1: Genes Chromosomes Cancer. 2003 Jul;37(3):270-81. Erratum in: Genes Chromosomes Cancer. 2003 Jul;37(3):332. Cytogenetic, spectral karyotyping, fluorescence in situ hybridization, and comparative genomic hybridization characterization of two new secondary leukemia cell lines with 5q deletions, and MYC and MLL amplification. Knutsen T, Pack S, Petropavlovskaja M, Padilla-Nash H, Knight C, Mickley LA, Ried T, Elwood PC, Roberts SJ. Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. knutsent@mail.nih.gov Cytogenetic studies of patients with therapy-induced acute myeloid leukemia (t-AML) have demonstrated whole chromosome loss or q-arm deletion of chromosomes 5 and/or 7 in a majority of cases. We have established two cell lines, SAML-1 and SAML-2, from two patients who developed t-AML after radiation and chemotherapy for Hodgkin disease. In both cases, the leukemia cells contained 5q deletions. SAML-1 has 58 chromosomes and numerous abnormalities, including der(1)(1qter-->1p22::5q31-->5qter), der(5)(5pter-->5q22::1p22-->1pter), +8, der(13)i(13)(q10)del(13)(q11q14.1), and t(10;11). Fluorescence in situ hybridization (FISH) with unique sequence probes for the 5q31 region showed loss of IL4, IL5, IRF1, and IL3, and translocation of IL9, DS5S89, EGR1, and CSFIR to 1p. SAML-2 has 45 chromosomes, del(5)(q11.2q31) with a t(12;13)ins(12;5), leading to the proximity of IRF1 and RB1, and complex translocations of chromosomes 8 and 11, resulting in amplification of MYC and MLL. Comparative genomic hybridization and spectral karyotyping were consistent with the G-banding karyotype and FISH analyses. Because a potential tumor suppressor(s) in the 5q31 region has yet to be identified, these cell lines should prove useful in the study of the mechanisms leading to the development of t-AML. Copyright 2003 Wiley-Liss, Inc. PMID: 12759925 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Genomics. 1993 Jun;16(3):726-32. A physical map of 15 loci on human chromosome 5q23-q33 by two-color fluorescence in situ hybridization. Saltman DL, Dolganov GM, Warrington JA, Wasmuth JJ, Lovett M. Department of Molecular Genetics, Genelabs Incorporated, Redwood City, California 94063. The q23-q33 region of human chromosome 5 encodes a large number of growth factors, growth factor receptors, and hormone/neurotransmitter receptors. This is also the general region into which several disease genes have been mapped, including diastrophic dysplasia, Treacher Collins syndrome, hereditary startle disease, the myeloid disorders that are associated with the 5q-syndrome, autosomal-dominant forms of hereditary deafness, and limb girdle muscular dystrophy. We have developed a framework physical map of this region using cosmid clones isolated from the Los Alamos arrayed chromosome 5-specific library. Entry points into this library included 14 probes to genes within this interval and one anonymous polymorphic marker locus. A physical map has been constructed using fluorescence in situ hybridization of these cosmids on metaphase and interphase chromosomes, and this is in good agreement with the radiation hybrid map of the region. The derived order of loci across the region is cen-IL4-IL5-IRF1-IL3-IL9-EGR1-CD1 4-FGFA-GRL-D5S207-ADRB2-SPARC-RPS14+ ++-CSF1R- ADRA1, and the total distance spanned by these loci is approximately 15 Mb. The framework map, genomic clones, and contig expansion within 5q23-q33 should provide valuable resources for the eventual isolation of the clinically relevant loci that reside in this region. PMID: 8325647 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------