responses of a subpopulation of complex
cells obtained upon presenting two oriented bars
within the receptive field (Lampl et al., 2004). At
the level of V4, model C2 units exhibit tuning for
complex gratings (based on the recordings from
Gallant et al., 1996), and curvature (based on
Pasupathy and Connor, 2001), as well as interac-
tions of multiple dots (based on Freiwald et al.,
2005) or the simultaneous presentation of two-bar
stimuli [based on Reynolds et al. (1999), see Serre
et al. (2005) for details].

Here we focus on one comparison between C2

units and the responses of V4 cells. Figure 2 shows
the side-by-side comparison between a model C2

unit and V4 cell responses to the presentation of
one-bar and two-bar stimuli. As in (Reynolds et
al., 1999) model units were presented with either
(1) a reference stimulus alone (an oriented bar at
position 1, see Fig. 2A), (2) a probe stimulus alone
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(an oriented bar at position 2), or (3) both a ref-
erence and a probe stimulus simultaneously. We
used stimuli of 16 different orientations for a total
of 289 ¼ (16+1)2 total stimulus combinations for
each unit [see Serre et al. (2005) for details]. Each
unit’s response was normalized by the maximal
response of the unit across all conditions. As in
Reynolds et al. (1999) we computed a selectivity

index as the normalized response of the unit to the
reference stimulus minus the normalized response
of the unit to one of the probe stimuli. This index
was computed for each of the probe stimuli, yield-
ing 16 selectivity values for each model unit. This
selectivity index ranges from �1 to +1, with neg-
ative values indicating that the reference stimulus
elicited the stronger response, a value of 0 indi-
cating identical responses to reference and probe,
and positive values indicating that the probe stim-
ulus elicited the strongest response. We also com-
puted a sensory interaction index that corresponds
to the normalized response to a pair of stimuli (the
reference and a probe) minus the normalized re-
sponse to the reference alone. The selectivity index
also takes on values from �1 to +1. Negative
values indicate that the response to the pair is
smaller than the response to the reference stimulus
alone (i.e., adding the probe stimulus suppresses
the neuronal response). A value of 0 indicates that

adding the probe stimulus has no effect on the
neuron’s response while positive values indicate
that adding the probe increases the neuron’s re-
sponse.

As shown in Fig. 2B, model C2 units and V4
cells behave very similarly to the presentation of
two stimuli within their receptive field. Indeed the
slope of the selectivity vs. sensory interaction indi-
ces is �0.5 for both model units and cortical cells.
That is, at the population level, presenting a pre-
ferred and a non-preferred stimulus together pro-
duces a neural response that falls between the
neural responses to the two stimuli individually,
sometimes close to an average.1 We have found
that such a ‘‘clutter effect’’ also happens higher up
in the hierarchy at the level of IT (see Serre et al.,
2005). Since normal vision operates with many
objects appearing within the same receptive fields
and embedded in complex textures (unlike the ar-
tificial experimental setups), understanding the be-
havior of neurons under clutter conditions is
important and warrants more experiments (see
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Fig. 2. A quantitative comparison between model C2 units and V4 cells. (A) Stimulus configuration (adapted with permission from

Reynolds et al., 1999, Fig. 1A): The stimulus in position 1 is denoted as the reference and the stimulus in position 2 as the probe. As in

Reynolds et al. (1999) we computed a selectivity index (which indicates how selective a cell is to an isolated stimulus in position 1 vs.

position 2 alone) and a sensory interaction index (which indicates how selective the cell is to the paired stimuli vs. the reference stimulus

alone) (see text and Serre et al., 2005 for details). (B) Side-by-side comparison between V4 neurons (left, adapted with permission from

Reynolds et al., 1999, Fig. 5) while the monkey attends away from the receptive field location and C2 units (right). Consistent with the

physiology, the addition of a second stimulus in the receptive field of the C2 unit moves the response of the unit toward that of the

second stimulus alone, i.e., the response to the clutter condition lies between the responses to the individual stimuli.

1We only compare the response of the model units to V4

neurons when the monkey is attending away from the receptive

field location of the neuron. When the animal attends at the

location of the receptive field the response to the pairs is shifted

towards the response to the attended stimulus.

41



later section ‘‘Performance on natural images’’ and
section ‘‘A quantitative framework for the ventral
stream’’).

In sum, the model can capture many aspects of
the physiological responses of neurons along the
ventral visual stream from V1 to IT cortex (see
also Serre et al., 2005).

Decoding object information from IT and model
units

We recently used a simple linear statistical classi-
fier to quantitatively show that we could accu-
rately, rapidly, and robustly decode visual
information about objects from the activity of
small populations of neurons in anterior IT cortex
(Hung et al., 2005). In collaboration with Chou
Hung and James DiCarlo at MIT, we observed
that a binary response from the neurons (using
small bins of 12.5ms to count spikes) was suffi-
cient to encode information with high accuracy.
This robust visual information, as measured by
our classifiers, could in principle be decoded by the
targets of IT cortex such as PFC to determine the
class or identity of an object (Miller, 2000). Im-
portantly, the population response generalized
across object positions and scales. This scale and
position invariance was evident even for novel ob-
jects that the animal never observed before (see
also Logothetis et al., 1995). The observation that
scale and position invariance occurs for novel ob-
jects strongly suggests that these two forms of in-
variance do not require multiple examples of each
specific object. This should be contrasted with
other forms of invariance, such as robustness to
depth rotation, which requires multiple views in
order to be able to generalize (Poggio and Edel-
man, 1990).

