1: Leuk Lymphoma. 2001 Jan;40(3-4):267-78. HTLV-I Tax related dysfunction of cell cycle regulators and oncogenesis of adult T cell leukemia. Arima N, Tei C. First Department Internal Medicine, Faculty of Medicine, Kagoshima University, Japan. nao@med6.kufm.kagoshima-u.ac.jp HTLV-I is causually related to the oncogenesis of adult T cell leukemia (ATL). However, the precise mechanism of HTLV-I oncogenesis is unclear. HTLV-I Tax protein functions as an activator of various cellular genes, including IL-2, IL-2 receptor-alpha, and c-fos through the activation of nuclear transfer factors such as NF-kappaB and SRF, and also potently activates trascription of viral genes through CREB/ATF sites in the viral LTR. However, Tax activation of HTLV-I infected T cells through the above pathways induces polyclonal proliferation of the cells in vitro; Tax however may function only transiently in the immediate post-infection period following infection in vivo. The long latent period of 60 years from infection to onset of disease suggests other mechanisms for ATL oncogenesis. Recent studies suggest that the malignant transformation of ATL is a multi-hit phenomena, suggesting that discrete genetic events are responsible for ATL oncogenesis. These genetic events could be responsible for the different stages of ATL: smoldering, chronic, lymphoma, and acute type, p16 and p53 genes are important negative regulators of the cell cycle and are often found to be mutated in neoplasms. Recent studies including ours demonstrated a high frequency of alteration of these two genes in primary ATL cells. Furthermore, alteration of the two genes is associated with acute but not chronic type ATL. In addition, p16 gene alteration is linked to the growth rate of ATL cells, suggesting that the alteration of these cell cycle regulatory genes may be related to progression from smoldering or chronic to acute or lymphoma type ATL. Tax may be involved in mutagenesis of these genes through suppression of DNA-beta polymerase gene expression during the process from latent period to acute/lymphoma type. Once transformation occurs, activation of the pathway between Tax and the three nuclear transfer factors, NF-kappaB, SRF, and CREB/ATF, contributes to establish the aggressive manifestations of acute/lymphoma type ATL cells. Publication Types: Review Review, Tutorial PMID: 11426548 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Biochem Cell Biol. 1996;74(4):523-34. Regulation of transcription factor activity during cellular aging. Wheaton K, Atadja P, Riabowol K. Department of Medical Biochemistry, University of Calgary Health Sciences Centre, AB, Canada. Several lines of evidence suggest that the limited replication potential of normal human cells is due to the presence of an intrinsic genetic programme. This "senescence programme" is believed to reduce the incidence of cancer by limiting the growth of most of the transformed cells arising in vivo, although some cells do escape senescence becoming both immortalized and transformed. Here we review the literature that describes the senescence process in terms of gene expression and the regulation of gene expression by a variety of mechanisms affecting transcription factor activity. We focus on regulation of the c-fos gene through posttranslational modification of the serum response factor (SRF) as an example of altered gene expression during cellular aging. Publication Types: Review Review, Tutorial PMID: 8960358 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------