1: Cell Res. 2003 Oct;13(5):319-33. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Yu J, Zhang HY, Ma ZZ, Lu W, Wang YF, Zhu JD. The State-Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University, LN 2200/25, Xietu Road, Shanghai 200032, China. To determine the possible role of the epigenetic mechanisms in carcinogenesis of the hepatocellular carcinoma, we methylation-profiled the promoter CpG islands of twenty four genes both in HCC tumors and the neighboring non-cancerous tissues of twenty eight patients using the methylation-specific PCR (MSP) method in conjunction with the DNA sequencing. In comparison with the normal liver tissues from the healthy donors, it was found that while remained unmethylated the ABL, CAV, EPO, GATA3, LKB1, NEP, NFL, NIS and p27KIP1 genes, varying extents of the HCC specific hypermethylation were found associated with the ABO, AR, CSPG2, cyclin a1, DBCCR1, GALR2, IRF7, MGMT, MT1A, MYOD1, OCT6, p57KIP2, p73, WT1 genes, and demethylation with the MAGEA1 gene, respectively. Judged by whether the hypermethylated occurred in HCC more frequently than in their neighboring normal tissues, the hypermethylation status of the AR, DBCCR1, IRF7, OCT6, and p73 genes was considered as the event specific to the late stage, while that the rest that lacked such a distinguished contrast, as the event specific to the early stage of HCC carcinogenesis. Among all the clinical pathological parameters tested for the association with, the hypermethylation of the cyclin a1 gene was more prevalent in the non-cirrhosis group (P=0.021) while the hypermethylated p16INK4a gene was more common in the cirrhosis group (P=0.017). The concordant methylation behaviors of nineteen genes, including the four previously studied and their association with cirrhosis has been evaluated by the best subgroup selection method. The data presented in this report would enable us to shape our understanding of the mechanisms for the HCC specific loss of the epigenetic stability of the genome, as well as the strategy of developing the novel robust methylation based diagnostic and prognostic tools. PMID: 14672555 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Dev Biol. 2001 Oct 1;238(1):64-78. Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Caprioli A, Minko K, Drevon C, Eichmann A, Dieterlen-Lievre F, Jaffredo T. Institut d'Embryologie Cellulaire et Moleculaire du CNRS et du College de France, 49 bis av. de la Belle Gabrielle, Nogent s/Marne Cedex, 94736, France. We recently identified the allantois as a site producing hemopoietic and endothelial cells capable of colonizing the bone marrow of an engrafted host. Here, we report a detailed investigation of some early cytological and molecular processes occurring in the allantoic bud, which are probably involved in the production of angioblasts and hemopoietic cells. We show that the allantois undergoes a program characterized by the prominent expression of several "hemangioblastic" genes in the mesoderm accompanied by other gene patterns in the associated endoderm. VEGF-R2, at least from stage HH17 onward, is expressed and is shortly followed by transcription factors GATA-2, SCL/tal-1, and GATA-1. Blood island-like structures differentiate that contain both CD45(+) cells and cells accumulating hemoglobin; these structures look exactly like blood islands in the yolk sac. This hemopoietic process takes place before the establishment of a vascular network connecting the allantois to the embryo. As far as the endoderm is concerned, GATA-3 mRNA is found in the region where allantois will differentiate before the posterior instestinal portal becomes anatomically distinct. Shortly before the bud grows out, GATA-2 was expressed in the endoderm and, at the same time, the hemangioblastic program became initiated in the mesoderm. GATA-3 is detected at least until E8 and GATA-2 until E3 the latest stage examined for this factor. Using in vitro cultures, we show that allantoic buds, dissected out before the establishment of circulation between the bud and the rest of the embryo, produced erythrocytes of the definitive lineage. Moreover, using heterospecific grafts between chick and quail embryos, we demonstrate that the allantoic vascular network develops from intrinsic progenitors. Taken together, these results extend our earlier findings about the commitment of mesoderm to the endothelial and hemopoietic lineages in the allantois. The detection of a prominent GATA-3 expression restricted to the endoderm of the preallantoic region and allantoic bud, followed by that of GATA-2, is an interesting and novel information, in the context of organ formation and endoderm specification in the emergence of hemopoietic cells. Copyright 2001 Academic Press. PMID: 11783994 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------