Read-out from C2b units is similar to decoding from

IT neurons

We examined the responses of the model units to
the same set of 77 complex object images seen by
the monkey. These objects were divided into eight
possible categories. The model unit responses were
divided into a training set and a test set. We used a

one-versus-all approach, training eight binary clas-
sifiers, one for each category against the rest of the
categories, and then taking the classifier prediction
to be the maximum among the eight classifiers (for
further details, see Hung et al., 2005; Serre et al.,
2005). Similar observations were made when try-
ing to identify each individual object by training 77
binary classifiers. For comparison, we also tried
decoding object category from a random selection
of model units from other layers of the model (see
Fig. 1). The input to the classifier consisted of the
responses of randomly selected model units and
the labels of the object categories (or object iden-
tities for the identification task). Data from mul-
tiple units were concatenated assuming
independence.

We observed that we could accurately read out
the object category and identity from model units.
In Fig. 3A, we compare the classification perform-
ance, for the categorization task described above,
between the IT neurons and the C2b model units.
In agreement with the experimental data from IT,
units from the C2b stage of the model yielded a
high level of performance (470% for 100 units;
where chance was 12.5%). We observed that the
physiological observations were in agreement with
the predictions made by the highest layers in the
model (C2b, S4) but not by earlier stages (S1

through S2). As expected, the layers from S1

through S2 showed a weaker degree of scale and
position invariance.

The classification performance of S2b units (the
input to C2b units, see Fig. 1) was qualitatively
close to the performance of local field potentials
(LFPs) in IT cortex (Kreiman et al., 2006). The
main components of LFPs are dendritic potentials
and therefore LFPs are generally considered to
represent the dendritic input and local processing
within a cortical area (Mitzdorf, 1985; Logothetis
et al., 2001). Thus, it is tempting to speculate that
the S2b responses in the model capture the type of
information conveyed by LFPs in IT. However,
care should be taken in this interpretation as the
LFPs constitute an aggregate measure of the ac-
tivity over many different types of neurons and
large areas. Further investigation of the nature of
the LFPs and their relation with the spiking
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responses could help unravel the transformations
that take place across cortical layers.

The pattern of errors made by the classifier in-
dicates that some groups were easier to

discriminate than others. This was also evident in
the correlation matrix of the population responses
between all pairs of pictures (Hung et al., 2005;
Serre et al., 2005). The units yielded similar
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Fig. 3. (A) Classification performance based on the spiking activity from IT neurons (black) and C2b units from the model (gray). The

performance shown here is based on the categorization task where the classifier was trained based on the category of the object. A

linear classifier was trained using the responses to the 77 objects at a single scale and position (shown for one object by ‘‘TRAIN’’). The

classifier performance was evaluated using shifted or scaled versions of the same 77 objects (shown for one object by ‘‘TEST’’). During

training, the classifier was never presented with the unit responses to the shifted or scaled objects. The left-most column shows the

performance for training and testing on separate repetitions of the objects at the same standard position and scale (this is shown only

for the IT neurons because there is no variability in the model which is deterministic). The second bar shows the performance after

training on the standard position and scale (3.41, center of gaze) and testing on the shifted and scaled images. The dashed horizontal

line indicates chance performance (12.5%, one out of eight possible categories). Error bars show standard deviations over 20 random

choices of the units used for training/testing. (B) Classification performance for reading out object category as a function of the relative

size (area ratio) of object to background. Here the classifier was trained using the responses of 256 units to the objects presented in

cluttered backgrounds. The classifier performance was evaluated using the same objects embedded in different backgrounds. The

horizontal dashed line indicates chance performance obtained by randomly shuffling the object labels during training. (C) Classi-

fication performance for reading out object category in the presence of two objects. We exhaustively studied all possible pairs using the

same 77 objects as in part A (see two examples on the upper left part of the figure). The classifier was trained with images containing

two objects and the label corresponded to the category of one of them. During testing, the classifier’s prediction was considered to be a

hit if it correctly categorized either of the objects present in the image. The dashed line indicates change performance obtained by

randomly assigning object labels during training.
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responses to stimuli that looked alike at the pixel
level. The performance of the classifier for catego-
rization dropped significantly upon arbitrarily de-
fining the categories as random groups of pictures.

We also tested the ability of the model to gen-
eralize to novel stimuli not included in the training
set. The performance values shown in Fig. 3A are
based on the responses of model units to single
stimulus presentations that were not included in
the classifier training and correspond to the results
obtained using a linear classifier. Although the
way in which the weights were learned (using a
support vector machine classifier) is probably very
different in biology (see Serre, 2006); once the
weights are established the linear classification
boundary could very easily be implemented by
neuronal hardware [see Eq. (3)]. Therefore, the
recognition performance provides a lower bound
to what a real downstream unit (e.g., in PFC)
could, in theory, perform on a single trial given
input consisting of a few spikes from the neurons
in IT cortex. Overall, we observed that the pop-
ulation of C2b model units yields a read-out per-
formance level that is very similar to the one
observed from a population of IT neurons.

Extrapolation to larger object sets

One of the remarkable aspects of primate visual
recognition is the large number of different objects
that can be identified. Although the exact limits
are difficult to estimate, coarse estimates suggest
that it is possible to visually recognize on the order
of 104 different concepts (Biederman, 1987). The
physiological recordings were necessarily limited
to a small set of objects due to time constraints
during a recording session. Here we show that this
type of encoding can extrapolate to reading out
object category in a set consisting of 787 objects
divided into 20 categories (the physiological ob-
servations and the model results discussed above
were based on 77 objects divided into 8 categories).

The population of C2b units conveyed informa-
tion that could be decoded to indicate an object’s
category across novel objects. The classifier was
trained with objects from 20 possible categories
presented at different random locations and the

test set included novel objects never seen before by
the classifier but belonging to the same categories.
These results show that a relatively small neuronal
population can in principle support object recog-
nition over large object sets. Similar results were
obtained in analogous computer vision experi-
ments using an even larger set known as the Cal-

tech-101 object dataset (Serre et al., 2007b) where
the model could perform object categorization
among 101 categories. Other investigators have
also used models that can extrapolate to large
numbers of objects (Valiant, 2005) or suggested
that neuronal populations in IT cortex can also
extrapolate to many objects (Abbott et al., 1996;
Hung et al., 2005).

