Deep Learning and Backpropagation

Boaz Barak

Neuro 140/240 guest lecture 2/8/2022

Recommended reading: (links on website)
Learning

Unknown \(f: X \rightarrow Y \)
Observe \((x_1, f(x_1)), \ldots, (x_n, f(x_n)) \)

Goal: Find \(h \) s.t. \(h(x) \approx f(x) \)

Hypothesis

With high prob over \(x \), \(h(x) \) close to \(f(x) \)

Examples:

1. \(f: \{\text{pixels}\} \rightarrow \{\text{"cat","dog"}\} \), \(f(\quad) = \text{"cat"} \)

\(f: \{\text{pixels}\} \rightarrow \{\text{"benign","malignant"}\} \), \(f(\quad) = \text{"benign"} \)
Learning

Unknown \(f: X \rightarrow Y \)

Observe \((x_1, f(x_1)), \ldots, (x_n, f(x_n))\)

Goal: Find \(h \) s.t. \(h(x) \approx f(x) \)

Hypothesis

With high prob over \(x \),
\(h(x) \) close to \(f(x) \)

Examples:

2. \(f: \{ \text{chess positions} \} \rightarrow \mathbb{N}, \ f(\text{position}) = 157 \)

Quality score of position
Learning

Uknown $f: \mathcal{X} \to \mathcal{Y}$

Observe $(x_1, f(x_1)), \ldots, (x_n, f(x_n))$

$f(\text{"I hate MIT"}) = 2^{-32.4}$

$f(\text{"I love MIT"}) = 2^{-30.4}$

Both schools loved at 4:1 ratio but Harvard talked about twice as much

Goal: Find h s.t. $h(x) \approx f(x)$

With high prob over x, $h(x)$ close to $f(x)$

Examples:

3. $f: \{\text{sentences}\} \to [0,1], f(\text{"I hate Harvard"}) = 2^{-31.2}$

$f(\text{"I love Harvard"}) = 2^{-29.3}$

* GPT-3 provided probabilities of the Pr["love/hate X" | "I"] multiplied by $2^{-12.8}$ for the frequency of "I".
Learning is a tool

Data → Function Approximation → Higher level algorithm → Decisions

Approximation
Learning is a tool

Data → Function Approximation → Higher level algorithm → Decisions

Examples:

\[f: \{\text{pixels}\} \rightarrow \{\text{"benign","malignant"}\}, \quad f(\text{image}) = \text{"benign"} \]

refer to human doctor
Learning is a tool

Data

Function Approximation

Higher level algorithm

Decisions

Examples:

\[f: \{ \text{chess positions} \} \rightarrow \mathbb{N}, f(\text{position}) = 157 \]

Search for move maximizing score, continue virtual playing to update score
Learning is a tool

Data \rightarrow \text{Function Approximation} \rightarrow \text{Higher level algorithm} \rightarrow \text{Decisions}

Examples:

\[f: \{\text{sentences}\} \rightarrow [0,1], \quad f(\text{"I hate Harvard"}) = 2^{-31.23} \]

Generate continuation \(w_k \) to \(w_1 \ldots w_{k-1} \) by maximizing \(f(w_1 \ldots w_k) \)
I hate Harvard and my degree."

“Whoa,” I said. “That’s a big one.”

“I’m serious.”

“Why?”

“I don’t want to talk about it"

I love Harvard. I love the people in my life that I’ve met here,” she said.

“I’m really excited to go back to my school and my family and my friends ... but I also feel really at home here,” she added.
Deep Learning in One Slide

```python
f = random_program()
for x,y in training_data:
    loss = abs(f(x)-y)
    f_pert =  # perturbation of f with smaller loss
    f = f_pert
```
Why dial is important

Deep Learning performance
“[the bitter lesson] is the great power of general-purpose methods ... that continue to scale with increased computation even as the available computation becomes very great”

The Bitter Lesson, Rich Sutton

“Every sufficiently advanced technology is indistinguishable from potatoes.”
Deep Learning in One Slide

```python
f = random_program()
for x,y in training_data:
    loss = abs(f(x)-y)
    f_pert =  # perturbation of f with smaller loss
    f = f_pert
```

Data
(# samples)

Memory
(size of f)

Compute
(# steps)

Needed:
- Represent program f
- Find perturbation
What is a program?

A program is a circuit

\[\text{Output} = f(\vec{x}) \]
What is a Neural Network? A circuit.

often \(f(x, w) = \sigma(w_0 + \sum w_i x_i) \)

Output = \(N(\mathbf{\hat{x}}, \mathbf{\hat{w}}) \)
What is a Neural Network?

