
?

Is the Primate Visual System a Good Model for 
Understanding ConvNets?

Biological and Artificial Vision
Or



• hierarchy: more complex receptive fields can 
be constructed from simpler ones

• concept of a receptive field

• anatomy of visual pathways

Questions or comments: richard_born@hms.harvard.edu

Roadmap

• strengths and weaknesses of CNNs as a tool 
for vision science

• what might be missing from current machine 
vision algorithms?



Anatomy of the visual pathways

By Miquel Perello Nieto - Own work, CC BY-SA 4.0



Visual field cuts to localize lesions

http://www.cksu.com/



V1
“striate”
area 17

S.C.
A.O.S.
S.C.N.

LGN
106 axons

“extra-striate”
(n > 30)

retinotopic

Where:
spatial

perception
(world-centered)

What:
object

recognition
(object-centered)

less
retinotopic

efficient &
specialized

representations

How vision works: the Big Picture

dorsal

ventral



Where

What

Parallel pathways in visual cortex



Mishkin et al. 1983

What? versus Where?



2 mos. 3 mos.

6 mos. 9 mos.

Posterior parietal lesion: hemispatial neglect

Model Patient’s
Copy



1. Visual Disorientation
(trees, but no forest)

2. Optic Ataxia
(failure of visually guided pointing)

3. Ocular Apraxia
(unable to redirect gaze to targets)

Where?: Balint’s syndrome from lesions of posterior parietal cortex



Where?: A person with Balint’s syndrome attempting to pour water into a glass



What?: Visual agnosias are produced by lesions of inferior temporal cortex



Receptive Field

• the particular pattern of the stimulus that 
maximally activates the neuron

• the region of a sensory epithelium that can 
influence a given neuron’s firing rate



David Hubel
 1926-2013

Torsten Wiesel

50 mm

Hubel & Wiesel



Hubel & Wiesel

1 deg

Center-surround organization of RGC receptive fields



Center-surround organization of RGC receptive fields

time



x
x

x
x

X = “on” response
   = “off” response

“center-surround opponency”
H. K. Hartline 1940s & 50s

Center-surround organization of RGC receptive fields



x

X = “on” response
   = “off” response

H.K. Hartline 1940s & 50s

A very old receptive field

ca. 148 Ma

Response
(spikes/s)

stimulus diameter (deg.)

surround
suppression

RF model



The Problem of Limited Dynamic Range



horizontal cell 
/(S)

The Horizontal Cell provides scaled negative feedback
from a group of neighboring photoreceptors

output 
(bipolar cell)

+10
0

0

0

0
0

0
0
0

0

1

10
+10
+10

+10

+10

+10
+10

+10
+10
+10

+10

10

1

photoreceptors



Lateral inhibition produces normalization

Cortical Normalization

keeps population activity within a 
stable range



Luminance

Edges are informative

dL / dx



Simultaneous contrast: color



CHANGE
space = contrast

wavelength = color contrast
time = transience

space/time = motion

space/color = simult.
        color
        contrast



Livingstone & Hubel 1984

33 spikes/sec

time (sec)

Double-opponency: space and chromaticity

G+
R–

G–
   R+

cyan 1° spot

red 1° spot

cyan 15° spot

red 15° spot



Simultaneous contrast: color



HIERARCHY

•Larger, more complex receptive fields are 
constructed by wiring up a bunch neurons with 
smaller, simpler receptive fields.