The number of objects (or classes) that can be
decoded at a given level of accuracy grows ap-
proximately as an exponential function of the
number of units. Even allowing for a strong re-
dundancy in the number of units coding each type
of feature, these results suggest that networks of
thousands of units could display a very large ca-
pacity. Of course the argument above relies on
several assumptions that could well be wrong.
However, at the very least, these observations sug-
gest that there do not seem to be any obvious ca-
pacity limitations for hierarchical models to
encode realistically large numbers of objects and
categories.

Robustness in object recognition

Many biological sources of noise could affect the
encoding of information. Among the most drastic
sources of noise are synaptic failures and neuronal
death. To model this, we considered the perform-
ance of the classifier after randomly deleting a
substantial fraction of the units during testing. As
shown for the experimental data in Hung et al.
(2005), the classifier performance was very robust
to this source of noise.

As discussed in the introduction, one of the
main achievements of visual cortex is the balance
of invariance and selectivity. Two particularly im-
portant forms of invariance are the robustness to
changes in scale and position of the images. In
order to analyze the degree of invariance to scale
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and position changes, we studied the responses of
units at different stages of the model to scaled
(0.5� and 2� ) and translated (21 and 41) versions
of the images. The earlier stages of the model show
a poor read-out performance under these trans-
formations, but the performance of the C2b stage is
quite robust to these transformations as shown in
Fig. 3A, in good agreement with the experimental
data (Hung et al., 2005).

We also observed that the population response
could extrapolate to novel objects within the same
categories by training the classifier on the re-
sponses to 70% of the objects and testing its per-
formance on the remaining 30% of the objects
(Serre et al., 2005). This suggests another dimen-
sion of robustness, namely, the possibility of learn-
ing about a category from some exemplars and
then extrapolating for novel objects within the
same category.

The results shown above correspond to ran-
domly selecting a given number of units to train
and test the classifier. The brain could be wired in
a very specific manner so that only the neurons
highly specialized for a given task project to the
neurons involved in decoding the information for
that task. Preselecting the units (e.g., using those
yielding the highest signal-to-noise ratio) yields
similar results while using a significantly smaller
number of units. Using a very specific set of neu-
rons (instead of randomly pooling from the pop-
ulation and using more neurons for decoding) may
show less robustness to neuronal death and spike
failures. The bias toward using only a specific
subset of neurons could be implemented through
selection mechanisms including attention. For ex-
ample, when searching for the car keys, the
weights from some neurons could be adjusted so
as to increase the signal-to-noise ratio for specific
tasks. This may suggest that other concomitant
recognition tasks would show weaker perform-
ance. In this case, the selection mechanisms take
place before recognition by biasing specific popu-
lations for certain tasks.

Recognition in clutter

The decoding experiments described above as well
as a large fraction of the studies reported in the
literature, involve the use of well-delimited single
objects on a uniform background. This is quite
remote from natural vision where we typically en-
counter multiple objects embedded in different
backgrounds, with potential occlusions, changes in
illumination, etc.

Ultimately, we would like to be able to read out
information from IT or from model units under
natural vision scenarios in which an everyday life
image can be presented and we can extract from
the population activity the same type and quality
of information that a human observer can (in a
flash). Here we show the degree of decoding ro-
bustness of objects that are embedded in complex
backgrounds (see also section ‘‘Performance on
natural images’’ describing the performance of the
model in an animal vs. non-animal categorization
task using objects embedded in complex back-
grounds).

We presented the same 77 objects used in Fig.
3A overlayed on top of images containing complex
background scenes (Fig. 3B). We did not attempt
to make the resulting images realistic or meaning-
ful in any way. While cognitive influences, mem-
ory, and expectations play a role in object
recognition, these high-level effects are likely to
be mediated by feedback biasing mechanisms that
would indicate that a monitor is more likely to be
found on an office desk than in the jungle. How-
ever, the model described here is purely feedfor-
ward and does not include any of these potential
biasing mechanisms. We used four different rela-
tive sizes of object-to-background (ratio of object
area to whole image area) ranging from 6% to
69%. The latter condition is very similar to the
single object situation analyzed above, both per-
ceptually and in terms of the performance of the
classifier. The smaller relative size makes it difficult
to detect the object at least in some cases when it is
not salient (see also section ‘‘Performance on nat-
ural images’’).

The classifier was trained on all objects using
20% of the background scenes and performance
was evaluated using the same objects presented on
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the remaining novel background scenes (we used a
total of 98 complex background scenes with pho-
tographs of outdoor scenes). The population of
C2b units allowed us to perform both object rec-
ognition (Fig. 3B) and identification significantly
above chance in spite of the background. Per-
formance depended quite strongly on the relative
image size (Fig. 3B). The largest size (69%) yielded
results that were very close to the single isolated
object results discussed above (cf. Fig. 3A). The
small relative image size (6%) yielded compara-
tively lower results but the performance of C2b

units was still significantly above chance levels
both for categorization and identification.

Recognizing (and searching for) small objects
embedded in a large complex scene (e.g., searching
for the keys in your house), constitutes an example
of a task that may require additional resources.
These additional resources may involve serial at-
tention that is likely to be dependent on feedback
connections. Therefore, the model may suggest
tasks and behaviors that require processes that are
not predominantly feedforward.

Reading-out from images containing multiple

objects

In order to further explore the mechanisms for
representing information about an object’s identity
and category in natural scenes, we studied the
ability to read out information from the model
units upon presentation of more than one object.
We presented two objects simultaneously in each
image (Fig. 3C). During testing, the classifier was
presented with images containing multiple objects.
We asked two types of questions: (1) what is the
most likely object in the image? and (2) what are
all the objects present in the image?

