1: Blood Cells Mol Dis. 2005 Sep-Oct;35(2):227-35. A functional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA. Department of Human Genetics, Virginia Commonwealth University, PO Box 980033, 1101 E. Marshall Street, Richmond, VA 23298-0033, USA. Kruppel-like factors (KLFs) have been systematically screened as potential candidates to regulate human gamma-globin gene expression through its CACCC element. Initially, 21 human proteins that have close sequence similarity to EKLF/KLF1, a known regulator of the human beta-globin gene, were identified. The phylogenetic relationship of these 22 KLF/Sp1 proteins was determined. KLF2/LKLF, KLF3/BKLF, KLF4/GKLF, KLF5/IKLF, KLF8/BKLF3, KLF11/FKLF, KLF12/AP-2rep and KLF13/FKLF2 were chosen for functional screening. Semi-quantitative RT-PCR demonstrated that all eight of these candidates are present in human erythroid cell lines, and that the expression of the KLF2, 4, 5 and 12 mRNAs changed significantly upon erythroid differentiation. Each of the eight KLF mRNAs is expressed in mouse erythroid tissues, throughout development. UV cross-linking assays suggest that multiple erythroid proteins from human cell lines and chicken primary cells interact with the gamma-globin CACCC element. In co-transfection assays in K562 cells, it was demonstrated that KLF2, 5 and 13 positively regulate, and KLF8 negatively regulates, the gamma-globin gene through the CACCC promoter element. The data collectively suggest that multiple KLFs may participate in the regulation of gamma-globin gene expression and that KLF2, 5, 8 and 13 are prime candidates for further study. PMID: 16023392 [PubMed - in process] --------------------------------------------------------------- 2: J Nutr. 2004 Apr;134(4):792-8. Kruppel-like factor 4 is transactivated by butyrate in colon cancer cells. Chen ZY, Rex S, Tseng CC. Section of Gastroenterology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02118, USA. zhiyi.chen@bmc.org High-fiber diets decrease the incidence of colorectal cancers, and SCFA, derived from dietary fiber, are involved in the regulation of cell growth, differentiation, and apoptosis of the colonic epithelium. The mediators of these effects remain poorly defined. Kruppel-like factor-4 (KLF4/GKLF) is a zinc-finger transcription factor that exhibits some physiologic properties similar to those of SCFA in the colon. The present study was undertaken to examine the role of KLF4 in the butyrate-mediated effect in colon cancer HT-29 cells. Butyrate induced KLF4 mRNA expression and stimulated KLF4 promoter activity in a dose- and time-dependent manner in HT-29 cells. Similar effects were observed in SCFA possessing different carbon lengths (C3-C7), but not in branched isobutyric acid, indicating that the stimulatory properties of SCFA were related to fatty acid structure. Transfection studies using 5' deletion and mutant constructs of the KLF4 promoter demonstrated that the butyrate-responsive element was located at a putative stimulatory protein (Sp)1-binding site. Electrophoretic mobility shift assays using an oligonucleotide containing a consensus Sp1-binding element revealed a DNA-protein complex that was enhanced by butyrate treatment and supershifted by the Sp1 antiserum. Furthermore, the effects of butyrate on cell growth and KLF4 mRNA expression were the same as those of trichostatin A (TSA), a specific inhibitor of histone deacetylase (HDAC1). Overexpression of HDAC1 significantly attenuated transcriptional activation of the KLF4 promoter by butyrate or TSA. These results suggest that KLF4 may function as one of the downstream effectors of butyrate that mediates its growth arrest effect in the colon. Moreover, transactivation of KLF4 by butyrate appears to be mediated through interaction with a Sp1-binding domain on the promoter and is also likely to involve histone acetylation. PMID: 15051827 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: J Biol Chem. 2004 Mar 5;279(10):8684-93. Epub 2003 Dec 10. Erratum in: J Biol Chem. 2004 Jun 25;279(26):27830. Kruppel-like factor 4 (KLF4) represses histidine decarboxylase gene expression through an upstream Sp1 site and downstream gastrin responsive elements. Ai W, Liu Y, Langlois M, Wang TC. Division of Gastroenterology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. Histidine decarboxylase (HDC) is the enzyme that catalyzes the conversion of histidine to histamine, a bioamine that plays an important role in allergic responses, inflammation, neurotransmission, and gastric acid secretion. Previously, we demonstrated that gastrin activates HDC promoter activity in a gastric cancer (AGS-E) cell line through three overlapping downstream promoter