1: Breast Cancer Res. 2004;6(4):R366-71. Epub 2004 May 14. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer. Campbell IG, Choong D, Chenevix-Trench G; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Victoria, Australia. ian.campbell@petermac.org INTRODUCTION: Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. METHODS: We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. RESULTS: Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significantly between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). CONCLUSION: The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer. PMID: 15217503 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Nat Genet. 2000 Mar;24(3):300-3. Mutations truncating the EP300 acetylase in human cancers. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C. Department of Oncology, University of Cambridge, Cambridge, UK. The EP300 protein is a histone acetyltransferase that regulates transcription via chromatin remodelling and is important in the processes of cell proliferation and differentiation. EP300 acetylation of TP53 in response to DNA damage regulates its DNA-binding and transcription functions. A role for EP300 in cancer has been implied by the fact that it is targeted by viral oncoproteins, it is fused to MLL in Leukaemia and two missense sequence alterations in EP300 were identified in epithelial malignancies. Nevertheless, direct demonstration of the role of EP300 in tumorigenesis by inactivating mutations in human cancers has been lacking. Here we describe EP300 mutations, which predict a truncated protein, in 6(3%) of 193 epithelial cancers analysed. Of these six mutations, two were in primary tumours (a colorectal cancer and a breast cancer) and four were in cancer cell lines (colorectal, breast and pancreatic). In addition, we identified a somatic in-frame insertion in a primary breast cancer and missense alterations in a primary colorectal cancer and two cell lines (breast and pancreatic). Inactivation of the second allele was demonstrated in five of six cases with truncating mutations and in two other cases. Our data show that EP300 is mutated in epithelial cancers and provide the first evidence that it behaves as a classical tumour-suppressor gene. PMID: 10700188 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------