1: Hum Cell. 2004 Jun;17(2):85-92. Transcription factor expression in cell lines derived from natural killer-cell and natural killer-like T-cell leukemia-lymphoma. Matsuo Y, Drexler HG, Harashima A, Okochi A, Shimizu N, Orita K. Fujisaki Cell Center, Hayashibara Biochemical Labs, Okayama 702-8006, Japan. yomatsuo@hayashibara.co.jp Although a number of transcription factors (TFs) have been identified that play a pivotal role in the development of hematopoietic lineages, only little is known about factors that may influence development and lineage commitment of natural killer (NK) or NK-like T (NKT)-cells. Obviously to fully appreciate the NK- and NKT-cell differentiation process, it is important to identify and characterize the TFs effecting the NK- and NKT-cell lineage. Furthermore, these TFs may play a role in NK- or NKT-cell leukemias, in which the normal differentiation program is presumably disturbed. The present study analyzed the expression of the following 13 TFs: AML1, CEBPA, E2A, ETS1, GATA1, GATA2, GATA3, IKAROS, IRF1, PAX5, PU1, TBET and TCF1 in 7 malignant NK-cell lines together with 5 malignant NKT-cell lines, 5 T-cell acute lymphoblastic leukemia (ALL) cell lines including 3 gamma/delta T-cell receptor (TCR) type and 2 alpha/beta TCR type, and 3 B-cell precursor (BCP) leukemia cell lines. AML1, E2A, ETS1, IKAROS and IRF1 were found to be positive for all cell lines tested whereas GATA1 turned out to be universally negative. CEBPA, PAX5 and PU1 were negative for all cell lines tested except in the three positive BCP-cell lines. GATA2 was positive for 3/5 T-cell lines but negative for the other cell lines. GATA3 was positive for 7/7 NK-, 4/5 NKT-, 5/5 T- and 2/3 BCP-cell lines. TBET was positive for all NK- and NKT-cell lines and negative for all T- and BCP-cell lines except one BCP-cell line. In contrast to the expression of TBET, TCF1 was negative for all NK- and NKT-cell lines, being positive for 4/5 T- and 1/3 BCP-cell lines. Expression analysis of TFs revealed that NK- and NKT-cell lines showed identical profiles, clearly distinct from those of the other T-ALL or BCP-ALL leukemia-derived cell lines.. PMID: 15369140 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: J Immunol. 2004 Sep 15;173(6):3935-44. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. Hoflinger S, Kesavan K, Fuxa M, Hutter C, Heavey B, Radtke F, Busslinger M. Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria. Signaling through the Notch1 receptor is essential for T cell development in the thymus. Stromal OP9 cells ectopically expressing the Notch ligand Delta-like1 mimic the thymic environment by inducing hemopoietic stem cells to undergo in vitro T cell development. Notch1 is also expressed on Pax5-/- pro-B cells, which are clonable lymphoid progenitors with a latent myeloid potential. In this study, we demonstrate that Pax5-/- progenitors efficiently differentiate in vitro into CD4+CD8+ alphabeta and gammadelta T cells upon coculture with OP9-Delta-like1 cells. In vitro T cell development of Pax5-/- progenitors strictly depends on Notch1 function and progresses through normal developmental stages by expressing T cell markers and rearranging TCRbeta, gamma, and delta loci in the correct temporal sequence. Notch-stimulated Pax5-/- progenitors efficiently down-regulate the expression of B cell-specific genes, consistent with a role of Notch1 in preventing B lymphopoiesis in the thymus. At the same time, Notch signaling rapidly induces cell surface expression of the c-Kit receptor and transcription of the target genes Deltex1 and pre-Talpha concomitant with the activation of TCR Vbeta germline transcription and the regulatory genes GATA3 and Tcf1. These data suggest that Notch1 acts upstream of GATA3 and Tcf1 in early T cell development and regulates Vbeta-DJbeta rearrangements by controlling the chromatin accessibility of Vbeta genes at the TCRbeta locus. Copyright 2004 The American Association of Immunologists, Inc. PMID: 15356142 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Cancer Genet Cytogenet. 2004 Aug;153(1):69-72. Different gene expression in immunoglobulin-mutated and immunoglobulin-unmutated forms of chronic lymphocytic leukemia. Ferrer A, Ollila J, Tobin G, Nagy B, Thunberg U, Aalto Y, Vihinen M, Vilpo J, Rosenquist R, Knuutila S. Department of Pathology and Medical Genetics, Haartman Institute, University of Helsinki, and Helsinki University Central Hospital Laboratory Diagnostics, Haartmaninkatu 3, FIN-00014 Helsinki, Finland. The mutation status of the immunoglobulin heavy chain variable regions (IgVH) has been found to be a good prognostic indicator for B-cell chronic lymphocytic leukemia (CLL) because unmutated VH genes are associated with rapid disease progression and shorter survival time. To study the differences in gene expression between the Ig-unmutated and Ig-mutated CLL subtypes, we performed gene expression profiling on 31 CLL cases and investigated the VH gene mutation status by sequencing. The array data showed that the greatest variances between the unmutated (20 cases) and the mutated (11 cases) group were in expressions of ZAP70, RAF1, PAX5, TCF1, CD44, SF1, S100A12, NUP214, DAF, GLVR1, MKK6, AF4, CX3CR1, NAFTC1, and HEX. ZAP70 was significantly more expressed in the Ig-unmutated CLL group, whereas the expression of all the other genes was higher in the Ig-mutated cases. These results corroborate a recent finding, according to which the expression of ZAP70 can predict the VH mutation status and suggest that RAF1, PAX5, and other differentially expressed genes may offer good markers for differentiating unmutated cases from mutated cases and thus serve as prognostic markers. PMID: 15325098 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------