elements. In the current study, we used the yeast one-hybrid strategy to identify nuclear factors that bind to these three elements. Among eight positives from the one-hybrid screen, we identified Kruppel-like factor 4 (KLF4) (previously known as gut-enriched Kruppel-like factor (GKLF)) as one factor that binds to the gastrin responsive elements in the HDC promoter. Electrophoretic mobility shift assays confirmed that KLF4 is able to bind all three gastrin responsive elements. In addition, transient cotransfection experiments showed that overexpression of KLF4 dose dependently and specifically inhibited HDC promoter activity. Regulation of HDC transcription by KLF4 was confirmed by changes in the endogenous HDC messenger RNA by KLF4 small interfering RNA and KLF4 overexpression. We further showed that KLF4 inhibits HDC promoter activity by competing with Sp1 at the upstream GC box and also independently by binding the three downstream gastrin responsive elements. Taken together, these results indicate that KLF4 can act to repress HDC gene expression by Sp1-dependent and -independent mechanisms. PMID: 14670968 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: J Biol Chem. 2004 Mar 5;279(10):9103-14. Epub 2003 Nov 21. Kruppel-like factors regulate the Lama1 gene encoding the laminin alpha1 chain. Piccinni SA, Bolcato-Bellemin AL, Klein A, Yang VW, Kedinger M, Simon-Assmann P, Lefebvre O. INSERM Unit 381, Development and Pathology of the Digestive Tract, University Louis Pasteur, 67200 Strasbourg, France. Laminin-1 (alpha1beta1gamma1), a basement membrane (BM) constituent, has been associated with differentiation processes and also with malignant progression. In the intestinal tissue, the alpha1 chain is expressed and secreted in the subepithelial BM during the developmental period; in the adult rodent tissue, it is restricted to the BM of the dividing cells. To understand how laminin alpha1 chain expression is regulated, we cloned and characterized a 2-kb promoter region of the Lama1 mouse gene. Analysis of the promoter was conducted in the Caco2-TC7 intestinal epithelial cells by transient transfection of serially deleted and site-directed mutated promoter constructs, by electrophoretic mobility shift assays, and expression of selected transcription factors. We determined that a proximal region, which includes an Sp1-binding GC box and a Kruppel-like element, was important for the promoter activity. This region is conserved between the human and mouse genes. Interestingly, two Kruppel-like factors KLF4 and KLF5 exhibit opposing effects on the Lama1 promoter activity that are decreased and increased, respectively, in the intestinal epithelial cells. These data corroborate the complementary expression of KLF4 and KLF5 along the intestinal crypt-villus axis and the parallel expression of KLF5 and laminin alpha1 chain in the crypt region. Finally, we showed that glucocorticoids stimulate the promoter activity. This study is the first characterization of the Lama1 promoter; we identified regulatory elements that may account for the expression pattern of the endogenous protein in the mouse intestine. PMID: 14634001 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 5: J Biol Chem. 2002 Nov 29;277(48):46831-9. Epub 2002 Sep 23. Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. Chen ZY, Shie JL, Tseng CC. Section of Gastroenterology, Veterans Affairs Boston Healthcare System and Boston University School of Medicine, Boston, Massachusetts, 02118, USA. Gut-enriched Kruppel-like factor (GKLF, KLF4) is an epithelial-specific transcription factor that expresses in the gastrointestinal tract and mediates growth arrest of colonic epithelium. The molecular mechanisms governing its growth inhibitory effect have not been fully elucidated. In the present study, we showed that induction of GKLF mRNA and protein expression by interferon-gamma treatment was associated with reduction of ornithine decarboxylase (ODC) gene expression and enzyme activity in colon cancer HT-29 cells. Overexpression of GKLF in HT-29 cells significantly reduced ODC mRNA and protein levels as well as enzyme activity and resulted in growth arrest, indicating that ODC might be a downstream target of GKLF. This conclusion was further supported by data showing that GKLF mRNA and protein concentrations were the highest at the G(1)/S boundary of the cell cycle, where ODC mRNA and protein levels were the lowest and that overexpression of GKLF resulted in cell arrested at the G(1) phase. Reporter gene transfection studies and electrophoretic mobility gel shift assays demonstrated that GKLF repressed ODC promoter activity and that these effects appeared to be mediated through