1: Mol Cell. 2005 Mar 4;17(5):683-94. Comment in: Mol Cell. 2005 Mar 18;17(6):752-4. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Wang G, Balamotis MA, Stevens JL, Yamaguchi Y, Handa H, Berk AJ. Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, 611 Young Drive East, Los Angeles, California 90095, USA. Mediator complexes are required for activators to stimulate Pol II preinitiation complex assembly on an associated promoter. We show here that for the mouse Egr1 gene, controlled largely by MAP kinase phosphorylation of the ELK1 transcription factor, the MED23 Mediator subunit that interacts with phospho-ELK1 is also required to stimulate Pol II initiation at a step subsequent to preinitiation complex assembly. In Med23-/- cells, histone acetylation, methylation, and chromatin remodeling complex association at the Egr1 promoter were equivalent to that of wild-type cells, yet Egr1 induction was greatly reduced. MAP kinase activation stimulated Pol II and GTF promoter binding. However, the difference in factor binding between wild-type and mutant cells was much less than the difference in transcription, and Pol II remained localized to the promoter in mutant cells. These results indicate that an interaction with MED23 stimulates initiation by promoter bound Pol II in addition to Pol II and GTF recruitment. PMID: 15749018 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Eur J Cell Biol. 2000 Dec;79(12):924-35. Nerve growth factor- and epidermal growth factor-regulated gene transcription in PC12 pheochromocytoma and INS-1 insulinoma cells. Groot M, Boxer LM, Thiel G. Medical Biochemistry and Molecular Biology, University of Saarland Medical School, Homburg, Germany. PC12 and INS-1 cells both express the nerve growth factor (NGF) receptors trkA and p75NTR and the epidermal growth factor receptor (EGF). In PC12 cells, NGF treatment initiates a signaling cascade that ultimately leads to a change of the genetic program of the cell. We have investigated the role of NGF in regulating gene transcription in PC12 and INS-1 cells, in order to define if there are NGF-regulated genes per se. Furthermore, to distinguish between growth factor stimulation via receptor tyrosine kinases in general and NGF-specific changes in gene transcription, we analyzed the effects of EGF on gene transcription. First, we tested the biological activities of fusion proteins consisting of the DNA-binding domain of the yeast transcription factor GAL4 and the phosphorylation-dependent activation domains of the transcription factors Elk1, CREB, ATF2 and c-jun in NGF- or EGF-treated PC12 cells. We found a striking increase in the transcriptional activity of the GAL4-Elk1 fusion protein that is a major substrate for the extracellular signal-regulated protein kinase (ERK). This effect was observed in NGF- as well as in EGF-treated PC12 cells. In INS-1 cells, however, the activity of the GAL4-Elk1 fusion protein was induced by NGF, but not by EGF. The effects of NGF and EGF on gene transcription were subsequently studied with plasmids containing reporter genes under control of the Egr-1, c-jun, HES-1 or Bc12 regulatory sequences. NGF stimulated Egr-1 promoter activities in PC12 and INS-1 cells, although the effect was much more pronounced in PC12 cells than in INS-1 cells. EGF also stimulated Egr-1 promoter activity in both PC12 and INS-1 cells. Stimulation of c-jun promoter activity by NGF was observed only in PC12 cells. Deletion mutagenesis demonstrated the importance of the 12-O-tetradecanoylphorbol-13-acetate response elements within the c-jun promoter for basal and NGF-mediated transcriptional induction. Likewise, NGF activated HES1 and Bcl2 P1 promoter activities in PC12 cells but not in INS-1 cells and EGF did not show any effects on these promoters. We conclude that in PC12 and INS-1 cells, NGF signaling leads to an activation of the ERK subtype of mitogen-activated protein kinases in the nucleus and a subsequent activation of Egr-1 gene transcription. The NGF-induced transcription of the c-jun, HES1 and Bc12 genes is, in contrast, cell type-specific, indicating that NGF can trigger different gene expression programs dependent on the signaling pathways present in a particular cell type. EGF is clearly able to activate gene transcription, suggesting that the differences in the biological activities of EGF and NGF cannot be explained by the inability of EGF to stimulate gene transcription. PMID: 11152283 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: J Neurosci. 