1: Mol Vis. 2001 Jan 2;7:1-5. Quantitation of PAX6 and PAX6(5a) transcript levels in adult human lens, cornea, and monkey retina. Zhang W, Cveklova K, Oppermann B, Kantorow M, Cvekl A. Department of Biology, West Virginia University, Morgantown, WV, USA. PURPOSE: PAX6 is a critical regulator of the developing lens, other ocular tissues, central nervous system, and pancreas. There are two alternatively spliced forms of the protein, PAX6 and PAX6(5a), that may have different regulatory functions. This study was designed to determine the amounts of PAX6 and PAX6(5a) transcripts present in adult human lens epithelium and fibers, human cornea and monkey retina. METHODS: PAX6 and PAX6(5a) transcript levels were monitored in microdissected lens epithelia, lens fibers, whole lens, cornea, and retina by competitive RT-PCR. The levels of TBP/TFIID were examined in adult human lens epithelium and fibers as control. RESULTS: PAX6 and PAX6(5a) were expressed at equal levels in lens epithelium and fibers. Ninety-five times more PAX6 transcripts were detected in the epithelial cells than in the fibers. Adult human cornea and monkey retina expressed less PAX6/PAX6(5a) than lens epithelium but more than lens fibers. Correspondingly, 40 fold higher levels of TBP transcripts were detected in lens epithelium than fibers, suggesting reduced overall expression of transcription factors in the adult lens fibers. CONCLUSIONS: The presence of PAX6 and PAX6(5a) messages and proteins in adult lens epithelium suggest functions for both forms of PAX6 in the growth and maintenance of the adult human lens. The reduced levels of both forms of PAX6 in the lens fibers suggest down regulation of this gene during differentiation of epithelia into fibers. The lower level of TBP expression in lens fibers also suggests reduced transcriptional competence of adult lens fibers. PMID: 11172136 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Invest Ophthalmol Vis Sci. 1999 Jun;40(7):1343-50. Pax-6 interactions with TATA-box-binding protein and retinoblastoma protein. Cvekl A, Kashanchi F, Brady JN, Piatigorsky J. Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA. PURPOSE: To identify proteins that physically interact with Pax-6, a paired domain- and homeodomain (HD)-containing transcription factor that is a key regulator of eye development. METHODS: Protein-protein interactions involving Pax-6, TATA-box-binding protein (TPB), and retinoblastoma protein were studied using affinity chromatography with Pax-6 as ligand, glutathione-S-transferase (GST) pull-down assays, and immunoprecipitations. RESULTS: The authors have shown that Pax-6 is a sequence-specific activator of many crystallin genes, all containing a TATA box, in the lens. Others have shown that lens fiber cell differentiation, characterized by temporally and spatially regulated crystallin gene expression, depends on retinoblastoma protein. In the present study it was shown that Pax-6 interacted with the TBP, the DNA-binding subunit of general transcription complex TFIID. GST pull-down assays indicated that this interaction was mediated by the Pax-6 HD, with a substantial role for its N-terminal arm and first two alpha-helices. The experiments also indicated a binding role for the C-terminal-activation domain of the protein. In addition, the present study showed that the HD of Pax-6 interacted with retinoblastoma protein. Immunoprecipitation experiments confirmed retinoblastoma protein/Pax-6 complexes in lens nuclear extracts. CONCLUSIONS: Blending the present results with those in the literature suggests that Pax-6 and retinoblastoma protein participate in overlapping regulatory pathways controlling epithelial cell division, fiber cell elongation, and crystallin gene expression during lens development. PMID: 10359315 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------