interaction with a GC box in the proximal portion of the promoter. Transfection studies using reporter constructs and chromatin immunoprecipitation assays also demonstrated that GKLF inhibited transactivation of the ODC gene by interfering with the binding of Sp1 to the ODC promoter. These results indicate that GKLF may function as a G(1)/S checkpoint regulator and exert its growth arrest effect through down-regulation of ODC gene expression. Furthermore, GKLF is a transcriptional repressor of the ODC gene, and these effects are mediated by interaction with the GC-rich region on the promoter. PMID: 12297499 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 6: Nucleic Acids Res. 2002 Jun 1;30(11):2270-9. Synergistic activation of the rat laminin gamma1 chain promoter by the gut-enriched Kruppel-like factor (GKLF/KLF4) and Sp1. Higaki Y, Schullery D, Kawata Y, Shnyreva M, Abrass C, Bomsztyk K. Department of Medicine, Box 356521, University of Washington, Seattle, WA 98195, USA. Laminin is a multifunctional heterotrimeric protein present in extracellular matrix where it regulates processes that compose tissue architecture including cell differentiation. Laminin gamma1 is the most widely expressed laminin chain and its absence causes early lethality in mouse embryos. Laminin gamma1 chain gene (LAMC1) promoter contains several GC/GT-rich motifs including the bcn-1 element. Using the bcn-1 element as a bait in the yeast one-hybrid screen, we cloned the gut-enriched Kruppel-like factor (GKLF or KLF4) from a rat mesangial cell library. We show that GKLF binds bcn-1, but this binding is not required for the GKLF-mediated activation of the LAMC1 promoter. The activity of GKLF is dependent on a synergism with another Kruppel-like factor, Sp1. The LAMC1 promoter appears to have multiple GKLF- and Sp1-responsive elements which may account for the synergistic activation. We provide evidence that the synergistic action of GKLF and Sp1 is dependent on the promoter context and the integrity of GKLF activation and DNA-binding domain. GKLF is thought to participate in the switch from cell proliferation to differentiation. Thus, the Sp1-GKLF synergistic activation of the LAMC1 promoter may be one of the avenues for expression of laminin gamma1 chain when laminin is needed to regulate cell differentiation. PMID: 12034813 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 7: Nucleic Acids Res. 2000 Aug 1;28(15):2969-76. Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC. Section of Gastroenterology, Boston VA Medical Center and Boston University School of Medicine, ERBC Room 513, 650 Albany Street, Boston, MA 02118, USA. Cancer cells differ from normal cells in many characteristics including loss of differentiation and uninhibited cell proliferation. Recent studies have focused on the identification of factors contributing to cell growth and differentiation. Gut-enriched Kruppel-like factor (GKLF or KLF4) is a newly identified eukaryotic transcription factor and has been shown to play a role in regulating growth arrest. We have previously shown that GKLF mRNA levels were significantly decreased in colon cancer tissues, and that over-expression of GKLF in colonic adenocarcinoma cells (HT-29) resulted in reduction of cyclin D1 (CD1) mRNA and protein levels. The current study was undertaken to determine the mechanisms by which GKLF inhibited CD1 expression. In a transient transfection system, GKLF suppressed CD1 promoter activity by 55%. Sequential deletion and site-directed mutation analysis of the CD1 promoter have identified the sequence between -141 and -66, a region containing an Sp1 response element, to be essential for GKLF function. By electrophoretic mobility gel shift assay, recombinant GKLF and nuclear extracts from HT-29 cells were found to bind to the Sp1 motif on the CD1 promoter. The inhibitory effect of GKLF on the CD1 promoter activity was completely abolished by excessive amount of Sp1 DNA and GKLF significantly reduced the stimulatory function of Sp1 suggesting that GKLF and Sp1 may compete for the same binding site on the CD1 promoter. These results indicate that GKLF is a transcriptional repressor of the CD1 gene and that the inhibitory effect of GKLF is, in part, mediated by interaction with the Sp1 binding domain on its promoter. PMID: 10908361 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 8: J Biol Chem. 2000 Sep 8;275(36):28230-9. The tissue-dependent keratin 19 gene transcription is regulated by GKLF/KLF4 and Sp1. Brembeck FH, Rustgi AK. Gastroenterology Division, Cancer Center, and Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. Keratins play critical roles in cellular differentiation and cytoskeletal