1: J Biol Chem. 2001 Dec 14;276(50):47632-41. Epub 2001 Oct 5. Thrombin stimulation of the vascular cell adhesion molecule-1 promoter in endothelial cells is mediated by tandem nuclear factor-kappa B and GATA motifs. Minami T, Aird WC. Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. The goal of this study was to delineate the transcriptional mechanisms underlying thrombin-mediated induction of vascular adhesion molecule-1 (VCAM-1). Treatment of human umbilical vein endothelial cells with thrombin resulted in a 3.3-fold increase in VCAM-1 promoter activity. The upstream promoter region of VCAM-1 contains a thrombin response element, two nuclear factor kappaB (NF-kappaB) motifs, and a tandem GATA motif. In transient transfection assays, mutation of the thrombin response element had no effect on thrombin induction. In contrast, mutation of either NF-kappaB site resulted in a complete loss of induction, whereas a mutation of the two GATA motifs resulted in a significant reduction in thrombin stimulation. In electrophoretic mobility shift assays, nuclear extracts from thrombin-treated endothelial cells displayed markedly increased binding to the tandem NF-kappaB and GATA motifs. The NF-kappaB complex was supershifted with anti-p65 antibodies, but not with antibodies to RelB, c-Rel, p50, or p52. The GATA complex was supershifted with antibodies to GATA-2, but not GATA-3 or GATA-6. A construct containing tandem copies of the VCAM-1 GATA motifs linked to a minimal thymidine kinase promoter was induced 2.4-fold by thrombin. Taken together, these results suggest that thrombin stimulation of VCAM-1 in endothelial cells is mediated by the coordinate action of NF-kappaB and GATA transcription factors. PMID: 11590177 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Differentiation. 1993 Jan;52(2):169-76. Murine erythroleukemia cells contain two distinct GATA-binding proteins that have different patterns of expression during cellular differentiation. Aumont FL, Trudel P, Wall L. Institut du cancer de Montreal, Quebec, Canada. GATA-1 is a major transcription factor of the erythroid lineage that has been implicated in the induced expression of a variety of red cell-specific genes during terminal differentiation of murine erythroleukemia cells. Although the GATA-1 protein is present at nearly equal levels before and after differentiation of murine erythroleukemia cells, in this study it was found that in the early commitment stages of the differentiation program there is a transient decrease in the GATA-1 mRNA and DNA binding activity levels due to a temporary block in transcription of the gene. Moreover, using a whole cell extraction procedure it was discovered that murine erythroleukemia cells contain a second GATA binding activity (denoted GATA-rel) which appears to be distinct from the GATA-1 factor based on its non-reactivity to two GATA-1 antisera. This protein has a limited tissue specificity, as it could not be detected in extracts from CHO, NIH 3T3, or COS cells. Similarly to the GATA-1 DNA-binding activity, the GATA-rel activity decreased during the early stages of differentiation. However, unlike GATA-1, GATA-rel activity did not return to pre-induced levels at later times. These results suggest that changes in gene expression during erythroid terminal differentiation may involve an interplay on levels of different GATA-binding factors. PMID: 8472887 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------