1: Blood. 2005 Aug 1;106(3):860-70. Epub 2005 Apr 14. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Division of Immunology and Hematopoiesis, Sidney Kimmel comprehensive Cancer Center at John Hokins, The John Hopkins School of Medicine, Baltimore, MD, USA. ezambid1@jhmi.edu We elucidate the cellular and molecular kinetics of the stepwise differentiation of human embryonic stem cells (hESCs) to primitive and definitive erythromyelopoiesis from human embryoid bodies (hEBs) in serum-free clonogenic assays. Hematopoiesis initiates from CD45 hEB cells with emergence of semiadherent mesodermal-hematoendothelial (MHE) colonies that can generate endothelium and form organized, yolk sac-like structures that secondarily generate multipotent primitive hematopoietic stem progenitor cells (HSPCs), erythroblasts, and CD13+CD45+ macrophages. A first wave of hematopoiesis follows MHE colony emergence and is predominated by primitive erythropoiesis characterized by a brilliant red hemoglobinization, CD71/CD325a (glycophorin A) expression, and exclusively embryonic/fetal hemoglobin expression. A second wave of definitive-type erythroid burst-forming units (BFU-e's), erythroid colony-forming units (CFU-e's), granulocyte-macrophage colony-forming cells (GM-CFCs), and multilineage CFCs follows next from hEB progenitors. These stages of hematopoiesis proceed spontaneously from hEB-derived cells without requirement for supplemental growth factors during hEB differentiation. Gene expression analysis of differentiating hEBs revealed that initiation of hematopoiesis correlated with increased levels of SCL/TAL1, GATA1, GATA2, CD34, CD31, and the homeobox gene-regulating factor CDX4 These data indicate that hematopoietic differentiation of hESCs models the earliest events of embryonic and definitive hematopoiesis in a manner resembling human yolk sac development, thus providing a valuable tool for dissecting the earliest events in human HSPC genesis. PMID: 15831705 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Blood. 2005 Jul 15;106(2):477-84. Epub 2005 Apr 5. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, Orkin SH, Enver T, Vyas P, Scadden DT. Center for Regenerative Medicine and Technology, Massachusetts General Hospital, Boston, MA 02129, USA. The zinc finger transcription factor GATA-2 plays a fundamental role in generating hematopoietic stem-cells in mammalian development. Less well defined is whether GATA-2 participates in adult stem-cell regulation, an issue we addressed using GATA-2 heterozygote mice that express reduced levels of GATA-2 in hematopoietic cells. While GATA-2+/- mice demonstrated decreases in some colony-forming progenitors, the most prominent changes were observed within the stem-cell compartment. Heterozygote bone marrow had a lower abundance of Lin(-)c-kit(+)Sca-1(+)CD34- cells and performed poorly in competitive transplantation and quantitative week-5 cobblestone area-forming cell (CAFC) assays. Furthermore, a stem-cell-enriched population from GATA1+/- marrow was more quiescent and exhibited a greater frequency of apoptotic cells associated with decreased expression of the anti-apoptotic gene Bcl-xL. Yet the self-renewal potential of the +/- stem-cell compartment, as judged by serial transplantations, was unchanged. These data indicate compromised primitive cell proliferation and survival in the setting of a lower GATA-2 gene dose without a change in the differentiation or self-renewal capacity of the stem-cells that remain. Thus, GATA-2 dose regulates adult stem-cell homeostasis by affecting select aspects of stem cell function. PMID: 15811962 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Dev Cell. 2005 Jan;8(1):109-16. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI. Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA. The differentiation of hematopoietic progenitors into erythroid or myeloid cell lineages is thought to depend upon relative levels of the transcription factors gata1 and pu.1. While loss-of-function analysis shows that gata1 is necessary for terminal erythroid differentiation, no study has demonstrated that loss of gata1 alters myeloid differentiation during ontogeny. Here we provide in vivo evidence that loss of Gata1, but not Gata2, transforms primitive blood precursors into myeloid cells, resulting in a massive expansion of granulocytic neutrophils and macrophages at the expense of red blood cells. In addition to this fate change, expression of many erythroid genes was found to be differentially dependent on Gata1 alone, on both Gata1 and Gata2, or independent of both Gata factors, suggesting that multiple pathways regulate erythroid gene expression. Our studies establish a transcriptional hierarchy of Gata factor dependence during hematopoiesis and demonstrate that gata1 plays an integral role in directing myelo-erythroid lineage fate decisions during embryogenesis. PMID: 15621534 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: Leuk Res. 2004 Nov;28(11):1227-37. Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Rice AM, Holtz KM, Karp J, Rollins S, Sartorelli AC. Department of Pharmacology, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. Exogenous expression of the transcription factor Scl (Tal1) in WEHI-3B D+ myelomonocytic leukemia cells interferes with their capacity to respond to all-trans retinoic acid (ATRA) induced differentiation; combination of ATRA with LiCl, however, circumvents the inhibition of differentiation produced by Scl. To gain information on the possible involvement of this transcription factor in the non-responsiveness of acute myelocytic leukemia (AML) patients to ATRA, we compared the endogenous expression levels of Scl and its transcription complex partners [i.e., Rbtn1 (LMO1), Rbtn2 (LMO2), Ldb1, and GATA family proteins] in leukemic blast cells from patients with AML and acute promyelocytic leukemia (APL), and determined the effects of lithium chloride alone or in combination with ATRA on the capacity of blast cells to differentiate during short-term ex vivo culture. Levels of Scl, Rbtn2, GATA1, and Ldb1 expression were comparable in AML and APL blasts, while the levels of expression of Rbtn1, GATA2, and GATA3 were absent or markedly lower in APL cells. Differentiation markers (cell surface myeloid antigens CD11b, CD15, CD14, and CD33) were also analyzed in blast cells. ATRA produced changes in at least one surface antigen differentiation marker in 89% of patient blasts, while LiCl caused such changes in 72% of the leukemic cells of patients. The combination of LiCl and ATRA induced the differentiation of leukemic blasts from 94% of patients. Although the expression of the transcription factors did not act as individual predictors of responsiveness or non-responsiveness to the inducers of differentiation, ATRA or ATRA plus LiCl, the addition of LiCl to ATRA increased the differentiation response over that of ATRA alone in a number of leukemic samples. These findings suggest that the combination of LiCl and ATRA may produce some clinical benefit in the treatment of the myeloid leukemias. PMID: 15380350 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 5: Hum Cell. 2004 Jun;17(2):85-92. Transcription factor expression in cell lines derived from natural killer-cell and natural killer-like T-cell leukemia-lymphoma. Matsuo Y, Drexler HG, Harashima A, Okochi A, Shimizu N, Orita K. Fujisaki Cell Center, Hayashibara Biochemical Labs, Okayama 702-8006, Japan. yomatsuo@hayashibara.co.jp Although a number of transcription factors (TFs) have been identified that play a pivotal role in the development of hematopoietic lineages, only little is known about factors that may influence development and lineage commitment of natural killer (NK) or NK-like T (NKT)-cells. Obviously to fully appreciate the NK- and NKT-cell differentiation process, it is important to identify and characterize the TFs effecting the NK- and NKT-cell lineage. Furthermore, these TFs may play a role in NK- or NKT-cell leukemias, in which the normal differentiation program is presumably disturbed. The present study analyzed the expression of the following 13 TFs: AML1, CEBPA, E2A, ETS1, GATA1, GATA2, GATA3, IKAROS, IRF1, PAX5, PU1, TBET and TCF1 in 7 malignant NK-cell lines together with 5 malignant NKT-cell lines, 5 T-cell acute lymphoblastic leukemia (ALL) cell lines including 3 gamma/delta T-cell receptor (TCR) type and 2 alpha/beta TCR type, and 3 B-cell precursor (BCP) leukemia cell lines. AML1, E2A, ETS1, IKAROS and IRF1 were found to be positive for all cell lines tested whereas GATA1 turned out to be universally negative. CEBPA, PAX5 and PU1 were negative for all cell lines tested except in