Training was initially performed with single ob-
jects. Interestingly, we could also train the classi-
fier using images containing multiple objects. In
this case, for each image, the label was the identity
(or category) of one of the objects (randomly cho-
sen so that the overall training set had the same
number of examples for each of the objects or ob-
ject categories). This is arguably a more natural
situation in which we learn about objects since we

rarely see isolated objects. However, it is possible
that attentional biases to some extent ‘‘isolate’’ an
object (e.g., when learning about an object with an
instructor that points to it).

In order to determine the most likely object
present in the image (question 1, above), the clas-
sifier’s prediction was considered to be a hit if it
correctly predicted either one of the two objects
presented during testing. The population of C2b

model units yielded very high performance reach-
ing more than 90% both for categorization and
identification with the single object training and
reaching more than 80% with the multiple object
training. Given that in each trial there are basically
two possibilities to get a hit, the chance levels are
higher than the ones reported in Fig. 3A. How-
ever, it is clear that the performance of the C2b

population response is significantly above chance
indicating that accurate object information can be
read-out even in the presence of another object.
We also extended these observations to 3 objects
and to 10 objects (Serre et al., 2005), obtaining
qualitatively similar conclusions.

Ultimately, we would like to be able to under-
stand an image in its entirety, including a descrip-
tion of all of its objects. Therefore, we asked a
more difficult question by requiring the classifier to
correctly predict all the objects (or all the object
categories) present in the image. During percep-
tion, human observers generally assume that they
can recognize and describe every object in an im-
age during a glimpse. However, multiple psycho-
physics studies suggest that this is probably wrong.
Perhaps one of the most striking demonstrations
of this fallacy is the fact that sometimes we can be
oblivious to large changes in the images (see Sim-
ons and Rensink, 2005). What is the capacity of
the representation at-a-glance? There is no con-
sensus answer to this question but some psycho-
physical studies suggest that only a handful of
objects can be described in a brief glimpse of an
image (on the order of five objects). After this first
glance, eye movements and/or attentional shifts
may be required to further describe an image. We
continue here referring to this rapid vision scenario
and we strive to explain our perceptual capabilities
during the glance using the model. Thus, the goal
is to be able to fully describe a set of about five
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objects that can be simultaneously presented in
multiple backgrounds in a natural scenario.

For this purpose, we addressed our second
question by taking the two most likely objects (or
object categories) given by the two best classifier
predictions (here the number of objects was hard-
wired). A hit from the classifier output was defined
as a perfect match between these predictions and
the two objects present in the image. This task is
much more difficult (compared to the task where
the goal is to categorize or identify any of the ob-
jects in the image). The performance of the clas-
sifier was also much smaller than the one reported
for the single-object predictions. However, per-
formance was significantly above chance, reaching
almost 40% for categorization (chance ¼ 0.0357)
and almost 8% for identification (chance
¼ 3.4� 10�4).
Similar results were obtained upon reading out

the category or identity of all objects present in the
image in the case of 3-object and 10-object images.
Briefly, even in images containing 10 objects, it is
possible to reliably identify one arbitrary object
significantly above chance from the model units.
However, the model performance in trying to de-
scribe all objects in the image drops drastically
with multiple objects to very low levels for 4–5
objects.

In summary, these observations suggest that it is
possible to recognize objects from the activity of
small populations of IT-like model units under
natural situations involving complex backgrounds
and several objects. The observations also suggest
that, in order to fully describe an image containing
many objects, eye movements, feedback, or other
additional mechanisms may be required.

Performance on natural images

For a theory of visual cortex to be successful, it
should not only mimic the response properties of
neurons and the behavioral response of the system
to artificial stimuli like the ones typically used in
physiology and psychophysics, but should also be
able to perform complex categorization tasks in a
real-world setting.

Comparison between the model and computer vision
systems

We extensively tested the model on standard com-
puter vision databases for comparison with several
state-of-the-art AI systems (see Serre, 2006; Serre
et al., 2007b, for details). Such real-world image
datasets tend to be much more challenging than
the typical ones used in a neuroscience lab. They
usually involve different object categories and the
systems that are evaluated have to cope with large
variations in shape, contrast, clutter, pose, illumi-
nation, size, etc. Given the many specific biological
constraints that the theory had to satisfy (e.g., us-
ing only biophysically plausible operations, recep-
tive field sizes, range of invariances, etc.), it was
not clear how well the model implementation de-
scribed in section ‘‘A quantitative framework for
the ventral stream’’ would perform in comparison
to systems that have been heuristically engineered
for these complex tasks.

Surprisingly we found that the model is capable
of recognizing complex images (see Serre et al.,
2007b). For instance, the model performs at a level
comparable to some of the best existing systems on
the CalTech-101 image database of 101 object cat-
egories (Fei-Fei et al., 2004) with a recognition rate
of �55% [chance level o1%, see Serre et al.
(2007b) and also the extension by Mutch and
Lowe (2006)].2 Additionally, Bileschi and Wolf
have developed an automated real-world Street
Scene recognition system (Serre et al., 2007b)
based in part on the model described in section ‘‘A
quantitative framework for the ventral stream.’’
The system is able to recognize seven different
object categories (cars, bikes, pedestrians, skies,
roads, buildings, and trees) from natural images of
street scenes despite very large variations in shape
(e.g., trees in summer and winter, SUVs as well as
compact cars under any view point).

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

PBR� V165 : 65004

2These benchmark evaluations relied on an earlier partial

implementation of the model which only included the bypass

route from S1-C2b.

