1: Br J Cancer. 2005 Aug 8;93(3):310-8. The retinoid anticancer signal: mechanisms of target gene regulation. Liu T, Bohlken A, Kuljaca S, Lee M, Nguyen T, Smith S, Cheung B, Norris MD, Haber M, Holloway AJ, Bowtell DD, Marshall GM. Children's Cancer Institute Australia for Medical Research, Randwick NSW 2031, Australia. Retinoids induce growth arrest, differentiation, and cell death in many cancer cell types. One factor determining the sensitivity or resistance to the retinoid anticancer signal is the transcriptional response of retinoid-regulated target genes in cancer cells. We used cDNA microarray to identify 31 retinoid-regulated target genes shared by two retinoid-sensitive neuroblastoma cell lines, and then sought to determine the relevance of the target gene responses to the retinoid anticancer signal. The pattern of retinoid responsiveness for six of 13 target genes (RARbeta2, CYP26A1, CRBP1, RGS16, DUSP6, EGR1) correlated with phenotypic retinoid sensitivity, across a panel of retinoid-sensitive or -resistant lung and breast cancer cell lines. Retinoid treatment of MYCN transgenic mice bearing neuroblastoma altered the expression of five of nine target genes examined (RARbeta2, CYP26A1, CRBP1, DUSP6, PLAT) in neuroblastoma tumour tissue in vivo. In retinoid-sensitive neuroblastoma, lung and breast cancer cell lines, direct inhibition of retinoid-induced RARbeta2 expression blocked induction of only one of eight retinoid target genes (CYP26A1). DNA demethylation, histone acetylation, and exogenous overexpression of RARbeta2 partially restored retinoid-responsive CYP26A1 expression in RA-resistant MDA-MB-231 breast, but not SK-MES-1 lung, cancer cells. Combined, rather than individual, inhibition of DUSP6 and RGS16 was required to block retinoid-induced growth inhibition in neuroblastoma cells, through phosphorylation of extracellular-signal-regulated kinase. In conclusion, sensitivity to the retinoid anticancer signal is determined in part by the transcriptional response of key retinoid-regulated target genes, such as RARbeta2, DUSP6, and RGS16. PMID: 16012519 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Clin Cancer Res. 2004 Oct 15;10(20):6789-95. Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R. Laboratoire d'Oncogenetique - INSERM E0017, Centre Rene Huguenin, St-Cloud, France. i.bieche@stcloud-huguenin.org PURPOSE: Inflammatory breast cancer (IBC) is a rare but particularly aggressive form of primary breast cancer. The molecular mechanisms responsible for IBC are largely unknown. EXPERIMENTAL DESIGN: To obtain further insight into the molecular pathogenesis of IBC, we used real-time quantitative reverse transcription (RT)-PCR to quantify the mRNA expression of 538 selected genes in IBC relative to non-IBC. RESULTS: Twenty-seven (5.0%) of the 538 genes were significantly up-regulated in IBC compared with non-IBC. None were down-regulated. The 27 up-regulated genes mainly encoded transcription factors (JUN, EGR1, JUNB, FOS, FOSB, MYCN, and SNAIL1), growth factors (VEGF, DTR/HB-EGF, IGFBP7, IL6, ANGPT2, EREG, CCL3/MIP1A, and CCL5/RANTES) and growth factor receptors (TBXA2R, TNFRSF10A/TRAILR1, and ROBO2). We also identified a gene expression profile, based on MYCN, EREG, and SHH, which discriminated subgroups of IBC patients with good, intermediate, and poor outcome. CONCLUSION: Our study has identified a limited number of signaling pathways that require inappropriate activation for IBC development. Some of the up-regulated genes identified here could offer useful diagnostic or prognostic markers and could form the basis of novel therapeutic strategies. PMID: 15501955 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------