• “Hierarchical Elaboration of Receptive Fields”



Striate
Cortex

(V1)

Hubel & Wiesel

1 deg

Simple cell in primary visual cortex (V1)



xxxx

xxxx

xxxx

Hubel & Wiesel 1962

LGN

Striate Cortex

X = excitation
   = inhibition

+
+

+

Circuit for a simple cell

“Convolution”: neuronal selectivity 
as encoded in synaptic weights



Convolution and filtering

“filter” or “kernel”

original image

feature map



2 3 4 5 6 7 8
0

2

4

6

sum of 9 pixels

lo
g 1

0(
#)

sum of nine 
adjacent pixels

“Whitened”: Ñ2×G or what ctr-sur does

2 3 4 5 6 7 8
0

2

4

6

sum of nine 
random pixels

lo
g 1

0(
#)

Suspicious Coincidences

Sophie in the Arctic

p < 0.0100

natural_images.m

Convolution is simple

inspired by Horace Barlow



Striate
Cortex

(V1)

1 deg

Hubel & Wiesel

Complex cell in primary visual cortex (V1)



Hubel & Wiesel 1962

Circuit for a complex cell

“Pooling”: combines outputs with similar 
selectivities to achieve invariance



Attneave

LGN
(center-surround)

Complex

Simple

End-stopped

Hubel & Wiesel

represent
“suspicious 

coincidences”

invariance
a) position
b) sign of contrast

remove known
correlations: curvature

remove known
correlations: contrast

Efficient representations via hierarchical processing



Machine Vision
• “The good, the bad and the ugly” –T. Serre

• Five minute break!



Riesenhuber & Poggio 1999

S1

C1

S2

C2

S3

C3

S4

selectivity

selectivity

generalization

generalization

selectivity

“Cardinal Cells”?
(Barlow 1972)

Feedforward models can account for many visual capacities.

convolution

pooling



slide courtesy of Dr. Carlos Ponce

Convnets

https://medium.com/@smallfishbigsea/

set of functions hierarchically arranged as layers (similar to visual areas)

MT

each function is a fairly simple operation (biologically plausible):

1) Convolution

2) Rectification

3) Pooling

4) Normalization



Biologically plausible operations

slide courtesy of Dr. Carlos Ponce

2) Rectification

4) Normalization

keeps population activity within a 
stable range

1) Convolution

neuronal selectivity as encoded 
in synaptic weights

keeps convolution
values positive

3) Pooling

complex cell-like operation, combines 
outputs with similar selectivities to 

achieve invariance



Convnets crush

Statistics provided by ILSVRC

Human



Convnets: The Good

For many more examples, see Serre, T (2019) “Deep learning: 
The good, the bad and the ugly,” Annu. Rev. Vis. Sci.

1. Super-human performance:
a) ILSVRC (Russakovsky et al. 2015)
b)  face recognition (Phillips et al. 2018)

2. Generalization to other tasks:
a) *Human scan paths (Bethge lab)

3. In silico electrophysiology:
a) V1 nonlinearities (Bethge lab)

4. Fitting physiology data:
a) Ventral stream visual areas (Yamins et al. 2014)

5. Tool for exploring high-dimensional feature space:
a) *Super-natural stimuli (Ponce et al. 2019)



Cones

Fovea & Acuity



“The muscles were of necessitie provided 
and given to the eye, that so it might move 
on every side: for if the eye stoode fast, and 
immoveable, we should be constrained to 
turne our head and necke (being all of one 
peece) for to see: but by these muscles it 
now moveth it selfe with such swiftnes and 
nimblenes, without stirring of the head, as 
is almost incredible …”

 Andreas Laurentius (1599)
“A Discourse of the Preservation of Sight: 
of Melancholike Diseases; of Rheumes, 
and of Old Age”

How many letters can you read?



Yarbus 1957

Predicting scan paths



Predicting scan paths

Recent results suggest that state-of-the-art saliency models perform far from optimal
in predicting fixations. This lack in performance has been attributed to an inability to 
model the influence of high-level image features such as objects. Recent seminal 
advances in applying deep neural networks to tasks like object recognition suggests 
that they are able to capture this kind of structure. However, the enormous amount of 
training data necessary to train these networks makes them difficult to apply directly to 
saliency prediction. We present a novel way of reusing existing neural networks that 
have been pretrained on the task of object recognition in models of fixation prediction. 
Using the well-known network of Krizhevsky et al. (2012), we come up with a new 
saliency model that significantly outperforms all state-of-the-art models on the MIT 
Saliency Benchmark. The structure of this network allows new insights in the 
psychophysics of fixation selection and potentially their neural implementation. To train 
our network, we build on recent work on the modeling of saliency as point processes.