47



Comparison between the model and human
observers

Finally, we tested whether the level of performance
achieved by the model was sufficient to account for
the level of performance of human observers. To
test this hypothesis, in the same way as an exper-
imental test of Newton’s second law requires
choosing a situation in which friction is negligi-
ble, we looked for an experimental paradigm in
which recognition has to be fast and cortical back-
projections are likely to be inactive. Ultra-rapid
object categorization (Thorpe et al., 1996) likely
depends only on feedforward processing (Thorpe
et al., 1996; Keysers et al., 2001; Thorpe and Fa-
bre-Thorpe, 2001; Li et al., 2002; VanRullen and
Koch, 2003) and thus satisfies our criterion. Here
we used a backward masking paradigm (Bacon-
Mace et al., 2005) in addition to the rapid stimulus
presentation to try to efficiently block recurrent
processing and cortical feedback loops (Enns and
Di Lollo, 2000; Lamme and Roelfsema, 2000;
Breitmeyer and Ogmen, 2006).

Human observers can discriminate a scene that
contains a particular prominent object, such as an
animal or a vehicle, after only 20ms of exposure.
Evoked response potential components related to
either low-level features of the image categories
(e.g., animal or vehicles) or to the image status
(animal present or absent) are available at 80 and
150ms respectively. These experimental results es-
tablish a lower bound on the latency of visual cat-
egorization decisions made by the human visual
system, and suggest that categorical decisions can
be implemented within a feedforward mechanism
of information processing (Thorpe et al., 1996;
Keysers et al., 2001; Thorpe and Fabre-Thorpe,
2001; Li et al., 2002; VanRullen and Koch, 2003).

Predicting human performance during a rapid

categorization task

In collaboration with Aude Oliva at MIT, we
tested human observers on a rapid animal vs. non-
animal categorization task [see Serre et al. (2007a),
for details]. The choice of the animal category was
motivated by the fact that (1) it was used in the

original paradigm by Thorpe et al. (1996) and (2)
animal photos constitute a rich class of stimuli
exhibiting large variations in texture, shape, size,
etc. providing a difficult test for a computer vision
system.

We used an image dataset that was collected by
Antonio Torralba and Aude Oliva and consisted
of a balanced set of 600 animal and 600 non-an-
imal images (see Torralba and Oliva, 2003). The
600 animal images were selected from a commer-
cially available database (Corel Photodisc) and
grouped into four categories, each category corre-
sponding to a different viewing-distance from the
camera: heads (close-ups), close-body (animal body
occupying the whole image), medium-body (animal
in scene context), and far-body (small animal or
groups of animals in larger context). One example
from each group is shown in Fig. 4.

To make the task harder and prevent subjects
from relying on low-level cues such as image-
depth, the 600 distractor images were carefully se-
lected to match each of the four viewing-distances.
Distractor images were of two types (300 of each):
artificial or natural scenes [see Serre et al. (2007a),
for details].

During the experiment, images were briefly
flashed for 20ms, followed by an inter-stimulus
interval (i.e., a blank screen) of 30ms, followed by
a mask (80ms, 1/f noise). This is usually con-
sidered a long stimulus onset asynchrony
(SOA ¼ 50ms) for which human observers are
close to ceiling performance (Bacon-Mace et al.,
2005). On the other hand, based on latencies in
visual cortex, such an SOA should minimize the
possibility of feedback and top-down effects in the
task: we estimated from physiological data (see
Serre et al., 2007a) that feedback signals from say,
V4 to V1 or IT/PFC to V4, should not occur ear-
lier than 40�60ms after stimulus onset. Human
observers (nh ¼ 24) were asked to respond as fast
as they could to the presence or absence of an
animal in the image by pressing either of the two
keys.

Before we could evaluate the performance of the
model, the task-specific circuits from IT to PFC
(see section on ‘‘A quantitative framework for the
ventral stream’’) had to be trained. These task-
specific circuits correspond to a simple linear
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classifier that reads out the activity of a population
of high level model units analogous to recordings
from anterior IT cortex (see section on ‘‘Compar-
ison with physiological observations’’). The train-
ing for these task-specific circuits was done by
using (nm ¼ 20) random splits of the 1200 stimuli
into a training set of 600 images and a test set of
600 images. For each split, we learned the synaptic
weights of the task-specific circuits of the model by
minimizing the error on the training set (see Serre
et al., 2007a) and evaluated the model perform-
ance on the test set. The reported performance
corresponds to the average performance from the
random runs.

The performance of the model and of human
observers was very similar (see Fig. 4). As for the
model, human observers performed best on ‘‘close-
body’’ views and worst on ‘‘far-body’’ views. An
intermediate level of performance was obtained for
‘‘head’’ and ‘‘medium-far’’ views. Overall no sig-
nificant difference was found between the level of
performance of the model and human subjects.
Interestingly, the observed dependency between
the level of performance and the amount of clutter
in the images (which increases from the close-body
to the far-body condition) for both human ob-
servers and the model seems consistent with the
read-out experiment from IT neurons (for both the
model and human observers) as described in sec-
tion ‘‘Comparison with physiological observa-
tions.’’

Importantly, lower stages of the model (C1

units) alone could not account for the results (see
Serre et al., 2007a). Additionally, performing the
equivalent of the lesioning of V4 in the model (i.e.,
leaving the bypass routes (C2b units as the only
source of inputs to the final classifier), see Fig. 1),
also resulted in a significant loss in performance
(this was true even after retraining the task-specific
circuits thus accounting for a ‘‘recovery’’ period).
This lesion experiment suggests that the large dic-
tionary of shape-tuned units in the model (from V1
to IT) with different levels of complexity and in-
variance learned from natural images is the key in
explaining the level of performance.

Beyond comparing levels of performance, we
also performed an image-by-image comparison
between the model and human observers. For this
comparison, we defined an index of ‘‘animalness’’
for each individual image. For the model, this in-
dex was computed by calculating the percentage of
times each image was classified as an animal (ir-
respective of its true label) for each random run
(nm ¼ 20) during which it was presented as a test
image. For human observers we computed the
number of times each individual image was clas-
sified as an animal by each observer (nh ¼ 24). This
index measures the confidence of either the model
(nm ¼ 20) or human observers (nh ¼ 24) in the
presence of an animal in the image. A percentage
of 100% (correspondingly 0%) indicates a very
high level of confidence in the presence (absence)
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Fig. 4. Comparison between the model and human observers.

