1: Diabetes Metab Res Rev. 2005 May-Jun;21(3):281-7. Diabetes per se and metabolic state influence gene expression in tissue-dependent manner of BB/OK rats. Kloting N, Follak N, Kloting I. Department of Laboratory Animal Science, Medical Faculty, University of Greifswald, Germany. BACKGROUND: Several epidemiologic studies have clearly established that long-term near normoglycaemia strongly protects against onset and progression of late complication of diabetes. Therefore, insulin treatment plays a crucial role in determining the quality of life of affected individuals. Here we studied the effects of exogenous insulin on gene expression levels in well- and poorly compensated diabetic subjects in comparison to non-diabetic BB/OK rats to find out whether diabetes per se and the quality of insulin treatment have an effect on gene expression and whether it is tissue specific. METHODS: Six non-diabetic and 12 diabetic BB/OK rats were studied. Diabetic subjects were either treated with insulin implants (well compensated) or treated with 1U insulin daily (poorly compensated) to guarantee survival. Four weeks after onset of diabetes, the animals were killed and expression of Yy1, Ppargamma, Nfkappab, Pref-1, Tgfb1, Il-10, and Lepr was measured in thymus, spleen, liver, heart, and bone. RESULTS: In general, between diabetic and non-diabetic subjects, significant expression changes were detected in spleen for Il-10, in heart for Il-10 and Ppargamma, in liver for Yy1, Nfkappab, and Lepr, as well as in bone for all genes studied except Tgfb1. Except Lepr, no expression changes were observed in thymus. Between well- and poorly compensated rats, significant differences on expression level were found for Yy1 (liver), Ppargamma (heart), Nfkappab (bone), Pref-1 (spleen), and Lepr (thymus, liver, heart). CONCLUSION: The insulin treatment compensates not only metabolic disturbances but also changes gene expression profile in BB/OK rats in a tissue-dependent manner. Copyright 2005 John Wiley & Sons, Ltd. PMID: 15619288 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: J Biol Chem. 2001 Apr 27;276(17):13664-74. Epub 2001 Jan 26. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F, Kumar A. Department of Pediatrics, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada. Interleukin-10 (IL-10), a pleiotropic cytokine that inhibits inflammatory and cell-mediated immune responses, is produced by a wide variety of cell types including T and B cells and monocytes/macrophages. Regulation of pro- and anti-inflammatory cytokines has been suggested to involve distinct signaling pathways. In this study, we investigated the regulation of the human IL-10 (hIL-10) promoter in the human monocytic cell line THP-1 following activation with lipopolysaccharide (LPS). Analysis of hIL-10 promoter sequences revealed that DNA sequences located between base pairs -652 and -571 are necessary for IL-10 transcription. A computer analysis of the promoter sequence between base pairs -652 and -571 revealed the existence of consensus sequences for Sp1, PEA1, YY1, and Epstein-Barr virus-specific nuclear antigen-2 (EBNA-2)-like transcription factors. THP-1 cells transfected with a plasmid containing mutant Sp1 abrogated the promoter activity, whereas plasmids containing the sequences for PEA1, YY1, and EBNA-2-like transcription factors did not influence hIL-10 promoter activity. To understand the events upstream of Sp1 activation, we investigated the role of p38 and extracellular signal-regulated kinase mitogen-activated protein kinases by using their specific inhibitors. SB202190 and SB203580, the p38-specific inhibitors, inhibited LPS-induced IL-10 production. In contrast, PD98059, a specific inhibitor of extracellular signal-regulated kinase kinases, failed to modulate IL-10 production. Furthermore, SB203580 inhibited LPS-induced activation of Sp1, as well as the promoter activity in cells transfected with a plasmid containing the Sp1 consensus sequence. These results suggest that p38 mitogen-activated protein kinase regulates LPS-induced activation of Sp1, which in turn regulates transcription of the hIL-10 gene. PMID: 11278848 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Am J Respir Crit Care Med. 1998 Dec;158(6):1958-62. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Hobbs K, Negri J, Klinnert M, Rosenwasser LJ, Borish L. Departments of Medicine and Pediatrics, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado, USA. Interleukin-10 (IL-10) and transforming growth factor beta (TGF-beta) are inhibitory for B and T cells, IgE production, and mast cell proliferation, and they induce apoptosis in eosinophils. These cytokines are therefore candidate genes which could contribute to the development of asthma or allergies. We investigated the hypothesis that polymorphic nucleotides within the IL-10 and TGF-beta gene promoters would link to the expression of allergies and asthma. DNA taken from families with an asthmatic proband was examined for base exchanges by single-stranded conformational polymorphism (SSCP). We demonstrated the presence of a polymorphism in the promoter region of the IL-10 gene and four in the TGF-beta gene promoters (3 in TGF-beta1 and 1 in TGF-beta2). The IL-10 gene polymorphism was a C-to-A exchange 571 base pairs upstream from the translation start site and was present between consensus binding sequences for Sp1 and elevated total serum. This polymorphism was associated with elevated total serum IgE in subjects heterozygotic or homozygotic for this base exchange (p < 0.009). The base exchange at -509 (from the transcription initiation site) in the TGF-beta promoter also linked to elevated total IgE (p < 0.01). This polymorphism represented a C-to-T base exchange which induced a YY1 consensus sequence and is present in a region of the promoter associated with negative transcription regulation. PMID: 9847292 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------