the three positive BCP-cell lines. GATA2 was positive for 3/5 T-cell lines but negative for the other cell lines. GATA3 was positive for 7/7 NK-, 4/5 NKT-, 5/5 T- and 2/3 BCP-cell lines. TBET was positive for all NK- and NKT-cell lines and negative for all T- and BCP-cell lines except one BCP-cell line. In contrast to the expression of TBET, TCF1 was negative for all NK- and NKT-cell lines, being positive for 4/5 T- and 1/3 BCP-cell lines. Expression analysis of TFs revealed that NK- and NKT-cell lines showed identical profiles, clearly distinct from those of the other T-ALL or BCP-ALL leukemia-derived cell lines.. PMID: 15369140 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 6: Genes Chromosomes Cancer. 2004 Jul;40(3):179-89. Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements. Lahortiga I, Vazquez I, Agirre X, Larrayoz MJ, Vizmanos JL, Gozzetti A, Calasanz MJ, Odero MD. Department of Genetics, University of Navarra, Pamplona, Spain. Patients with 3q21q26 rearrangements seem to share similar clinicopathologic features and a common molecular mechanism, leading to myelodysplasia or acute myeloid leukemia (AML). The ectopic expression of EVI1 (3q26) has been implicated in the dysplasia that characterizes this subset of myeloid neoplasias. However, lack of EVI1 expression has been reported in several cases, and overexpression of EVI1 was detected in 9% of AML cases without 3q26 abnormalities. We report the molecular characterization of seven patients with inv(3)(q21q26), t(3;3)(q21;q26) or related abnormalities. EVI1 expression was detected in only one case, and thus ectopic expression of this gene failed to explain all of these cases. GATA2 (3q21) was found to be overexpressed in 5 of the 7 patients. GATA2 is highly expressed in stem cells, and its expression dramatically decreases when erythroid and megakaryocytic differentiation proceeds. No mutations in GATA1 were found in any patient, excluding loss of function of GATA1 as the cause of GATA2 overexpression. We report finding molecular heterogeneity in patients with 3q21q26 rearrangements in both breakpoints and in the expression pattern of the genes near these breakpoints. Our data suggest that a unique mechanism is not likely to be involved in 3q21q26 rearrangements. Copyright 2004 Wiley-Liss, Inc. PMID: 15138998 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 7: EMBO J. 2003 Aug 1;22(15):3887-97. Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. Heavey B, Charalambous C, Cobaleda C, Busslinger M. Research Institute of Molecular Pathology, Vienna Biocenter,Dr. Bohr-Gasse 7, A-1030 Vienna, Austria. The developmental potential of hematopoietic progenitors is restricted early on to either the erythromyeloid or lymphoid lineages. The broad developmental potential of Pax5(-/-) pro-B cells is in apparent conflict with such a strict separation, although these progenitors realize the myeloid and erythroid potential with lower efficiency compared to the lymphoid cell fates. Here we demonstrate that ectopic expression of the transcription factors C/EBPalpha, GATA1, GATA2 and GATA3 strongly promoted in vitro macrophage differentiation and myeloid colony formation of Pax5(-/-) pro-B cells. GATA2 and GATA3 expression also resulted in efficient engraftment and myeloid development of Pax5(-/-) pro-B cells in vivo. The myeloid transdifferentiation of Pax5(-/-) pro-B cells was accompanied by the rapid activation of myeloid genes and concomitant repression of B-lymphoid genes by C/EBPalpha and GATA factors. These data identify the Pax5(-/-) pro-B cells as lymphoid progenitors with a latent myeloid potential that can be efficiently activated by myeloid transcription factors. The same regulators were unable to induce a myeloid lineage switch in Pax5(+/+) pro-B cells, indicating that Pax5 dominates over myeloid transcription factors in B-lymphocytes. PMID: 12881423 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 8: Exp Cell Res. 2003 May 1;285(2):258-67. 5-azacytidine reactivates the erythroid differentiation potential of the myeloid-restricted murine cell line 32D Ro. Baiocchi M, Di Rico C, Di Pietro R, Di Baldassarre A, Migliaccio AR. Department of Hematology, Instituto Superiore Sanita, Rome, Italy. 