A circuit.

often $f(x,w) = \sigma(w_0 + \sum w_i x_i)$

$\mathbf{N}(\mathbf{x}, \mathbf{w})$

Want: If $\mathbf{w}_1 \approx \mathbf{w}_2$ then $\mathbf{N}(\mathbf{x}, \mathbf{w}_1) \approx \mathbf{N}(\mathbf{x}, \mathbf{w}_2)$

Cor: Perturb $f(\mathbf{x}) = \mathbf{N}(\mathbf{x}, \mathbf{w})$ by $\mathbf{w} \leftarrow \mathbf{w} + \nabla$
Training: perturb weights until net fits the training data.
Training a Neural Net

This is the output from one neuron. Hover to see it.

The outputs are mixed with varying weights, shown by the thickness of the lines.
Training a Neural Net
Math starts now
Learning

Uknown \(f: X \to Y \)

Observe \((x_1, f(x_1)), ..., (x_n, f(x_n))\)

Hypothesis

Goal: Find \(h \) s.t. \(h(x) \approx f(x) \)

Define \(\mathcal{H} \) - class of hypotheses

\(L: Y \times Y \to \mathbb{R} \) - loss function

Output: \(\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(f(x_i), h(x_i)) \)

Hope: \(\hat{h} \approx \arg\min_{h \in \mathcal{H}} \mathbb{E}_{x,y} L(f(x), h(y)) \)
Learning

Unknown \(f: \mathcal{X} \to \mathcal{Y} \)

Observe \((x_1, f(x_1)), \ldots, (x_n, f(x_n))\)

General approach: Define \(\mathcal{H} \) - \textit{class of hypotheses}

\[L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \] - \textit{loss function}

Output:

\[\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(f(x_i), h(x_i)) \]

Hope:

\[\hat{h} \approx \arg\min_{h \in \mathcal{H}} \mathbb{E}_{x,y} L(f(x), h(y)) \]
Gradient Descent

Input: \((x_1, y_1), \ldots, (x_n, y_n)\)

Goal: Compute
\[
\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i)
\]

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

\(\theta\) is variable
\(x_i, y_i\) are constant

Define:
\[
L(\theta) := \sum_{i=1}^{n} L(h_\theta(x_i), y_i)
\]

Goal: Compute
\[
\hat{\theta} = \arg\min_{\theta \in \mathbb{R}} L(\theta)
\]

\[
\theta_1 = \theta_0 - \eta L'(\theta_0)
\]
Gradient Descent

Input: \((x_1, y_1), \ldots, (x_n, y_n)\)

Goal: Compute \(\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i)\)

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

Define: \(L(\theta) := \sum_{i=1}^{n} L(h_\theta(x_i), y_i)\)

Goal: Compute \(\hat{\theta} = \arg\min_{\theta \in \mathbb{R}} L(\theta)\)

\[
\theta_1 = \theta_0 - \eta L'(\theta_0) \\
\theta_2 = \theta_1 - \eta L'(\theta_1)
\]
Gradient Descent

Input: \((x_1, y_1), \ldots, (x_n, y_n)\)

Goal: Compute

\[
\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i)
\]

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

Define:
\[
L(\theta) := \sum_{i=1}^{n} L(h_\theta(x_i), y_i)
\]

Goal: Compute

\[
\hat{\theta} = \arg\min_{\theta \in \mathbb{R}} L(\theta)
\]

slope = \(L'(\theta_2)\)

\[
\begin{align*}
\theta_1 &= \theta_0 - \eta L'(\theta_0) \\
\theta_2 &= \theta_1 - \eta L'(\theta_1) \\
\theta_3 &= \theta_2 - \eta L'(\theta_2)
\end{align*}
\]
Gradient Descent

Input: \((x_1, y_1), \ldots, (x_n, y_n)\)

Goal: Compute \(\hat{h} = \arg \min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i)\)

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

Define: \(L(\theta) := \sum_{i=1}^{n} L(h_\theta(x_i), y_i)\)

Goal: Compute \(\hat{\theta} = \arg \min_{\theta \in \mathbb{R}} L(\theta)\)

\[
\begin{align*}
\theta_1 &= \theta_0 - \eta L'(\theta_0) \\
\theta_2 &= \theta_1 - \eta L'(\theta_1) \\
\theta_3 &= \theta_2 - \eta L'(\theta_2)
\end{align*}
\]
Stochastic Gradient Descent

Input: \((x_1, y_1), \ldots, (x_n, y_n)\)

Goal: Compute

\[
\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i)
\]

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

Define:

\[
L(\theta) := \sum_{i=1}^{n} L(h_\theta(x_i), y_i)
\]

Observation:

\[
L'(\theta) = \sum_{i=1}^{n} L'(h_\theta(x_i), y_i) \propto \mathbb{E}_{i \sim [n]}[L'(h_\theta(x_i), y_i)]
\]

\[
\theta_1 = \theta_0 - \eta L'(\theta_0)
\]

\[
\theta_2 = \theta_1 - \eta L'(\theta_1)
\]

\[
\theta_3 = \theta_2 - \eta L'(\theta_2)
\]

\[
\min L(\theta)
\]
Stochastic Gradient Descent

Input: \((x_1, y_1), ..., (x_n, y_n)\)