2001 Jan 1;21(1):45-52. Blockade of NGF-induced neurite outgrowth by a dominant-negative inhibitor of the egr family of transcription regulatory factors. Levkovitz Y, O'Donovan KJ, Baraban JM. Departments of Neuroscience, Psychiatry, and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. Although it is well established that members of the Egr family of transcription regulatory factors are induced in many neuronal plasticity paradigms, it is still unclear what role, if any, they play in this process. Because NGF stimulation of pheochromocytoma 12 cells elicits a robust induction of Egr family members, we have investigated their role in mediating long-term effects elicited by NGF in these cells by using the Egr zinc finger DNA-binding domain as a selective antagonist of Egr family-mediated transcription. We report that expression of this Egr inhibitor construct suppresses neurite outgrowth elicited by NGF but not by dibutyryl cAMP. To check that this Egr inhibitor construct does not act by blocking the MEK/ERK pathway, which is known to mediate NGF-induced neurite outgrowth, we confirmed that the Egr inhibitor construct does not block NGF activation of Elk1-mediated transcription, a response that is dependent on this pathway. Conversely, inhibition of MEK does not impair Egr family-mediated transcription. Thus, we conclude (1) that induction of Egr family members and activation of the MEK/ERK pathway by NGF are mediated by separate signaling pathways and (2) that both are required to trigger neurite outgrowth induced by NGF. PMID: 11150318 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: Oncogene. 1997 Jan 16;14(2):213-21. FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egr1 promoter serum response elements. Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A. Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston 29425, USA. The ETS gene products are a family of transcriptional regulatory proteins that contain a highly conserved and structurally unique DNA binding domain, termed the ETS domain. Several ETS proteins bind to DNA as monomers, however it has been shown that the DNA binding activity is enhanced or modulated in the presence of other factors. By differential display and whole genome PCR techniques, we have recently shown that the Erg1 gene is a target for ETS proteins. The Egr1 promoter contains multiple ETS binding sites, three of which exist as parts of two serum response elements (SREI and SREII). The SRE is a cis-element that regulates the expression of many growth factor responsive genes. ELK1 and SAP1a have been shown to form ternary complexes with SRF on the SRE located in the c-fos promoter. Similarly, we examined whether the ELK1, SAP1a, FLI1, EWS-FLI1, ETS1, ETS2, PEA3 and PU.1 proteins can form ternary complexes with SRF on the Egr1 SREI and II. Our results demonstrate that indeed ELK1, SAPla, FLI1 and EWS-FLI1 are able to form ternary complexes with SRF on Egr1 SREs. In addition, ELK1 and SAP1a can also form quarternary complexes on the Egr1 SREI. However, the proteins ETS1, ETS2, PEA3 and PU.1 were unable to form ternary complexes with SRF on either the Egr1 or c-fos SREs. Our data demonstrate that FLI1 and EWS-FLI1 constitute new members of a subgroup of ETS proteins that can function as ternary complex factors and further implicate a novel function for these ETS transcription factors in the regulation of the Egr1 gene. By amino acid sequence comparison we found that, in fact, 50% of the amino acids present in the B-box of SAP1a and ELK1, which are required for interaction with SRF, are identical to those present in both FLI1 (amino acids 231- 248) and EWS-FLI1 proteins. This B-box is not present in ETS1, ETS2, PEA3 or PU.1 and these proteins were unable to form ternary complexes with SRF and Egrl-SREs or c-fos SRE. Furthermore, deletion of 194 amino terminal amino acids of FLI1 did not interfere with its ability to interact with SRF, in fact, this truncation increased the stability of the ternary complex. The FLI1 protein has a unique R-domain located next to the DNA binding region. This R-domain may modulate the interaction with SRF, providing a mechanism that would be unique to FLI1 and EWS-FLI1, thus implicating a novel function for these ETS transcription factors in the regulation of the Egr1 gene. PMID: 9010223 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------