32D cells grown for 1 year in interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) generated the 32D Ro cell line which retained the parental mast cell phenotype but lost ability to generate erythroid cells in response to erythropoietin (EPO). In order to clarify the mechanisms underlying such restriction, we compared 32D and 32D Ro cells for their capacity to express erythroid-specific transcription factors (Gata1, Gata2, Scl, Nef2, Eklf, and Id) and the capacity of short exposure to 5-azacytidine (5-AzaC) to reactivate erythroid differentiation potential in 32D Ro cells. By Northern analysis, the two cell lines expressed similar levels of all these genes. However, after being treated with 5-AzaC, 32D Ro cells acquired the ability to generate EPO-dependent clones (1 clone/10(4) cells) which gave rise to EPO-dependent cell lines. All the 10 EPO-responsive cell lines independently isolated from 5-AzaC-treated 32D Ro cells had erythroid morphology and expressed high levels of alpha- and beta-globin. In contrast, none of the IL-3-dependent and granulocyte/macrophage colony-stimulating factor-dependent clones concurrently isolated, as a control, showed erythroid properties. Therefore, 5-AzaC treatment reactivates the potential of the myeloid-restricted 32D Ro cells to generate EPO-responsive erythroid clones suggesting that gene methylation played an important role in the G-CSF-mediated restriction/activation of the differentiation potential of these cells. PMID: 12706120 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 9: Hum Genet. 2003 Jan;112(1):42-9. Epub 2002 Oct 16. Molecular cloning and characterization of the GATA1 cofactor human FOG1 and assessment of its binding to GATA1 proteins carrying D218 substitutions. Freson K, Thys C, Wittewrongel C, Vermylen J, Hoylaerts MF, Van Geet C. Center for Molecular and Vascular Biology, University of Leuven, UZ-Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium. Erythroid and megakaryocytic lineage differentiation and maturation are regulated via cooperation between transcription factor GATA1 and its essential cofactor friend-of-GATA1 (FOG1). The interaction between these two murine proteins is well studied in vitro and depends on the binding of Fog1 to the N-terminal zinc finger (N-finger) of Gata1. We identified the human FOG1 gene on chromosome 16q24 and found expression mainly in hematopoietic cells and also in several other tissues. Sequencing of FOG1 cDNA revealed a 1006 amino-acid protein that contained nine zinc fingers, highly homologous to murine Fog1 fingers. The amino acid sequence and the GATA1-binding capacity of the human and murine finger 5 are however different. Ex vivo binding studies demonstrated that FOG1 interacts with both GATA1 and GATA2. We and others have described patients with mutations in the GATA1 N-finger (V205 M, D218G, D218Y, or G208S), who suffer from macrothrombocytopenia and erythrocyte abnormalities. We now show ex vivo that the interaction between GATA1 and FOG1 is indeed disturbed in platelets and erythrocytes of those patients carrying D218 GATA1 mutations. The identification of the human FOG1 gene will enable the genetic screening of patients with non X-linked thrombocytopenia and dyserythropoiesis. PMID: 12483298 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 10: Development. 2002 Nov;129(21):5093-101. HrT is required for cardiovascular development in zebrafish. Szeto DP, Griffin KJ, Kimelman D. Department of Biochemistry, Box 357350, University of Washington, Seattle 98195-7530, USA. The recently identified zebrafish T-box gene hrT is expressed in the developing heart and in the endothelial cells forming the dorsal aorta. Orthologs of hrT are expressed in cardiovascular cells from Drosophila to mouse, suggesting that the function of hrT is evolutionarily conserved. The role of hrT in cardiovascular development, however, has not thus far been determined in any animal model. Using morpholino antisense oligonucleotides, we show that zebrafish embryos lacking hrT function have dysmorphic hearts and an absence of blood circulation. Although the early events in heart formation were normal in hrT morphant embryos, subsequently the hearts failed to undergo looping, and late onset defects in chamber morphology and gene expression were observed. In particular, we found that the loss of hrT function led to a dramatic upregulation of tbx5, a gene required for normal heart morphogenesis. Conversely, we