organization. Keratin 19 (K19) is unique because it has been implicated as a marker of stem cells in some tissues, such as the hair follicle in the skin. It is also associated with malignant transformation in esophageal and pancreatic cancers. Here, we show that the K19 promoter is active in a subset of gastrointestinal cancer cells derived from esophageal and pancreas but inactive in other contexts. This activity was mapped to a short region containing an overlapping binding site for gut-enriched Kruppel-like factor (GKLF/KLF4) and Sp1. GKLF has a higher binding affinity and is the predominant binding factor in cells with low Sp-1 protein levels. Pancreatic acinar cells normally do not express K19, but overexpression of GKLF and Sp1 in these cells leads to aberrant expression, similar to what is observed in pancreatic cancer. These results demonstrate the functional interaction of ubiquitous and tissue-restricted transcription factors in determining tissue- and neoplasm-specific patterns of gene expression. PMID: 10859317 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 9: J Biol Chem. 2000 Jun 16;275(24):18391-8. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH, Biggs JR, Kraft AS, Yang VW. Departments of Medicine and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. An important mechanism by which the tumor suppressor p53 maintains genomic stability is to induce cell cycle arrest through activation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene. We show that the gene encoding the gut-enriched Kruppel-like factor (GKLF, KLF4) is concurrently induced with p21(WAF1/Cip1) during serum deprivation and DNA damage elicited by methyl methanesulfonate. The increases in expression of both Gklf and p21(WAF1/Cip1) due to DNA damage are dependent on p53. Moreover, during the first 30 min of methyl methanesulfonate treatment, the rise in Gklf mRNA level precedes that in p21(WAF1/Cip1), suggesting that GKLF may be involved in the induction of p21(WAF1/Cip1). Indeed, GKLF activates p21(WAF1/Cip1) through a specific Sp1-like cis-element in the p21(WAF1/Cip1) proximal promoter. The same element is also required by p53 to activate the p21(WAF1/Cip1) promoter, although p53 does not bind to it. Potential mechanisms by which p53 activates the p21(WAF1/Cip1) promoter include a physical interaction between p53 and GKLF and the transcriptional induction of Gklf by p53. Consequently, the two transactivators cause a synergistic induction of the p21(WAF1/Cip1) promoter activity. The physiological relevance of GKLF in mediating p53-dependent induction of p21(WAF1/Cip1) is demonstrated by the ability of antisense Gklf oligonucleotides to block the production of p21(WAF1/Cip1) in response to p53 activation. These findings suggest that GKLF is an essential mediator of p53 in the transcriptional induction of p21(WAF1/Cip1) and may be part of a novel pathway by which cellular responses to stress are modulated. PMID: 10749849 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 10: Nucleic Acids Res. 1999 Dec 1;27(23):4562-9. Characterization of the structure and regulation of the murine gene encoding gut-enriched Kruppel-like factor (Kruppel-like factor 4). Mahatan CS, Kaestner KH, Geiman DE, Yang VW. Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. Gut-enriched Kruppel-like factor (GKLF, KLF4) is an epithelial-specific transcription factor whose expression is associated with growth arrest. In order to understand the mechanisms regulating expression of the gene encoding GKLF, we isolated a genomic clone containing murine GKLF. The gene spans 5.3 kb and contains four exons. A major start site of transcription was mapped to an adenine residue 601 nt 5' of the translation initiation codon. An additional 1 kb of the 5'-flanking region was sequenced and found to contain multiple cis -elements homologous to the binding sites of several established transcription factors including Sp1, AP-1, Cdx, GATA, and USF. In particular, three closely spaced GC-boxes 5' of the TATA box resemble the established binding site for GKLF. DNase I protection and electrophoretic mobility shift assays verified that recombinant GKLF bound to each of the three GC-boxes. In co-transfection experiments, GKLF transactivated a reporter gene linked to the GKLF 1 kb 5'-flanking region, as did Sp1, Sp3 and Cdx-2. Mutations of one or both of the first and second GC-boxes in the promoter resulted in diminished transactivation by GKLF. These results demonstrate that the 5'-flanking sequence of the mouse GKLF gene functions as a promoter and is subject to autoregulation by its own gene product. PMID: 10556311 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------