1: Int J Dev Neurosci. 2005 Aug;23(5):449-63. SCL, GATA-2 and Lmo2 expression in neurogenesis. Herberth B, Minko K, Csillag A, Jaffredo T, Madarasz E. Institute of Experimental Medicine of Hungarian Academy of Sciences, Neural Cell Biology Group, Szigony u. 43, 1083 Budapest, Hungary. herberth@koki.hu SCL, Lmo2 and GATA factors form common transcription complexes during hematopoietic differentiation. The overlapping expression of SCL with GATA-2 and GATA-3 in the developing brain indicated that these factors might collaborate also in the course of neural tissue differentiation. The expression pattern of Lmo2 in the developing CNS, however, is not well understood. Here, we show that neural cells in the early embryonic chick mid- and hindbrain express SCL and GATA-2, while Lmo2 is expressed only in vascular elements. The lack of Lmo2 transcripts in neural cells demonstrated that SCL and GATA-2 cannot form common complexes with Lmo2 in the developing brain. In the course of neural tissue genesis, GATA-2 mRNA appeared prior to the SCL transcript. While GATA-2 expression decreased with maturation, SCL expression persisted at a high level also in post-neurogenic periods. The temporal pattern of SCL and GATA-2/3 expression was investigated also in vitro, in the course of induced neurogenesis by NE-4C neural stem cells. While GATA-2 expression increased from the very beginning of differentiation, SCL expression appeared only in more differentiated cells expressing proneural genes. GATA-3 expression, on the other hand, was detected only in advanced stages of the neuronal maturation, which were characterised by the activation of the Math2 neuronal gene. Similarly to the hematopoietic differentiation, GATA-2 expression precedes the activation of both SCL and GATA-3, and may play roles in the activation of the SCL gene in neuronal development. In contrast to hematopoietic differentiation, however, our results failed to demonstrate co-assembling of GATA factors or SCL with Lmo2. While overlapping expression of GATA-2/3 and SCL was detected, Lmo2 activation could not be demonstrated in neural cells in the investigated period of neuronal development. PMID: 16011889 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Dev Biol. 2005 Jan 15;277(2):522-36. Zebrafish scl functions independently in hematopoietic and endothelial development. Dooley KA, Davidson AJ, Zon LI. Division of Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute and Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA. The SCL transcription factor is critically important for vertebrate hematopoiesis and angiogenesis, and has been postulated to induce hemangioblasts, bipotential precursors for blood and endothelial cells. To investigate the function of scl during zebrafish hematopoietic and endothelial development, we utilized site-directed, anti-sense morpholinos to inhibit scl mRNA. Knockdown of scl resulted in a loss of primitive and definitive hematopoietic cell lineages. However, the expression of early hematopoietic genes, gata2 and lmo2, was unaffected, suggesting that hematopoietic cells were present but unable to further differentiate. Using gene expression analysis and visualization of vessel formation in live animals harboring an lmo2 promoter-green fluorescent protein reporter transgene (Tg(lmo2:EGFP)), we show that angioblasts were specified normally in the absence of scl, but later defects in angiogenesis were evident. While scl was not required for angioblast specification, forced expression of exogenous scl caused an expansion of both hematopoietic and endothelial gene expression, and a loss of somitic tissue. In cloche and spadetail mutants, forced expression of scl resulted in an expansion of hematopoietic but not endothelial tissue. Surprisingly, in cloche, lmo2 was not induced in response to scl over-expression. Taken together, these findings support distinct roles for scl in hematopoietic and endothelial development, downstream of hemangioblast development. PMID: 15617691 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Leuk Res. 2004 Nov;28(11):1227-37. Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Rice AM, Holtz KM, Karp J, Rollins S, Sartorelli AC. Department of Pharmacology, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. Exogenous expression of the transcription factor Scl (Tal1) in WEHI-3B D+ myelomonocytic leukemia cells interferes with their capacity to respond to all-trans retinoic acid (ATRA) induced differentiation; combination of ATRA with LiCl, however, circumvents the inhibition of differentiation produced by Scl. To gain information on the possible involvement of this transcription factor in the non-responsiveness of acute myelocytic leukemia (AML) patients to ATRA, we compared the endogenous expression levels of Scl and its transcription complex partners [i.e., Rbtn1 (LMO1), Rbtn2 (LMO2), Ldb1, and GATA family proteins] in leukemic blast cells from patients with AML and acute promyelocytic leukemia (APL), and determined the effects of lithium chloride alone or in combination with ATRA on the capacity of blast cells to differentiate during short-term ex vivo culture. Levels of Scl, Rbtn2, GATA1, and Ldb1 expression were comparable in AML and APL blasts, while the levels of expression of Rbtn1, GATA2, and GATA3 were absent or markedly lower in APL cells. Differentiation markers (cell surface myeloid antigens CD11b, CD15, CD14, and CD33) were also analyzed in blast cells. ATRA produced changes in at least one surface antigen differentiation marker in 89% of patient blasts, while LiCl caused such changes in 72% of the leukemic cells of patients. The combination of LiCl and ATRA induced the differentiation of leukemic blasts from 94% of patients. Although the expression of the transcription factors did not act as individual predictors of responsiveness or non-responsiveness to the inducers of differentiation, ATRA or ATRA plus LiCl, the addition of LiCl to ATRA increased the differentiation response over that of ATRA alone in a number of leukemic samples. These findings suggest that the combination of LiCl and ATRA may produce some clinical benefit in the treatment of the myeloid leukemias. PMID: 15380350 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: EMBO J. 2004 Jul 21;23(14):2841-52. Epub 2004 Jun 24. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. Anguita E, Hughes J, Heyworth C, Blobel GA, Wood WG, Higgs DR. MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK. How does an emerging transcriptional programme regulate individual genes as stem cells undergo lineage commitment, differentiation and maturation? To answer this, we have analysed the dynamic protein/DNA interactions across 130 kb of chromatin containing the mouse alpha-globin cluster in cells representing all stages of differentiation from stem cells to mature erythroblasts. The alpha-gene cluster appears to be inert in pluripotent cells, but priming of expression begins in multipotent haemopoietic progenitors via GATA-2. In committed erythroid progenitors, GATA-2 is replaced by GATA-1 and binding is extended to additional sites including the alpha-globin promoters. Both GATA-1 and GATA-2 nucleate the binding of various protein complexes including SCL/LMO2/E2A/Ldb-1 and NF-E2. Changes in protein/DNA binding are accompanied by sequential alterations in long-range histone acetylation and methylation. The recruitment of polymerase II, which ultimately leads to a rapid increase in alpha-globin transcription, occurs late in maturation. These studies provide detailed evidence for the more general hypothesis that commitment and differentiation are primarily driven by the sequential appearance of key transcriptional factors, which bind chromatin at specific, high-affinity sites. PMID: 15215894 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 5: Gene Expr Patterns. 2003 Jun;3(3):261-72. From mesoderm to blood islands: patterns of key molecules during yolk sac erythropoiesis. Minko K, Bollerot K, Drevon C, Hallais MF, Jaffredo T. Institut d'Embryologie Cellulaire et Moleculaire du CNRS et du College de France, 49 bis avenue de la Belle Gabrielle, 94736 Cedex, Nogent s/Marne, France. Several identified genes play key roles in the specification of the blood-forming system, from commitment of mesoderm to differentiation of hemopoietic and endothelial cells. We have thoroughly analyzed the expression dynamics of some of these genes during yolk sac erythropoiesis in the chick embryo. The study includes transcription factors which are known to participate in multimeric complexes: GATA-1, -2, SCL/tal-1 and Lmo2 (whose avian orthologue we have cloned), VEGF-R2, a critical regulator of hemopoietic and endothelial commitment, and hemoglobin used as a marker of the last step in erythroid differentiation. Several findings were unexpected. (1) Two distinct patterns were revealed for GATA-2, first: low expression, ubiquitous in all mesodermal cells, as soon as cells ingress through the primitive streak; secondly: high, blood island-specific expression. (2) VEGF-R2 is coexpressed with GATA-2 at the level of the primitive streak. (3) SCL and Lmo2 expression is restricted to presumptive hemangioblasts. (4) The up-regulation of GATA-2 in newly formed blood islands is shortly followed by GATA-1 expression. (5) Lmo2 is up-regulated in blood island angioblasts thus appearing as one of the earliest markers for endothelial cell commitment. VEGF-R2 is down-regulated in hemopoietic cells prior to GATA-2, SCL/tal-1, Lmo2 and GATA-1 in erythroblasts. PMID: 12799070 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------