# The Bayesian Brain: Ideal observer models for perceptual decisions

Jan Drugowitsch

Department of Neurobiology Harvard Medical School



Neuro 140 February 6, 2024



# Roadmap



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience



(Behavioral) evidence for handling uncertainty



Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

# Roadmap



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience



(Behavioral) evidence for handling uncertainty



Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

# Guiding principle: information is uncertain







# Uncertainty handling in artificial intelligence (a few examples)

Boltzmann machines (stochastic Hopfield networks; Hinton & Sejnowski, 1983)

Bayesian networks (Pearl, 1985)

Statistical learning theory (Vapnik & Chervonenkis, 1971) - brought us Support Vector Machines (Cortes & Vapnik, 1995)

Variational Bayes; MCMC; ...



Deep learning (~2012): initially no uncertainty

. . .

. . .

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014)

- build statistical model of inputs

Distributional reinforcement learning (Bellemare et al., 2017) - build statistical model of long-term rewards

Diffusion models, e.g., Stable Diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) - image generation by learning to revers stochastic diffusion process

### Ideal observer modeling

#### **Brain**





today's lecture





Principled way of handling uncertainty





Pierre-Simon Laplace (*Théorie analytique des probabilités*, 1812):

"The most important questions of life are indeed, for the most part, really only problems of probability"

Cox's theorem: probabilities are the only principled way to handle uncertainty (Cox, 1946)

# Roadmap



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience



#### (Behavioral) evidence for handling uncertainty



Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

### Combining uncertain evidence from multiple sources

e.g. visual/auditory for object localization visual/vestibular for self-motion visual/haptic for bar width estimation



Cue combination using the laws of probability



# Rely on prior information

Prior = state of the world in absence of evidence



https://www.youtube.com/watch?v=g\_sn0WtHK1g



#### Real-world: underestimating speed in bad weather



# Sensitivity to rewards/losses



(Trommerhäuser, Maloney & Landy, 2008)

...has also been used to reverse-engineer the reward/loss function e.g. Körding & Wolpert (2004); Drugowitsch et al. (2012)

### Recap: Bayesian decision theory



Rev. Thomas Bayes (1701-1761)



# Roadmap



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience



(Behavioral) evidence for handling uncertainty



Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

#### Perceptual decision-making & the speed/accuracy trade-off



 fast choices
 speed/accuracy trade-off
 → slow choices

 inaccurate
 accurate

 low cost of accumulating evidence (e.g. attention, loss of time)
 high cost

# In the lab: the random-dot motion task

(e.g., Newsome, Britten, Movshon & Shadlen, 1989; Roitman & Shadlen, 2002)

"respond as quickly and accurately as possible"





# Formalizing evidence accumulation

Latent state

$$\mu = \{-\mu_0, \mu_0\}$$

Noisy evidence per  $\delta t$ 

$$\delta x_n | \mu \sim \mathrm{N}(\mu \delta t, \sigma^2 \delta t)$$





Optimal evidence accumulation: Bayes' rule

| $p(\mu \delta x_{1:N}) \propto$ | $p(\delta x_{1:N} \mu)$ | $p(\mu)$ |
|---------------------------------|-------------------------|----------|
| posterior                       | likelihood              | prior    |

**Posterior belief** about motion being "right-ward" ( $\mu > 0$ )



Drugowitsch et al. (2012)

# Evidence accumulation by diffusion



# Diffusion decision models (DDMs)

(Ratcliff, 1978)



Works surprisingly well for, fast (<1.5s), single-stage decisions, e.g.,

Word/non-word judgments (e.g., Ratcliff & Gomez, 2004) Numerosity judgments (e.g., Ratcliff & McKoon, 2018) Recognition memory (e.g., Ratcliff, 1978)

. . .

# Deciding when to decide: decision boundaries

Free evidence: accumulate forever! Assume: time/evidence is costly

| cost   | linear in time, <i>ct</i>      | cheap      |
|--------|--------------------------------|------------|
| reward | 1 for correct, 0 for incorrect | inaccurate |

speed/accuracy trade-offfast choicesslow choicescheapexpensiveinaccurateaccurate

**Optimal trade-off:** dynamic programming (Bellman, 1960s)

After accumulating for some time *t*: expected "return" V(g(t)) (recall,  $g(t) \equiv p(\mu = \mu_0 | \delta x_{1:t})$ )





# DDMs & Sequential probability ratio test



DiffusionBayes-optimal evidence accumulationDecision-boundariesOptimal speed-accuracy trade-off

Sequential probability ratio test (Turning, 1940s; Wald & Wolfowitz, 1948)



