1: Biochem J. 1999 May 1;339 ( Pt 3):751-8. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300). Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R. Department of Biology, The University of Memphis, Memphis, TN 38152, USA. The TATA-less murine Msx1 promoter contains two Msx1-binding motifs, located at -568 to -573 and +25 to +30, and is subject to potent autorepression [Takahashi, Guron, Shetty, Matsui and Raghow (1997) J. Biol. Chem. 272, 22667-22678]. To investigate the molecular mechanism by which Msx1 represses the activity of its own promoter, we transfected C2C12 myoblasts with Msx1-promoter-luciferase constructs and assessed reporter gene activity, with and without the exogenous expression of Msx1. We demonstrate that Msx1-mediated autorepression remained unaffected, regardless of the presence or absence of the Msx1 recognition motifs on the promoter. Furthermore, graded exogenous expression of TATA-binding protein (TBP), Sp1 or cAMP-response-element-binding protein-binding protein (CBP/p300) could counteract the autoinhibitory activity of Msx1. Finally, we demonstrate that Msx1 protein can be immunoprecipitated in a multiprotein complex containing TBP, Sp1 and CBP/p300. We hypothesize that the interaction of Msx1 protein with one or more ubiquitous or tissue-restricted transcription factors mediates transcriptional autorepression of the Msx1 gene. PMID: 10215616 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1764-9. A role for the Msx-1 homeodomain in transcriptional regulation: residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Zhang H, Catron KM, Abate-Shen C. Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA. In a previous study we showed that the murine homeodomain protein Msx-1 is a potent transcriptional repressor and that this activity is independent of its DNA binding function. The implication of these findings is that repression by Msx-1 is mediated through its association with certain protein factors rather than through its interaction with DNA recognition sites, which prompted investigation of the relevant protein factors. Here we show that Msx-1 interacts directly with the TATA binding protein (TBP) but not with several other general transcription factors. This interaction is mediated by the Msx-1 homeodomain, specifically through residues in the N-terminal arm. These same N-terminal arm residues are required for repression by Msx-1, suggesting a functional relationship between TBP association and transcriptional repression. This is further supported by the observation that addition of excess TBP blocks the repressor action of Msx-1 in in vitro transcription assays. Finally, DNA binding activity is separable from both TBP interaction and repression, which further shows that these other activities of the Msx-1 homeodomain are distinct. Therefore, these findings define a role for the Msx-1 homeodomain, particularly the N-terminal arm residues in protein-protein interaction and transcriptional repression, and implicate a more complex role overall for homeodomains in transcriptional regulation. PMID: 8700832 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Mol Cell Biol. 1995 Feb;15(2):861-71. Transcriptional repression by Msx-1 does not require homeodomain DNA-binding sites. Catron KM, Zhang H, Marshall SC, Inostroza JA, Wilson JM, Abate C. Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway. This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation. PMID: 7823952 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------