Images showed either an animal embedded in a natural back-

ground or a natural scene without any animals. Images were

flashed for 20ms followed by a 30ms blank and a 80ms mask.

Human observers or the model were queried to respond indi-

cating whether an animal was present or not. The figure shows

the accuracy as d0 (the higher the value of the d0, the better the

performance), for the model (red) and humans (blue) across

1200 animal and non-animal stimuli. The model is able to pre-

dict the level of performance of human observers (overall 82%

for the model vs. 80% for human observers). For both the

model and human observers the level of performance is highest

on the close-body condition and drops gradually as the amount

of clutter increases in the image from close-body to medium-

body and far-body. (Adapted with permission from Serre et al.,

2007a, Fig. 3A.)
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of an animal. The level of correlation for the an-
imalness index between the model and human ob-
servers was 0.71, 0.84, 0.71, and 0.60 for heads,
close-body, medium-body, and far-body respec-
tively (po0.01 for testing the hypothesis of no
correlation against the alternative that there is a
non-zero correlation). This suggests that the model
and human observers tend to produce consistent
responses on individual images.

Additionally, to further challenge the model, we
looked at the effect of image orientation (901 and
1801 in-the-plane rotation): Rousselet et al. (2003)
previously suggested that the level of performance
of human observers during a rapid categorization
task tends to be robust to image rotation. We
found that the model and human observers exhib-
ited a similar degree of robustness (see Serre et al.,
2007a). Interestingly, the good performance of the
model on rotated images was obtained without the
need for retraining the model. This suggests that
according to the dictionary of shape-tuned units
from V1 to IT in the model (and presumably in
visual cortex), an image of a rotated animal is
more similar to an image of an upright animal
than to distractors. In other words, a small image
patch of a rotated animal is more similar to a
patch of an upright animal than to a patch of im-
age from a distractor.

Discussion: feedforward vs. feedback processing

As discussed earlier, an important assumption for
the experiment described above is that with an
SOA 50ms, the mask leaves sufficient time to
process the signal and estimate firing rates at each
stage of the hierarchy (i.e., 20–50ms, see Tovee et
al., 1993; Rolls et al., 1999; Keysers et al., 2001;
Thorpe and Fabre-Thorpe, 2001; Hung et al.,
2005), yet selectively blocks top-down signals [e.g.,
from IT or PFC to V4 that we estimated to be
around 40–60ms, see Serre et al. (2007a) for a
complete discussion]. The prediction is thus that
the feedforward system should: (1) outperform
human observers for very short SOAs (i.e., under
50ms when there is not enough time to reliably
perform local computations or estimate firing rates
within visual areas), (2) mimic the level of

performance of human observers for SOAs around
50ms such that there is enough time to reliably
estimate firing rates within visual areas but not
enough time for back-projections from top-down
to become active, and (3) underperform human
observers for long SOAs (beyond 60ms) such that
feedbacks are active.

We thus tested the influence of the mask onset
time on visual processing with four experimental
conditions, i.e., when the mask followed the target
image (a) without any delay (with an SOA of
20ms), (b) with an SOA of 50ms (corresponding
to an inter-stimulus interval of 30ms), (c) with an
SOAs of 80ms, or (d) never (‘‘no-mask’’ condi-
tion). For all four conditions, the target presenta-
tion was fixed to 20ms as before. As expected, the
delay between the stimulus and the mask onset
modulates the level of performance of the observ-
ers, improving gradually from the 20ms SOA con-
dition to the no-mask condition. The performance
of the model was superior to the performance of
human observers for the SOA of 20ms. The model
closely mimicked the level of performance of hu-
man observers for the 50ms condition (see Fig. 4).
The implication would be that, under these con-
ditions, the present feedforward version of the
model already provides a satisfactory description
of information processing in the ventral stream of
visual cortex. Human observers however outper-
formed the model for the 80ms SOA and the no-
mask condition.

Discussion

General remarks about the theory

We have developed a quantitative model of the
feedforward pathway of the ventral stream in vis-
ual cortex — from cortical area V1 to V2 to V4 to
IT and PFC — that captures its ability to learn
visual tasks, such as identification and categoriza-
tion of objects from images. The quantitative na-
ture of the model has allowed us to directly
compare its performance against experimental ob-
servations at different scales and also against cur-
rent computer vision algorithms. In this paper we
have focused our discussion on how the model can
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explain experimental results from visual object
recognition within short times at two very different
levels of analysis: human psychophysics and phys-
iological recordings in IT cortex. The model cer-
tainly does not account for all possible aspects of
visual perception or illusions (see also extensions,
predictions, and future directions below). How-
ever, the success of the model in explaining exper-
imental data across multiple scales and making
quantitative predictions strongly suggests that the
theory provides an important framework for the
investigation of the feedforward path in visual
cortex and the processes involved in immediate
recognition.

An important component of a theory is that it
should be falsifiable. In that spirit, we list some key
experiments and findings here that could refute the
present framework. First, a strong dissociation
between experimental observations and model pre-
dictions would suggest that revisions need to be
made to the model (e.g., psychophysical or phys-
iological observations that cannot be explained or
contradict predictions made by the model). Sec-
ond, as stated in the introduction, the present
framework relies entirely on a feedforward archi-
tecture from V1 to IT and PFC. Any evidence that
feedback plays a key role during the early stages of
immediate recognition should be considered as
hard evidence suggesting that important revisions
would need to be made in the main architecture of
the model (Fig. 1).

A wish-list of experiments

Here we discuss some predictions from the theory
and an accompanying ‘‘wish list’’ of experiments
that could be done to test, refute, or validate those
predictions. We try to focus on what we naively
think are feasible experiments.