# Neural correlates of evidence accumulation



# Roadmap



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience



(Behavioral) evidence for handling uncertainty



Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

#### Extending diffusion model to higher-dimensional inputs



### A larger input population



Learning input weights after feedback  $y^*$ 

$$\begin{array}{l} p\left(\mathbf{w}|\mathbf{x},t,y^{*}\right) \propto \begin{array}{c} p\left(y^{*}|\mathbf{w},\mathbf{x},t\right) & p\left(\mathbf{w}\right) \\ \end{array}$$
posterior belief
after feedback
likelihood of weights
given feedback
to feedback
x, t \xrightarrow{\mathbf{w}} y^{\*}

#### **Approximating Bayes rule**

$$p\left(\mathbf{w}|\mathbf{x},t,y^{*}\right) = \mathbf{w},\mathbf{x},t \quad p\left(\mathbf{w}\right)$$
from generative model:
cumulative Gaussian likelihood

#### Assumed density filtering

Minimizing KL(p||q) between true posterior p and Gaussian approximation q

$$q\left(\mathbf{w}|\mathbf{x},t,y^{*}
ight) \underset{\sim}{\propto} p(y^{*}|\mathbf{w},\mathbf{x},t) q(\mathbf{w})$$
assumed Gaussian becomes Gaussian

Learning of input weights: tracking mean and covariance of Gaussian

#### The Bayes-(near)-optimal learning rule

With prior belief before feedback,  $\mathbf{w} \sim \mathcal{N}\left(\mu_w, \beta_w \bar{\mathbf{\Sigma}}_w\right)$ 



#### The Bayes-(near)-optimal learning rule

With prior belief before feedback,  $\mathbf{w} \sim \mathcal{N}\left(\mu_w, \beta_w \bar{\mathbf{\Sigma}}_w\right)$ 



### How good is the approximation?

Compare performance to optimal (Gibbs sampling) solution



angular error

true  $\mathbf{w}^*$ 

 $\hat{\mathbf{w}}$ 

#### Do we need to be probabilistic? Simpler heuristics



#### Steady-state performance



#### Continual learning predicts sequential choice dependencies



### Odor categorization/identification task





#### Task conditions





#### Vanilla diffusion models can't fit both conditions





#### ...but a learning model can





Interleaved condition



Odor categorization condition



#### Sequential effects

Sequential effects are not fitted, but predicted

Odor identification condition





Odor categorization condition



#### Simpler models fit data less well

Model comparison on psychometric/chronometric curves & sequential effects



Using BIC; qualitatively same results for AIC & AICc

# Summary



 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ 



Ideal observer modeling: Uncertainty as guiding principle in AI and computational neuroscience Handling uncertainty by Bayesian decision theory

(Behavioral) evidence for handling uncertainty Reliability-weighted cue combination Use of prior information for uncertain evidence Loss-sensitive decision-making

Example 1: ideal observer models for the speed/accuracy trade-off in perceptual decision-making

Optimal speed-accuracy trade-off by diffusion models



Example 2: Inference on a difference time-scale: Decision confidence to improve decision strategies

Bayes-optimal learning is confidence-weighted Provides computational role for decision confidence Predicts sequential choice dependencies for continual learning

> Drugowitsch et al. (2012). The Journal of Neuroscience Drugowitsch et al. (2019). PNAS Mendonça et al. (2020). Nature Communications

### Ideal observer models as hypothesis generators



Brain is too high-dimensional to fully explore by experiments



Use of ideal observer models to generate hypotheses of brain function

Further questions?

#### Do rodents learn both weights and biases?



#### Simple parameter adjustment across blocked conditions?







#### Confidence-weighting only for diffusion models?

For diffusion models

$$p(\mathbf{w}|\mathbf{x}, t, y^*) \propto p(y^*|\mathbf{w}, \mathbf{x}, t) p(\mathbf{w})$$

More generally, following choice 
$$y$$
 after observing  $\mathbf{x}$   
after correct choices,  $y = y^*$   
 $p(\mathbf{w}|\mathbf{x}, \text{choice}) \propto \quad p(y = \text{choice}|\mathbf{w}, \mathbf{x}, \text{choice}) \quad p(\mathbf{w})$   
after incorrect choices,  $y \neq y^*$   
 $p(\mathbf{w}|\mathbf{x}, \text{choice}) \propto (1 - p(y = \text{choice}|\mathbf{w}, \mathbf{x}, \text{choice})) \quad p(\mathbf{w})$ 

What about *N*-AFC with *N*>2?

Feedback is correct/incorrect:again decFeedback is correct choice:need full

again decision confidence need full posterior  $p(y|\mathbf{w}, \mathbf{x})$  for all y

#### Confidence trumps imperfect feedback



 $\beta$  = probability of inverted feedback

1

Further questions?