Kümmerer, Theis & Bethge 2015



Predicting scan paths with AlexNet

Kümmerer, Theis & Bethge 2015

We make the code and trained model parameters for 
DeepGaze III publicly available at

https://github.com/matthias-k/DeepGaze

https://github.com/matthias-k/DeepGaze


The Bad: Poor noise immunity

Geirhos et al. 2018



The Ugly: Failure to generalize

Geirhos et al., NeurIPS 2018

Train Test

Classification performance of ResNet-50 trained from 
scratch on (potentially distorted) ImageNet images.

Performance

standard standard Super-human

additive
uniform

noise

additive
uniform

noise
Super-human

additive
uniform

noise

salt &
pepper
noise

Chance level



CNNs: predictive models for neuroscience?

MT

test efficacy of new stimuli
anticipate alternative interpretations

ideas for new experiments

slide courtesy of Dr. Carlos Ponce



Ponce et al. 2019

Using convnets to study neurons



Ponce et al. 2019

Using convnets to study neurons



Machine Vision
• What might be missing?

• Feedback?

• Functional architecture?



Feedback connections carry information in the opposite direction: top-down

Retina

LGN

Feedback (FB)

Feedforward (FF) V1

MT

Retina

LGN

V4

V2 V2

V3



Retrograde tracing with G-deleted rabies virus

JoJo Nassi

Wickersham et al. (2007)

1

2
3

4

V1

V4

V2

V2



V2 feedforward to V4
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Monkey: FB neurons are numerous and segregated in different layers

JoJo Nassi & Vladimir Berezovskii



Feedback and predictive coding

Retina

LGN

Rao & Ballard 1999

FB

FF



R
etina

LG
N

Feedforward Feedforward FeedforwardError SignalError Signal
(Feedforward)

Error
Signal

Prediction
(Feedback)

Prediction

Inhibition
Prediction

Rao & Ballard 1999

Predictive
EstimatorInput Predictive

Estimator

prediction error

“posterior”

FF FB

Feedback and predictive coding



V1

MT

Retina

LGN

V4

V2 V2

V3V3

V2V2

Feedback inactivation

feedback
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Ponce et al., Nat. Neurosci. 2008
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Cooling with cryoloops to reversibly inactivate feedback
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End-stopping is also decreased during inactivation of feedback
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Lotter, Kreiman & Cox, Nat. Mach. Intell. 2020

Deep neural networks that predict: PredNet

The network is trained to minimize the activations of the error units across the training set using 
(truncated) backpropagation through time, with the error units at each layer contributing to the total 
loss. Similar to the original work, the results presented here use a model trained for next-frame 
prediction on a car-mounted camera dataset (KITTI). Thus, the model is trained in an unsupervised 
or ‘self ’-supervised manner that does not require any external labels or other forms of supervision.



Deep neural networks that predict: PredNet
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Monkey

Lotter, Kreiman & Cox, Nat. Mach. Intell. 2020

PredNet



PredNet has other interesting functional properties

1. IT-like responses of high levels to learned image sequences:

2. V1/V2-like responses of low levels to illusory contours

3. Flash-lag effect

Lotter, Kreiman & Cox, Nat. Mach. Intell. 2020



• hierarchy: more complex receptive fields are constructed 
from simpler ones

Questions or comments: richard_born@hms.harvard.edu

• concept of a receptive field x
x
x

• anatomy of the visual pathways

Roadmap1



Questions or comments: richard_born@hms.harvard.edu

Roadmap2

• strengths and weaknesses of CNNs as a tool for vision 
science

• what might be missing from current machine vision 
algorithms?
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