1: Oncogene. 2001 Sep 13;20(41):5779-88. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Suzuki H, Tomida A, Tsuruo T. Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. Under hypoxia, HIF-1alpha binds to aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1beta) to activate expression of genes important for cell survival. Alternatively, HIF-1alpha can bind to the tumor suppressor p53 and promote p53-dependent apoptosis. Here we show that the opposite functions of HIF-1alpha are distinguished by its phosphorylation status. Two distinguishable forms of HIF-1alpha, phosphorylated and dephosphorylated, were induced during hypoxia-induced apoptosis. The phosphorylated HIF-1alpha was the major form that bound to ARNT. Ectopically expressed ARNT was consistently able to enhance HIF-1alpha phosphorylation in a binding-dependent manner. In contrast, the dephosphorylated HIF-1alpha was the major form that bound to p53. Depletion of the dephosphorylated HIF-1alpha, by using the Hsp90 inhibitor geldanamycin A that had little effect on the phosphorylated HIF-1alpha expression, suppressed p53 induction and subsequent apoptosis. Depletion of dephosphorylated HIF-1alpha also prevented hypoxia-induced nuclear accumulation of HDM2, a negative regulator of p53. Our results indicate that the functions of HIF-1alpha varied with its phosphorylation status and that dephosphorylated HIF-1alpha mediated apoptosis by binding to and stabilizing p53. PMID: 11593383 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: J Biol Chem. 2001 Feb 16;276(7):4819-27. Epub 2000 Nov 28. Aromatic hydrocarbon receptor (AhR).AhR nuclear translocator- and p53-mediated induction of the murine multidrug resistance mdr1 gene by 3-methylcholanthrene and benzo(a)pyrene in hepatoma cells. Mathieu MC, Lapierre I, Brault K, Raymond M. Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada. The mouse multidrug resistance gene family consists of three genes (mdr1, mdr2, and mdr3) encoding P-glycoprotein. We show that the expression of mdr1 is increased at the transcriptional level upon treatment of the hepatoma cell line Hepa-1c1c7 with the polycyclic aromatic hydrocarbon 3-methylcholanthrene (3-MC). This increase is not observed in the aromatic hydrocarbon receptor (AhR)-defective TAOc1BP(r)c1 and the AhR nuclear translocator (Arnt)-defective BP(r)c1 variants, demonstrating that the induction of mdr1 by 3-MC requires AhR.Arnt. We show that the mdr1 promoter (-1165 to +84) is able to activate the expression of a reporter gene in response to 3-MC in Hepa-1c1c7 but not in BP(r)c1 cells. Deletion analysis indicated that the region from -245 to -141 contains cis-acting sequences mediating the induction, including a potential p53 binding sequence. 3-MC treatment of the cells increased the levels of p53 and induced p53 binding to the mdr1 promoter in an AhR.Arnt-dependent manner. Mutations in the p53 binding site abrogated induction of mdr1 by 3-MC, indicating that p53 binding to the mdr1 promoter is essential for the induction. Benzo(a)pyrene, a polycyclic aromatic hydrocarbon and AhR ligand, which, like 3-MC, is oxidized by metabolizing enzymes regulated by AhR.Arnt, also activated p53 and induced mdr1 transcription. 2,3,7,8-Tetrachlorodibenzo-p-dioxin, an AhR ligand resistant to metabolic breakdown, had no effect. These results indicate that the transcriptional induction of mdr1 by 3-MC and benzo(a)pyrene is directly mediated by p53 but that the metabolic activation of these compounds into reactive species is necessary to trigger p53 activation. The ability of the anticancer drug and potent genotoxic agent daunorubicin to induce mdr1 independently of AhR.Arnt further supports the proposition that mdr1 is transcriptionally up-regulated by p53 in response to DNA damage. PMID: 11096091 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Exp Neurol. 1999 Sep;159(1):65-72. HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Halterman MW, Federoff HJ. Department of Microbiology and Immunology, Department of Neurology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA. Brain ischemia is a cause of substantial morbidity and mortality during the later decades of life. In light of this, many studies have used in vitro and in vivo models of acute necrosis to test candidate therapeutic agents. More recently, the existence of a genetically programmed component of ischemic death has become widely accepted. We have used molecular genetic approaches to investigate the potential link between hypoxia-induced gene transcription and the delayed death of ischemic neurons. Hypoxia-induced gene expression is an evolutionarily conserved response comprising both transcriptional activation and posttranscriptional and posttranslational stabilization events. Members of the PER-ARNT-SIM (PAS) family of basic helix-loop-helix transcription factors have been shown to regulate hypoxic transcripts in nonneuronal cultured lines. However, evidence for ischemic activation of PAS proteins within the neuronal compartment or possible involvement in neuronal death is lacking. The tumor-suppressor protein p53 is a known transcriptional activator within the central nervous system that is clearly involved in the pathologic response to ischemia. This article will provide data that implicate the coordinate activities of p53 and the PAS protein HIF-1alpha in driving ischemia-induced delayed neuronal death. Background regarding mechanisms of ischemic neuronal death will also be provided with special attention paid to the role of de novo gene expression in promoting this pathologic sequence. The identification of the HIF-1alpha/p53-mediated signaling pathway in neurons highlights a novel target toward which anti-ischemic neuroprotective drug discovery can be applied. Copyright 1999 Academic Press. Publication Types: Review Review, Tutorial PMID: 10486175 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------