Welcome to Neuro 140/240! Biological and Artificial Intelligence

Teaching assistants

Morgan Talbot

mtalbot@mit.edu

Yervand Azatian

<u>Yervand_Azatian@hms.harvard.edu</u>

https://canvas.harvard.edu/courses/130029

https://klab.tch.harvard.edu/academia/classes/BAI/bai.html

Seminar style class

01/23	Gabriel Kreiman	AI+CS+Neuroscience
01/30	Richard Born	Neuroscience
02/06	Gabriel Kreiman	Computational Neuroscience
02/13	Jan Drugowitsch	Computational Neroscience
02/20	Haim Sompolinsky	Computational Neuroscience
02/27	Sam Gershman	Psychology
03/05	Tomer Ullman	Psychology
03/12	Spring break	
03/19	Andrei Barbu	Computer Science
03/26	Thomas Serre	Computer Vision
04/02	Cengiz Pehlevan	Applied Math
04/09	Will Xiao	Computational Neuroscience
04/16	Gabriel Kreiman + c	others Discussion

Project-based class

One project in the whole semester

Individual projects

Project must be separate from any undergraduate/graduate research you are conducting

All projects require coding

Use office hours!

https://klab.tch.harvard.edu/academia/classes/BAI/2024/Neuro140HomeworkProjects.pdf

https://klab.tch.harvard.edu/academia/classes/BAI/FAQ.html

Sample projects

- 1. Building models that can generalize
- 2. Can AI understand humor?
- 3. Parameters and overfitting in linear systems and neural networks
- 4. Visual illusions
- 5. Working memory
- 6. Turing test
- 7. Build your own project [Approval by TAs/Faculty required]

https://klab.tch.harvard.edu/academia/classes/BAI/2024/Neuro140HomeworkProjects.pdf

Pre-requisites

- 1. This is NOT a coding class
- 2. There will be tutorials on basic machine learning
- 3. Neuroscience background is not required

Tutorials

- 02/01/2024: Tutorial 1: Basic tools. Pattern recognition with MNIST
- 02/08/2024: Tutorial 2: Neural networks. Adversarial examples. Generative adversarial networks
- 03/01/2024: Tutorial 3: Transfer learning . Image classification
- 03/08/2024: Tutorial 4: More advanced topics and project-related questions

Grades

Due 02/06/2024: Due 02/13/2024: Due 03/05/2024: Due 04/09/2024: Due 04/23/2024: Due 05/07/2024: Class participation: Total:

Deliverable 1 Deliverable 2 Midterm report Deliverable 4 Project presentation Final project report 5 points 5 points 15 points 10 points 5 points 50 points 10 points 100 points Discussion with other students and with people outside the class is encouraged throughout the course. Students can also utilize any relevant material from the library or the web. Students must adequately cite any material that they use.

<u>Each student must work on his/her own project</u>. No two projects can be identical. There can be no group projects. All work should be entirely the student's own work. The use of textbooks, books, articles, and web resources is encouraged.

The final write-up has to be exclusively the work of the student. If material is reported from other sources, it should be reported as a quote and cited. Projects involving code and algorithms can use existing code from public repositories. Any such code should be adequately cited. All code used in any models or simulations should be turned in accompanying the final report.

ChatGPT (or similar LLM)

You CAN use ChatGPT (or similar algorithms)

- 1. You have to cite it, provide the prompts and explain exactly what you did and when
- You are responsible for all the content [E.g., if something is wrong, you cannot answer "it was not me, it was ChatGPT"]

Office Hours

Gabriel Kreiman Tue 12-1pm. ZOOM By appointment

Morgan Talbot: Thursdays, 6-7pm ET. Location: Northwest 243

Yervand Azatian: Tuesdays 5-6 PM. Location: Northwest 243

140 versus 240?

Questions?

https://klab.tch.harvard.edu/academia/classes/BAI/FAQ.html