Neuro 140. Biological and Artificial Intelligence

Spring 2023

List of Potential Projects

Project Title	Brief Description, Hypotheses, Questions	References	Difficu Ity Ievel [0 = easy, 10 = hard]	Link to more information, data, code
Building models that generalize well. There are three different options: 1. Weather modifications 2. Day-night 3. Real vs Cartoons/Sketches	Neural networks are notoriously bad at generalizing to test data which is significantly different from train data. Recent efforts try to work across such shifts. Implement some recent works, and try to suggest modifications which might do well.	https://openaccess.th ecvf.com/content/ICC V2021W/AVVision/pa pers/Musat_Multi-We ather_City_Adverse_ Weather_Stacking_for _Autonomous_Driving _ICCVW_2021_paper .pdf https://team.inria.fr/rits /computer-vision/weat her-augment/	7	
The problem of parameters in linear systems	Current deep convolutional neural networks are typically underdetermined. Why is it that they do not overfit? Compute condition numbers, rademacher averages for underdetermined and overdetermined linear systems to assess robustness	Poggio, Kur, Banburski. Double descent in the condition number. https://www.pnas.or g/content/117/44/27 162	6	

Sharpened and faded object boundaries	It is widely known that CNNs are biased to textures rather than shapes. Taking a dataset with segmentation maps, sharpen or blur the edges in the training data. How does this impact the texture loving nature of CNNs?		7	http://www.image -net.org/
Impact of changing Transition Function in Deep RL	 (a) Use reinforcement learning to teach a network to play a video game like PACMAN. (b) Transition function defines the probabilities with which PACMAN ghosts move. How does the RL agent perform when the probabilities of ghost movements are different in testing than training? 	https://github.com/tyc hovdo/PacmanDQN https://www.youtube.c om/watch?v=QiIHGS YbjDQ	8	
Enforcing brain like activations	Recent works have trained linear models which take as input a CNN layer's activations and map them to neuronal activations collected from brain measurements. Reproduce these results and build on it.		5	
Graphical humor	Write an algorithm that will predict human judgments on whether an image is funny or not (or quantitative values on how funny an image is).		10	https://docs.googl e.com/document/ d/1P3GvuU-YNA JI5qWF0HAJaZ8 zVJ5-BVk1UZW- z9wKFDM/edit

Visual illusions	Are current computer vision systems susceptible to human visual illusions? How do CNNs see these images? Can we create more such images automatically?	Kreiman. The phenomenology of seeing. https://arxiv.org/pdf/18 10.00415.pdf	8	https://robertmax williams.github.io
Working memory Int 1 I I I I I I I I I I I I I I I I I I	Create a model that can solve a variety of delay match to sample working memory tasks.	Miller. Working memory 2.0	9	https://docs.googl e.com/document/ d/1oV3Asf-8qEq A96_QWvBH-qO ZuYJhHp-u32Rp e_GpE5E/edit
Turing project	Test state-of-the-art algorithms as human imitators	Zhang et al. Human or machine? Turing tests for vision and language	4	https://drive.googl e.com/drive/folde rs/1vKplQUud271 et4MPcqs8VXos GI_atOhP