1: Dev Biol. 2004 Nov 15;275(2):325-42. A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Tribulo C, Aybar MJ, Sanchez SS, Mayor R. Millennium Nucleus in Developmental Biology, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. We have studied the pattern of programmed cell death in the neural crest and analyzed how it is controlled by the activity of the transcription factors Slug and msx1. Our results indicate that apoptosis is more prevalent in the neural folds than in the rest of the neural ectoderm. Through gain- and loss-of-function experiments with inducible forms of both Slug and msx1 genes, we showed that Slug acts as an anti-apoptotic factor whereas msx1 promotes cell death, either in the neural folds of the whole embryos, in isolated or induced neural crest and in animal cap assays. The protective effect of expressing Slug can be reversed by expressing the apoptotic factor Bax, while the apoptosis promoted by msx1 can be abolished by expressing the Xenopus homologue of Bcl2 (XR11). Furthermore, we show that Slug and msx1 control the transcription of XR11 and several caspases required for programmed cell death. In addition, expression of Bax or Bcl2, produced similar effects on the survival of the neural crest and on the development of its derivatives to those produced by altering the activity of Slug or msx1. Finally, we show that in the neural crest, the region of the neural folds where Slug is expressed, cells undergo less apoptosis, than in the region where the msx1 gene is expressed, which correspond to cells adjacent to the neural crest. We show that the expression of Slug and msx1 controls cell death in certain areas of the neural folds, and we discuss how this equilibrium is necessary to generate sharp boundaries in the neural crest territory, and to precisely control cell number among neural crest derivatives. PMID: 15501222 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: BMC Dev Biol. 2002 Jul 2;2:8. A transcriptional response to Wnt protein in human embryonic carcinoma cells. Willert J, Epping M, Pollack JR, Brown PO, Nusse R. Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA. jennifer.willert@cox.net BACKGROUND: Wnt signaling is implicated in many developmental decisions, including stem cell control, as well as in cancer. There are relatively few target genes known of the Wnt pathway. RESULTS: We have identified target genes of Wnt signaling using microarray technology and human embryonic carcinoma cells stimulated with active Wnt protein. The ~50 genes upregulated early after Wnt addition include the previously known Wnt targets Cyclin D1, MYC, ID2 and betaTRCP. The newly identified targets, which include MSX1, MSX2, Nucleophosmin, Follistatin, TLE/Groucho, Ubc4/5E2, CBP/P300, Frizzled and REST/NRSF, have important implications for understanding the roles of Wnts in development and cancer. The protein synthesis inhibitor cycloheximide blocks induction by Wnt, consistent with a requirement for newly synthesized beta-catenin protein prior to target gene activation. The promoters of nearly all the target genes we identified have putative TCF binding sites, and we show that the TCF binding site is required for induction of Follistatin. Several of the target genes have a cooperative response to a combination of Wnt and BMP. CONCLUSIONS: Wnt signaling activates genes that promote stem cell fate and inhibit cellular differentiation and regulates a remarkable number of genes involved in its own signaling system. PMID: 12095419 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------