1: Chem Biol Interact. 2005 May 30;153-154:171-8. Epub 2005 Apr 18. The role of c-MYB in benzene-initiated toxicity. Wan J, Badham HJ, Winn L. Department of Pharmacology and Toxicology and School of Environmental Studies, Queen's University, Botterell Hall Room 557, Kingston, Ont., Canada K7L 3N6. Chronic exposure to benzene has been correlated with increased oxidative stress and leukemia. Oncogene activation, including c-Myb activation, is one of the earliest steps leading to the formation of leukemic cells, however the molecular mechanisms involved in these events are poorly understood. Given that oxidative stress can alter the activity and fate of cell signaling pathways we hypothesize that the bioactivation of benzene leads to the formation of reactive oxygen species (ROS), which if not detoxified can alter the c-Myb signaling pathway. Using chicken erythroblast HD3 cells we have shown that exposure to the benzene metabolites catechol, benzoquinone, and hydroquinone leads to increased c-Myb activity, increased phosphorylation of c-Myb and increased production of ROS supporting our hypothesis. Activation of the aryl hydrocarbon receptor (AhR) by environmental contaminants has also been associated with carcinogenesis and mice lacking this receptor are resistant to benzene-initiated hematotoxicity. Using wild type and AhR deficient cells we are investigating the role of this receptor in benzene-initiated alterations in the c-Myb signaling pathway. We have found that both wild type and AhR deficient cells are sensitive to catechol and hydroquinone-initiated increases in c-Myb activity while both cell types are resistant to benzene-initiated alterations leaving the role of the AhR still undetermined. Interestingly, protein expression of c-Myb is increased after catechol exposure in AhR deficient cells while decreased in wild-type cells. Further studies on the role of the AhR in benzene-initiated alterations on the c-Myb signaling pathway are on going. Publication Types: Review Review, Tutorial PMID: 15935814 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: J Biol Chem. 2002 Jun 21;277(25):22515-9. Epub 2002 Apr 15. Myb-binding protein 1a augments AhR-dependent gene expression. Jones LC, Okino ST, Gonda TJ, Whitlock JP Jr. Division of Hematology and Oncology, Cedars Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90048, USA. We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein 1a, whereas a mutant domain (F542A, I569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein 1a into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein 1a is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein 1a associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein 1a to increase AhR-dependent gene expression. PMID: 11956195 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------