When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes

Philipp Bomatter^{1,*}, Mengmi Zhang^{2,3,*}, Dimitar Karev⁴, Spandan Madan^{3,5}, Claire Tseng⁴, and Gabriel Kreiman^{2,3}

ETH zürich

¹ETH Zürich ²Children's Hospital, Harvard Medical School ³Center for Brains, Minds and Machines ⁴Harvard College, Harvard University ⁵School of Engineering and Applied Sciences, Harvard University ^{*}Equal contribution

Introduction

Contextual information is of fundamental importance to both human and machine vision.

We present a new dataset with well-controlled contextual perturbations, a deep learning architecture that incorporates contextual information, and a comparison to human b<u>ehavior</u>.

Psychophysics experiments provide insights and an essential benchmark of human performance.

Our synthetic Out-of-Context Dataset (OCD) allows for well-controlled and fine-grained study of different dimensions of context.

- \circ $\hfill We observe similar qualitative behavior of humans and CRTNet.$
- In terms of recognition accuracy, CRTNet outperforms competitive baselines across a wide range of context conditions and datasets.

The Context-aware Recognition Transformer (CRTNet) leverages contextual information for object recognition.

Address correspondence to *gabriel.kreiman@tch.harvard.edu* Source Code & Data: <u>https://github.com/kreimanlab/WhenPigsFlyContext</u>

