1: Int J Oncol. 2004 Nov;25(5):1495-500. Human FOX gene family (Review). Katoh M, Katoh M. M&M Medical BioInformatics, Hongo 113-0033, Japan. mkatoh@ncc.go.jp Human Forkhead-box (FOX) gene family consists of at least 43 members, including FOXA1, FOXA2, FOXA3, FOXB1, FOXC1, FOXC2, FOXD1, FOXD2, FOXD3, FOXD4, FOXD5 (FOXD4L1), FOXD6 (FOXD4L3), FOXE1, FOXE2, FOXE3, FOXF1, FOXF2, FOXG1 (FOXG1B), FOXH1, FOXI1, FOXJ1, FOXJ2, FOXJ3, FOXK1, FOXK2, FOXL1, FOXL2, FOXM1, FOXN1, FOXN2 (HTLF), FOXN3 (CHES1), FOXN4, FOXN5 (FOXR1), FOXN6 (FOXR2), FOXO1 (FOXO1A), FOXO2 (FOXO6), FOXO3 (FOXO3A), FOXO4 (MLLT7), FOXP1, FOXP2, FOXP3, FOXP4, and FOXQ1. FOXE3-FOXD2 (1p33), FOXQ1-FOXF2-FOXC1 (6p25.3), and FOXF1-FOXC2-FOXL1 (16q24.1) loci are FOX gene clusters within the human genome. Members of FOX subfamilies A-G, I-L and Q were grouped into class 1 FOX proteins, while members of FOX subfamilies H and M-P were grouped into class 2 FOX proteins. C-terminal basic region within the FOX domain was the common feature of class 1 FOX proteins. FOXH1 and FOXO1 mRNAs are expressed in human embryonic stem (ES) cells. FOXC1, FOXC2, FOXE1, FOXE3, FOXL2, FOXN1, FOXP2 and FOXP3 genes are mutated in human congenital disorders. FOXA1 gene is amplified and over-expressed in esophageal and lung cancer. FOXM1 gene is up-regulated in pancreatic cancer and basal cell carcinoma due to the transcriptional regulation by Sonic Hedgehog (SHH) pathway. FOXO1 gene is fused to PAX3 or PAX7 genes in rhabdomyosarcoma. FOXO3 and FOXO4 genes are fused to MLL gene in hematological malignancies. Deregulation of FOX family genes leads to congenital disorders, diabetes mellitus, or carcinogenesis. Expression profiles, genetic alterations and epigenetic changes of FOX family genes as well as binding proteins and target genes of FOX family transcription factors should be comprehensively investigated to develop novel therapeutics and preventives for human diseases. Publication Types: Review PMID: 15492844 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Anat Rec A Discov Mol Cell Evol Biol. 2004 Jan;276(1):22-33. Smooth muscle stem cells. Hirschi KK, Majesky MW. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA. Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, including Pax3, Tbx1, FoxC1, and serum response factor, interacting with various extrinsic factors in the local environment such as bone morphogenetic proteins (BMPs), Wnts, endothelin (ET)-1, and FGF8. Additional sources of multipotential cells that give rise to vascular SMCs in the embryo include proepicardial cells and possibly endothelial progenitor cells. In the adult, vascular SMCs must continually repair arterial injuries and maintain functional mass in response to changing demands upon the vessel wall. Recent evidence suggests that this is accomplished, in part, by recruiting multipotential vascular progenitors from bone marrow-derived stem cells as well as from less well defined sources within adult tissues themselves. This article will review our current understanding of the origins of vascular SMCs from multipotential stem and progenitor cells in developing as well as adult vasculature. Copyright 2004 Wiley-Liss, Inc. Publication Types: Review Review, Tutorial PMID: 14699631 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------