1: Exp Hematol. 2005 Jun;33(6):641-51. Transcriptional control of fetal liver hematopoiesis: dominant negative effect of the overexpression of the LIM domain mutants of LMO2. Terano T, Zhong Y, Toyokuni S, Hiai H, Yamada Y. Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan. OBJECTIVE: The LIM-finger protein LMO2 forms a transcription factor complex with other hematopoietic regulator proteins, such as TAL1 (SCL), LDB1, GATA1, 2, and 3, in the promoters of several erythroid genes. To elucidate the functional role of two LIM domains in LMO2, we introduced deletion or mutation in each of the LIM domains and analyzed their phenotypic effects on the hematopoietic system when overexpressed in vivo or in vitro. MATERIALS AND METHODS: Protein interactions of LIM-modified LMO2 constructs with TAL1, LDB1, and GATAs were examined in an immunoprecipitation assay. In vivo hematopoiesis in transgenic mice with wild-type and LIM-modified Lmo2 was studied morphologically and by measuring the progenitor cells in fetal liver. Their effects on the erythroid differentiation of the dimethylsulfoxide (DMSO)-induced murine erythroleukemia (MEL) cells were evaluated. RESULTS: Deletion of the LIM2 domain, but not of the LIM1 domain, abolished its binding of GATA proteins. Overexpression of wild-type LMO2 is known to have dominant negative inhibitory effects on erythropoietic development. Enforced expression of LMO2 constructs with mutant or absent LIM2 but with an intact LIM1 domain resulted in fetal death, small livers and hearts, and decreased hematopoiesis, as well as a hypoplastic thymus. DMSO-induced erythroid differentiation of the MEL cells was inhibited by the overexpressed LMO2 with mutant LIM2 but not by the LMO2 with modified LIM1. CONCLUSION: Overexpression of the LMO2 with modified LIM2 inhibited hematopoiesis probably by interfering with the formation of the physiological complex or by replacing the functional LMO2 with mutants with reduced affinity to GATA proteins. In this experiment, no evident effect of the LMO2 with modified LIM1 could be observed. PMID: 15911088 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Leuk Res. 2004 Nov;28(11):1227-37. Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Rice AM, Holtz KM, Karp J, Rollins S, Sartorelli AC. Department of Pharmacology, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. Exogenous expression of the transcription factor Scl (Tal1) in WEHI-3B D+ myelomonocytic leukemia cells interferes with their capacity to respond to all-trans retinoic acid (ATRA) induced differentiation; combination of ATRA with LiCl, however, circumvents the inhibition of differentiation produced by Scl. To gain information on the possible involvement of this transcription factor in the non-responsiveness of acute myelocytic leukemia (AML) patients to ATRA, we compared the endogenous expression levels of Scl and its transcription complex partners [i.e., Rbtn1 (LMO1), Rbtn2 (LMO2), Ldb1, and GATA family proteins] in leukemic blast cells from patients with AML and acute promyelocytic leukemia (APL), and determined the effects of lithium chloride alone or in combination with ATRA on the capacity of blast cells to differentiate during short-term ex vivo culture. Levels of Scl, Rbtn2, GATA1, and Ldb1 expression were comparable in AML and APL blasts, while the levels of expression of Rbtn1, GATA2, and GATA3 were absent or markedly lower in APL cells. Differentiation markers (cell surface myeloid antigens CD11b, CD15, CD14, and CD33) were also analyzed in blast cells. ATRA produced changes in at least one surface antigen differentiation marker in 89% of patient blasts, while LiCl caused such changes in 72% of the leukemic cells of patients. The combination of LiCl and ATRA induced the differentiation of leukemic blasts from 94% of patients. Although the expression of the transcription factors did not act as individual predictors of responsiveness or non-responsiveness to the inducers of differentiation, ATRA or ATRA plus LiCl, the addition of LiCl to ATRA increased the differentiation response over that of ATRA alone in a number of leukemic samples. These findings suggest that the combination of LiCl and ATRA may produce some clinical benefit in the treatment of the myeloid leukemias. PMID: 15380350 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Blood. 2004 Nov 15;104(10):3106-16. Epub 2004 Jul 20. Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Valverde-Garduno V, Guyot B, Anguita E, Hamlett I, Porcher C, Vyas P. Department of Haematology, Medical Research Council Molecular Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom. Cis-element identification is a prerequisite to understand transcriptional regulation of gene loci. From analysis of a limited number of conserved gene loci, sequence comparison has proved a robust and efficient way to locate cis-elements. Human and mouse GATA1 genes encode a critical hematopoietic transcription factor conserved in expression and function. Proper control of GATA1 transcription is critical in regulating myeloid lineage specification and maturation. Here, we compared sequence and systematically mapped position of DNase I hypersensitive sites, acetylation status of histone H3/H4, and in vivo binding of transcription factors over approximately 120 kilobases flanking the human GATA1 gene and the corresponding region in mice. Despite lying in approximately 10 megabase (Mb) conserved syntenic segment, the chromatin structures of the 2 homologous loci are strikingly different. The 2 previously unidentified hematopoietic cis-elements, one in each species, are not conserved in position and sequence and have enhancer activity in erythroid cells. In vivo, they both bind the transcription factors GATA1, SCL, LMO2, and Ldb1. More broadly, there are both species- and regulatory element-specific patterns of transcription factor binding. These findings suggest that some cis-elements regulating human and mouse GATA1 genes differ. More generally, mouse human sequence comparison may fail to identify all cis-elements. PMID: 15265794 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: Br J Haematol. 2004 Jul;126(1):3-10. Leukaemia -- a developmental perspective. Izraeli S. Department of Paediatric Haemato-Oncology, Sackler Faculty of Medicine, Cancer Research Centre, Safra's Children's Hospital, Sheba Medical Centre, Tel-Aviv University, Tel-Hashomer, Ramat-Gan, Israel. izraelis@netvision.net.il Leukaemia is characterized by the accumulation of malignant haematopoietic precursors. Recent studies have revealed that acquired alterations in genes that regulate normal haematopoiesis are frequently detected in leukaemia. The progression to leukaemia depends on additional mutations that promote the survival of developmentally arrested cells. This review describes three examples of this general paradigm of leukaemogenesis: RUNX1 abnormalities in acute leukaemias, GATA1 mutations in the leukaemias of Down syndrome, and SCL and LMO2 ectopic expression in T cell acute lymphoblastic leukaemia. Publication Types: Review PMID: 15198727 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 5: Development. 2003 Dec;130(25):6187-99. Epub 2003 Nov 5. Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Gering M, Yamada Y, Rabbitts TH, Patient RK. Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK. The LIM domain protein Lmo2 and the basic helix-loop-helix transcription factor Scl/Tal1 are expressed in early haematopoietic and endothelial progenitors and interact with each other in haematopoietic cells. While loss-of-function studies have shown that Lmo2 and Scl/Tal1 are essential for haematopoiesis and angiogenic remodelling of the vasculature, gain-of-function studies have suggested an earlier role for Scl/Tal1 in the specification of haemangioblasts, putative bipotential precursors of blood and endothelium. In zebrafish embryos, Scl/Tal1 can induce these progenitors from early mesoderm mainly at the expense of the somitic paraxial mesoderm. We show that this restriction to the somitic paraxial mesoderm correlates well with the ability of Scl/Tal1 to induce ectopic expression of its interaction partner Lmo2. Co-injection of lmo2 mRNA with scl/tal1 dramatically extends its effect to head, heart, pronephros and pronephric duct mesoderm inducing early blood and endothelial genes all along the anteroposterior axis. Erythroid development, however, is expanded only into pronephric mesoderm, remaining excluded from head, heart and somitic paraxial mesoderm territories. This restriction correlates well with activation of gata1 transcription and co-injection of gata1 mRNA along with scl/tal1 and lmo2 induces erythropoiesis more broadly without ventralising or posteriorising the embryo. While no ectopic myeloid development from the Scl/Tal1-Lmo2-induced haemangioblasts was observed, a dramatic increase in the number of endothelial cells was found. These results suggest that, in the absence of inducers of erythroid or myeloid haematopoiesis, Scl/Tal1-Lmo2-induced haemangioblasts differentiate into endothelial cells. PMID: 14602685 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------