1. The distinction between simple and complex
cells has been made only in primary visual
cortex. Our theory and parsimony consider-
ations suggest that a similar circuit is re-
peated throughout visual cortex. Therefore,
unbiased recordings from neurons in higher
visual areas may reveal the existence of two
classes of neurons which could be

distinguished by their degree of invariance to
image transformations.

2. As the examples discussed in this manuscript
illustrate, our theory can make quantitative
predictions about the limits of immediate
recognition at the behavioral level (section on
‘‘Performance on natural images’’) and also
at the neuronal level (section on ‘‘Compari-
son with physiological observations’’). The
biggest challenges to recognition include con-
ditions in which the objects are small relative
to the whole image and the presence of mul-
tiple objects, background, or clutter. It would
be interesting to compare these predictions to
behavioral and physiological measurements.
This could be achieved by adding extra con-
ditions in the psychophysical experiment of
section on ‘‘Performance on natural images’’
and by extending the read-out experiments
from section ‘‘Comparison with physiological
observations’’ to natural images and more
complex recognition scenarios.

3. The theory suggests that immediate recogni-
tion may rely on a large dictionary of shape-
components (i.e., common image-features)
with different levels of complexity and invar-
iance. This fits well with the concept of ‘‘un-
bound features’’ (Treisman and Gelade, 1980;
Wolfe and Bennett, 1997) postulated by cog-
nitive theories of pre-attentive vision. Impor-
tantly, the theory does not rely on any figure-
ground segregation. This suggests that, at
least for immediate recognition, recognition
can work without an intermediate segmenta-
tion step. Furthermore, it also suggests that it
is not necessary to define objects as funda-
mental units in visual recognition.

4. There is no specific computational role for a
functional topography of units in the model.
Thus, the strong degree of topography
present throughout cortex, may arise from
developmental reasons and physical con-
straints (a given axon may be more likely to
target two adjacent neurons than two neu-
rons that are far away; also, there may be a
strong pressure to minimize wiring) as op-
posed to having a specific role in object rec-
ognition or the computations made in cortex.
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5. The response of a given simple unit in the
model can be described by Eq. (2). Thus,
there are multiple different inputs that could
activate a particular unit. This may explain
the somewhat puzzling observations of why
physiologists often find neurons that seem to
respond to apparently dissimilar objects. Fol-
lowing this reasoning, it should be possible to
generate an iso-response stimulus set, i.e., a
series of stimuli that should elicit similar re-
sponses in a given unit even when the stimuli
apparently look different or the shape of the
iso-response stimulus set appear non-intui-
tive.

6. It is tempting to anthropomorphize the re-
sponses of units and neurons. This has been
carried as far as to speak of a neuron’s ‘‘pref-
erences.’’ The current theory suggests that an
input that gives rise to a high response from a
neuron is at the same time simpler and more
complex than this anthropomorphized ac-
count. It is simpler because it can be rigor-
ously approximated by specific simple
equations that control its output. It is more
complex because these weight vectors and
equations are not easily mapped to words
such as ‘‘face neuron,’’ ‘‘curvature,’’ etc., and
taken with the previous point, that visually
dissimilar stimuli can give rise to similar re-
sponses, the attribution of a descriptive word
may not be unique.

7. There are many tasks that may not require
back-projections. The performance of the
model may provide a reliable signature of
whether a task can be accomplished during
immediate recognition in the absence of feed-
back (e.g., the model performs well for im-
mediate recognition of single objects on
uncluttered backgrounds, but fails for atten-
tion-demanding tasks Li et al., 2002). As
stated above, one of the main assumptions of
the current model is the feedforward archi-
tecture. This suggests that the model may not
perform well in situations that require mul-
tiple fixations, eye movements, and feedback
mechanisms. Recent psychophysical work
suggests that performance on dual tasks can
provide a diagnostic tool for characterizing

tasks that do or do not involve attention (Li
et al., 2002). Can the model perform these
dual tasks when psychophysics suggests that
attention is or is not required? Are back-pro-
jections and feedback required?

In addition to the predictions listed above, we
recently discussed other experiments and predic-
tions that are based on a more detailed discussion
of the biophysical circuits implementing the main
operations in the model (see Serre et al., 2005).

Future directions

We end this article by reflecting on several of the
open questions, unexplained phenomena, and
missing components of the theory. Before we be-
gin, we should note that visual recognition en-
compasses much more than what has been
attempted and achieved with the current theory.
A simple example may illustrate this point. In the
animal categorization task discussed in the previ-
ous sections, humans make mistakes upon being
pressed to respond promptly. Given 10 s and no
mask, performance would be basically 100%. As
stated several times, the goal here is to provide a
framework to quantitatively think about the initial
steps in vision, but it is clear that much remains to
be understood beyond immediate recognition.

Open questions

How strict is the hierarchy and how precisely does it

map into cells of different visual areas? For in-
stance, are cells corresponding to S2 units in V2
and C2 units in V4 or are some cells corresponding
to S2 units already in V1? The theory is rather
open about these possibilities: the mapping of Fig.
1 is just an educated guess. However, because of
the increasing arborization of cells and the number
of boutons from V1 to PFC (Elston, 2003), the
number of subunits to the cells should increase and
thus their potential size and complexity. In addi-
tion, C units should show more invariance from
the bottom to the top of the hierarchy.

What is the nature of the cortical and subcortical

connections (both feedforward and feedback) to and
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from the main areas of the ventral visual stream that

are involved in the model? A more thorough char-
acterization at the anatomical level of the circuits
in visual cortex would lead to a more realistic ar-
chitecture of the model by better constraining
some of the parameters such as the size of the dic-
tionary of shape-components or the number of
inputs to units in different layers. This would also
help refine and extend the existing literature on the
organization of visual cortex (Felleman and van
Essen, 1991). With the recent development of
higher resolution tracers (e.g., PHA-L, biocytin,
DBA), visualization has greatly improved and it is
now possible to go beyond a general layout of in-
terconnected structures and start addressing the
finer organization of connections.

