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We need theories to constrain our hypothesis space!

How do we develop useful theories?
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(Behavioral) evidence for handling uncertainty

Ideal observer modeling:
Uncertainty as guiding principle
in AI and computational neuroscience

Example 1: ideal observer models for the speed/accuracy trade-off
in perceptual decision-making
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Guiding principle: information is uncertain



Uncertainty handling in artificial intelligence

Statistical learning theory (Vapnik & Chervonenkis, 1971)
- brought us Support Vector Machines (Cortes & Vapnik, 1995) 

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014)
- build statistical model of inputs

Boltzmann machines (stochastic Hopfield networks; Hinton & Sejnowski, 1983)

Distributional reinforcement learning (Bellemare et al., 2017)
- build statistical model of long-term rewards

Bayesian networks (Pearl, 1985)

(a few examples)

Deep learning (~2012): initially no uncertainty

…

…

Variational Bayes; MCMC; …

Diffusion models, e.g., Stable Diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020)
- image generation by learning to revers stochastic diffusion process
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Ideal observer modeling

Brain AI

Needs to efficiently handle
uncertain information

methods for (approximate)
inference with uncertain

information

”ideal observer” models

potential
neural implementations

new algorithmic ideas
(e.g., boltzmann machines,

networks in general)



Principled way of handling uncertainty
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Pierre-Simon Laplace (Théorie analytique des probabilités, 1812):

“The most important questions of life are indeed, for the most part,
     really only problems of probability”

Using Bayesian decision theory to handle uncertainty

decision 

true
state

assumed
stateloss ,

Cox’s theorem: probabilities are the only principled way to handle uncertainty (Cox, 1946)

Rev. Thomas Bayes
(1701-1761)
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Combining uncertain evidence from multiple sources

e.g. visual/auditory for object localization
visual/vestibular for self-motion

(Ernst & Banks, 2002)
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Cue combination using the laws of probability

visual/haptic for bar width estimation



Rely on prior information

(Weiss, Simoncelli & Adelson, 2002)

Prior = state of the world in absence of evidence

https://www.youtube.com/watch?v=g_sn0WtHK1g

?

𝑝(𝑣)

motion velocity

prior

more likely interpretation

Real-world: underestimating speed in bad weather

vs.
prior

2 gratings1 grating

stimulus velocity

combined with prior

perceived actual



Sensitivity to rewards/losses

(Trommerhäuser, Maloney & Landy, 2008)

…has also been used to reverse-engineer the reward/loss function
e.g. Körding & Wolpert (2004); Drugowitsch et al. (2012)



Recap: Bayesian decision theory
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Perceptual decision-making & the speed/accuracy trade-off

Accumulate evidence over time

Commit to / execute choice

fast choices slow choices
inaccurate accurate

speed/accuracy trade-off

low cost of accumulating evidence (e.g. attention, loss of time) high cost



51.2% coherence

“right”?“left”?

12.8% coherence

“respond as quickly and accurately as possible”

(e.g., Newsome, Britten, Movshon & Shadlen, 1989; Roitman & Shadlen, 2002)
In the lab: the random-dot motion task

Palmer, Huk & Shadlen (2005)
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Formalizing evidence accumulation
“right”?“left”?Latent state 𝜇 = {−𝜇!, 𝜇!}

Noisy evidence per 𝛿𝑡 𝛿𝑥"|𝜇 ∼ N 𝜇𝛿𝑡, 𝜎#𝛿𝑡 𝜇 = −𝜇. 𝜇 = 𝜇.

𝛿𝑥

time0

“right”?

“left”?

Optimal evidence accumulation: Bayes’ rule
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Drugowitsch et al. (2012)



Evidence accumulation by diffusion

momentary evidence

accumulated evidence

resulting posterior

“right”?“left”?

𝜇 = −𝜇. 𝜇 = 𝜇.

frame 𝑛: 𝛿𝑥/

𝛿𝑥"|𝜇 ∼ N 𝜇𝛿𝑡, 𝜎#𝛿𝑡

𝑥 𝑡 = 9
".$

&
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choose
“right”

choose
“left”

choose
“right”

choose
“left”

d𝑥
d𝑡 = 𝜇 + 𝜎𝜂(𝑡)

make choices directly
In space of
accumulated evidence



(Palmer, Huk & Shadlen, 2005)
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d𝑥
d𝑡 = 𝑘𝑐 + 𝜎𝜂(𝑡)

“coherence”

drift 𝜇 diffusion

white noise process

𝑥

Works surprisingly well for, fast (<1.5s), single-stage decisions, e.g.,
Word/non-word judgments (e.g., Ratcliff & Gomez, 2004)

Numerosity judgments (e.g., Ratcliff & McKoon, 2018)
Recognition memory (e.g., Ratcliff, 1978)
…