show that overexpression of hrT causes a significant downregulation of tbx5, indicating that one key role of hrT is to regulate the levels of tbx5. Secondly, we found that HrT is required to inhibit the expression of the blood lineage markers gata1 and gata2 in the most posterior lateral plate mesoderm. Finally, we show that HrT is required for vasculogenesis in the trunk, leading to similar vascular defects to those observed in midline mutants such as floating head. hrT expression in the vascular progenitors depends upon midline mesoderm, indicating that this expression is one important component of the response to a midline-derived signal during vascular morphogenesis. PMID: 12397116 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 11: Blood. 2002 Nov 15;100(10):3828-31. Epub 2002 Jul 5. Immortalization of yolk sac-derived precursor cells. Yu WM, Hawley TS, Hawley RG, Qu CK. Department of Hematopoiesis and the Flow Cytometry Facility, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855, USA. Hematopoiesis initiates in the extraembryonic yolk sac. To isolate various types of precursor cells from this blood cell-forming tissue, yolk sac cells were immortalized by retroviral-mediated expression of the HOX11 homeobox-containing gene. Among the cell lines derived, some were able to spontaneously generate adherent stromal-like cells capable of taking up acetylated low-density lipoprotein, and they could be induced to form tubelike structures when cultured on Matrigel. Although these cell lines were negative for hematopoietic cell surface markers, they gave rise to hematopoietic colonies--containing cells belonging to the monocytic, megakaryocytic, and definitive erythroid lineages--when plated in methylcellulose medium supplemented with hematopoietic growth factors. Low amounts of Flk-1 mRNA could be detected in these cells, and they showed significant responsiveness to vascular endothelial growth factor, stem cell factor, basic fibroblast growth factor, and interleukin 6. They also expressed the transcription factors SCL, GATA2, GATA1, PU.1, and c-myb. These yolk sac-derived cell lines may represent a transitional stage of early hematopoietic development. PMID: 12393673 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 12: J Cell Physiol. 1999 Sep;180(3):390-401. Increased expression of the distal, but not of the proximal, Gata1 transcripts during differentiation of primary erythroid cells. Vannucchi AM, Linari S, Lin CS, Koury MJ, Bondurant MC, Migliaccio AR. Division of Hematology, University of Florence and Azienda Ospedale Careggi, Italy. Gata1 is expressed from either one of two alternative promoters, the erythroid (proximal to the AUG) and the testis (distal to the AUG) promoter, both used by hemopoietic cells. To clarify the role of the distal and proximal Gata1 transcripts in erythroid differentiation, we determined by specific reverse transcriptase-polymerase chain reactions their relative levels of expression during the differentiation of erythroid precursors purified from the spleen of mice treated with phenylhydrazine (PHZ) or infected with the anemia-inducing strain of the Friend virus (FVA cells). PHZ cells are erythroid precursors that progress in vivo to erythroblasts in 3 days. Both PHZ and FVA cells synchronously proliferate and differentiate in vitro in the presence of erythropoietin (EPO). The levels of total and of distal, but not of proximal, Gata1 transcripts increased by five- to eightfold during in vivo and in vitro differentiation of FVA and PHZ cells. The increase in expression was temporally associated with an increase in the expression of Eklf, Scl, and Nfe2, three genes required for erythroid differentiation, and preceded by 24 h the repression of Gata2 and Myb expression. The day 1 PHZ cells that survived 18 h in the absence of EPO do not express globin genes and express detectable levels of distal but not of proximal Gata1 transcripts. These cells activate the expression of the globin genes within 2 h when exposed to EPO. Therefore, during erythroid differentiation of primary cells, increased expression of distal Gata1 transcripts underlies the increase in the expression of total Gata1 associated with the establishment of the erythroid differentiation program. PMID: 10430179 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------