Goal: Compute
\[\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} L(h(x_i), y_i) \]

Assume:
Every \(h \in \mathcal{H}\) specified by parameter \(\theta \in \mathbb{R}\)

Observation:
\[L'(\theta) = \sum_{i=1}^{n} L'(h_\theta(x_i), y_i) \propto \mathbb{E}_{i \sim [n]} [L'(h_\theta(x_i), y_i)] \]

Algorithm:
1. \(\theta \leftarrow \$\)
2. for \(t = 1, ..., \#\text{epochs}\):
 for \(i \in \text{shuffle}(1, ..., n)\):
 \[\theta \leftarrow \theta - \eta \cdot \frac{dL(h_\theta(x_i), y_i)}{d\theta} \]
Training a Neural Network

SGD:

1. $\vec{w} \leftarrow \$
2. for $t = 1, \ldots, \# \text{epochs}$:

 for $i \in \text{shuffle}(1, \ldots, n)$:

 $\vec{w} \leftarrow \vec{w} - \eta \cdot \nabla_{\vec{w}} L_i(\vec{w})$

\[
L_i(\vec{w}) = L(N(x_i, \vec{w}), y_i)
\]

\[
\nabla_{\vec{w}} L_i(\vec{w}) = \left(\frac{\partial L(N(x_i, \vec{w}), y_i)}{\partial w_1}, \ldots, \frac{\partial L(N(x_i, \vec{w}), y_i)}{\partial w_k} \right)
\]
Neural Networks Gradient

\[\nabla L(w) = \left(\frac{\partial L}{\partial w_1}, \ldots, \frac{\partial L}{\partial w_k} \right) \approx \left(\frac{L(w + \epsilon b_1) - L(w)}{\epsilon}, \ldots, \frac{L(w + \epsilon b_k)}{\epsilon} \right) \]

Naïve Approach: Take \(v_1, \ldots, v_k \) basis for \(\mathbb{R}^k \), measure \(\langle \nabla, v_i \rangle \approx \frac{L(w + \epsilon v_i) - L(w)}{\epsilon} \)

Cost: \(k + 1 \) evaluations of network

Signal: One global scalar per evaluation, “neurologically plausible”
Neural Networks Gradient

Backpropagation: Recursive algorithm to compute $\frac{\partial L}{\partial g}$ for every gate g in net

Cost: Two evaluations of network

Signal: Propagate gradient vector backward, “neurologically implausible?”
Multivariate chain rule

\[
\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)
\]
If you know
\[
\frac{\partial z}{\partial v_1}, \frac{\partial z}{\partial v_2}, \frac{\partial z}{\partial v_3}
\]

You can compute \(\frac{\partial z}{\partial u} \)

\[
\frac{\partial z}{\partial u} = \left(\frac{\partial v_1}{\partial u} \cdot \frac{\partial z}{\partial v_1} + \frac{\partial v_2}{\partial u} \cdot \frac{\partial z}{\partial v_2} + \frac{\partial v_2}{\partial u} \cdot \frac{\partial z}{\partial v_3} \right)
\]
Example

\[v = u^3 \]

\[z = v \cdot w \]

\[w = u + u \]

\[
\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right) = 3 \cdot u^2 \cdot w + 2 \cdot v
\]

\[u = 5 \Rightarrow \frac{\partial z}{\partial u} = 3 \cdot 25 \cdot 10 + 250 = 1000 \]
\[
\begin{align*}
\frac{\partial z}{\partial u} &= \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)
= 3 \cdot u^2 \cdot w + 2 \cdot v \\
\end{align*}
\]
\[
\begin{align*}
u &= u^3 \\
w &= u + u \\
z &= v \cdot w \\
\end{align*}
\]
\[
\begin{align*}
u &= 5 \Rightarrow \frac{\partial z}{\partial u} = 3 \cdot 25 \cdot 10 + 250 = 1000
\end{align*}
\]
\[
\begin{align*}
\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} &= 10 \cdot 3 \cdot u^2 = 750 \\
\frac{\partial z}{\partial v} &= 10 \\
\frac{\partial z}{\partial w} &= 125 \\
\frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} &= 2 \cdot 125 = 250 \\
\frac{\partial z}{\partial u} &= (\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w}) = 3 \cdot u^2 \cdot w + 2 \cdot v \\
\frac{\partial z}{\partial u} &= 3 \cdot 25 \cdot 10 + 250 = 1000
\end{align*}
\]
Summary

• "Neural networks" are not about neurons – architecture details not as important.

Some method for parameterized functions such that

• Increase complexity by increasing parameters

• Efficiently find small perturbations improving objective

• Back propagation: Method to find perturbation using constant number of evaluations.

Cost: Vector-valued feedback from reward layer to computation layer