(Ratcliff, 1978)
Diffusion decision models (DDMs)



Deciding when to decide: decision boundaries
Free evidence: accumulate forever!
Assume: time/evidence is costly

cost linear in time, 𝑐𝑡
reward 1 for correct, 0 for incorrect

fast choices slow choices
speed/accuracy trade-off

cheap
inaccurate

expensive
accurate

Optimal trade-off: dynamic programming (Bellman, 1960s)

After accumulating for some time 𝑡: expected ”return” 𝑉 𝑔 𝑡

Choosing −𝜇! or 𝜇! 1 − 𝑔 or 𝑔
expected return

Accumulating another 𝛿𝑡 𝑉 𝑔 + 𝛿𝑔 − 𝑐𝛿𝑡

𝑉 𝑔 = max 1 − 𝑔, 𝑔, 𝑉 𝑔 + 𝛿𝑔 − 𝑐𝛿𝑡

Bellman’s equation

(recall, 𝑔(𝑡) ≡ 𝑝(𝜇 = 𝜇!|𝛿𝑥$:+))



DDMs & Sequential probability ratio test
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Diffusion Bayes-optimal evidence accumulation
Decision-boundaries Optimal speed-accuracy trade-off

Sequential probability ratio test (Turning, 1940s; Wald & Wolfowitz, 1948)

accumulate decide



Neural correlates of evidence accumulation

Gold & Shadlen (2007);
LIP data from Roitman & Shadlen (2002);
MT data from Britten (1992)

Wurtz (2015)
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Extending diffusion model to higher-dimensional inputs
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Maximize reward rate for
fixed, known difficulty (e.g., fixed coherence)
(Turing, 1941; Wald & Wolfowitz, 1948)

difficulty that varies across trials
(Drugowitsch et al., 2012)

difficulty that varies within trials, multiple sources of information
(Drugowitsch et al., 2014; Drugowitsch, Moreno Bote & Pouget, 2014) 

more realistically
input is larger neural population

inputs weights need to be learned

usually
only 2 inputs
known input weights



A larger input population

neural input
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Learning input weights after feedback

belief prior
to feedback

likelihood of weights
given feedback

posterior belief
after feedback

likelihood of weights
given feedback



Approximating Bayes rule

from generative model:
cumulative Gaussian likelihood

INTRACTABLE

becomes Gaussianassumed Gaussian

Learning of input weights: tracking mean and covariance of Gaussian

Assumed density filtering
Minimizing                between true posterior    and Gaussian approximation 
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The Bayes-(near)-optimal learning rule
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How good is the approximation?

true
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angular errorCompare performance to optimal (Gibbs sampling) solution
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Do we need to be probabilistic? Simpler heuristics

Simple delta rule
minimizes distance between chosen
and correct bound

Normalized delta rule

Stochastic gradient ascent
on log-likelihood

either      or

delta rule with normalization, 



Steady-state performance
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Continual learning predicts sequential choice dependencies
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Odor categorization/identification task



Task conditions

Odor identification condition

Odor categorization condition



Vanilla diffusion models can’t fit both conditions

sensory accumulation decision

Odor identification condition Odor categorization condition



…but a learning model can

sensory accumulation decision

near-optimal learning

Odor identification condition

Odor categorization conditionInterleaved condition



Sequential effects
Sequential effects are not fitted, but predicted
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Simpler models fit data less well
Model comparison on psychometric/chronometric curves & sequential effects

Fitting everything (incl. sequential effects)

Fitting only psychometric/chronometric curves

Using BIC; qualitatively same results for AIC & AICc
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Handling uncertainty by Bayesian decision theory

Reliability-weighted cue combination
Use of prior information for uncertain evidence
Loss-sensitive decision-making

Optimal speed-accuracy trade-off by diffusion models

Bayes-optimal learning is confidence-weighted
Provides computational role for decision confidence
Predicts sequential choice dependencies for continual learning

Drugowitsch et al. (2012). The Journal of Neuroscience
Drugowitsch et al. (2019). PNAS

Mendonça et al. (2020). Nature Communications



Ideal observer models as hypothesis generators

Brain is too high-dimensional to
fully explore by experiments

Use of ideal observer models to
generate hypotheses of brain function



Further questions?



Do rodents learn both weights and biases?

learn weights, fix bias learn bias, fix weights



Simple parameter adjustment across blocked conditions?

identification categorization



Confidence-weighting only for diffusion models?

What about N-AFC with N>2?

after correct choices,

after incorrect choices,

More generally, following choice    after observing 

decision confidence

For diffusion models

Feedback is correct choice: need full posterior                 for all
Feedback is correct/incorrect: again decision confidence



Confidence trumps imperfect feedback

𝛽 = probability of inverted feedback



Further questions?

Find me at the retreat!