What are the precise biophysical mechanisms for

the learning rule described in section ‘‘A quantitative

framework for the ventral stream’’ and how can in-

variances be learned within the same framework?

Possible synaptic mechanisms for learning should
be described in biophysical detail. As suggested
earlier, synaptic learning rules should allow for
three types of learning: (1) the TUNING of the
units at the S level by detecting correlations among
subunits at the same time, (2) the invariance to
position and scale at the C level by detecting cor-
relations among subunits across time, and (3) the
training of task-specific circuits (probably from IT
to PFC) in a supervised fashion.

Is learning in areas below IT purely unsupervised

and developmental-like as assumed in the theory? Or

is there task- and/or object-specific learning in

adults occurring below IT in V4, V2, or even V1?

Have we reached the limit of what feedforward

architectures can achieve in terms of performance?

In other words, is the somewhat better perform-
ance of humans on the animal vs. non-animal cat-
egorization task (see section on ‘‘Comparison
between the model and human observers’’) over
the model for SOAs longer than 80ms due to
feedback effects mediated by back-projections or
can the model be improved to attain human per-
formance in the absence of a mask? There could be
several directions to follow in order to try to im-
prove the model performance. One possibility
would involve experimenting with the size of the
dictionary of shape-components (that could be

further reduced with feature selection techniques
for instance). Another possibility would involve
adding intermediate layers to the existing ones.

Are feedback loops always desirable? Is the per-
formance on a specific task guaranteed to always
increase when subjects are given more time? Or are
there tasks for which blocking the effect of back-
projections with rapid masked visual presentation
increases the level of performance compared to
longer presentation times?

Future extensions

Learning the tuning of the S1 units: In the present
implementation of the model the tuning of the
simple cells in V1 is hardwired. It is likely that it
could be determined through the same passive
learning mechanisms postulated for the S2, S2b,
and S3 units (in V4 and PIT respectively), possibly
with a slower time scale and constrained to LGN
center-surround subunits. We would expect the
automatic learning from natural images mostly of
oriented receptive fields but also of more complex
ones, including end-stopping units [as reported for
instance in DeAngelis et al. (1992) in layer 6 of
V1].

Dynamics of neuronal responses: The current im-
plementation is completely static, for a given static
image the model produces a single response in
each unit. This clearly does not account for the
intricate dynamics present in the brain and also
precludes us from asking several questions about
the encoding of visual information, learning, the
relative timing across areas, etc. Perhaps the eas-
iest way to solve this is by using simple single
neuron models (such as an integrate-and-fire neu-
ron) for the units in the model. This question is
clearly related to the biophysics of the circuitry,
i.e., what type of biological architectures and
mechanisms can give rise to the global operations
used by the model. A dynamical model would al-
low us to more realistically compare to experi-
mental data. For example, the experiments
described in section ‘‘Performance on natural im-
ages’’ compare the results in a categorization task
between the model and human subjects. In the
human psychophysics, the stimuli were masked
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briefly after stimulus presentation. A dynamical
model would allow us to investigate the role and
mechanisms responsible for masking. A dynamical
model may also allow investigation of time-de-
pendent phenomena as well as learning based on
correlations across time.

Extensions of the model to other visual inputs:
There are many aspects of vision that are not cur-
rently implemented in the model. These include
color, stereo, motion, and time-varying stimuli.
Initial work has been done to extend the model to
the visual recognition of action and motions
(Giese and Poggio, 2003; Sigala et al., 2005). It is
likely that the same units supporting recognition
of static images (the S4, view-tuned units in the
model) show time sequence selectivity.

Color mechanisms from V1 to IT should be in-
cluded. The present implementation only deals
with gray level images (it has been shown that the
addition of color information in rapid categoriza-
tion tasks only leads to a mild increase in per-
formance Delorme et al., 2000). More complex
phenomena involving color such as color con-
stancy and the influence of the background and
integration in color perception should ultimately
be explained.

Stereo mechanisms from V1 to IT should also be
included. Stereo and especially motion play an
important role in the learning of invariances such
as position and size invariance via a correlation-
based rule such as the trace rule (Földiák, 1991).

Extensions of the anatomy of the model: Even
staying within the feedforward skeleton outlined
here, there are many connections that are known
to exist in the brain that are not accounted for in
the current model. The goal of the model is to
extract the basic principles used in recognition and
not to copy, neuron by neuron, the entire brain.
However, certain connectivity patterns may have
important computational consequences. For ex-
ample, there are horizontal connections in the cor-
tex that may be important in modulating and
integrating information across areas beyond the
receptive field.

Beyond a feedforward model: It has been known
for many decades now that there are abundant
back-projections in the brain. In the visual system,
every area projects back to its input area (with the

exception of the lateral geniculate nucleus in the
thalamus that does not project back to the retina).
Some of these connections (e.g., from V2 to V1),
may play a role even during immediate recogni-
tion. However, a central assumption of the current
model is that long-range backprojections (e.g.,
from area IT to V1) do not play a role during the
first 100–150ms of vision. Given enough time, hu-
mans make eye movements to scan an image and
performance in many object recognition tasks can
increase significantly over that obtained during
fast presentation.

Visual illusions: A variety of visual illusions
show striking effects that are often counterintui-
tive and require an explanation in terms of the
neuronal circuits. While in some cases specific
models have been proposed to explain one phe-
nomenon or another, it would be interesting to
explore how well the model (and thus feedforward
vision) can account for those observations. A few
simple examples include illusory contours (such as
the Kanizsa triangle), long-range integration
effects (such as the Cornsweet illusion), etc. More
generally, it is likely that early Gestalt-like mech-
anisms — for detecting collinearity, symmetry,
parallelism, etc. — exist in V1 or V2 or V4. They
are not present in this version of the model. It is an
open and interesting question how they could be
added to it in a plausible way.
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