Neuro 140/240
Tutorial 2

Morgan Talbot
Outline

1. Intro to Pytorch Dataset and Dataloader classes
2. Code walkthrough for Assignment 2
3. Building intuition for ML with neural networks
4. Survey of some common neural network types (CNNs, RNNs, autoencoders)
Part 1: Datasets and DataLoader

For reference - a good introduction to these important Pytorch classes can be found here: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
Any Dataset class only needs three functions: `__init__`, `__len__`, and `__getitem__`. `__init__` is a constructor that sets up the mapping between images and labels, including how to access the images (e.g., storing directory paths to each image file). `__len__` returns the number of images in the Dataset. `__getitem__` returns one image and one label when given an index (e.g., `__getitem__(4)` gets image number 4 in the Dataset, along with its label. This function may also apply transforms.

```python
>>> my_dataset[2]  # (PIL Image, 8)
```

```python
>>> len(my_dataset)
10
```

__init__ function
sets up image files, labels, transforms, etc

__len__ function
returns the number of images in the Dataset

__getitem__ function
returns one image and one label when given an index (e.g., `__getitem__(4)` gets image number 4 in the Dataset, along with its label. This function may also apply transforms.
The PyTorch DataLoader class has a Dataset.

Transforms, such as:
- Format conversion
- Resizing
- Normalization
- Vertical/horizontal flips
- Random cropping

Batch
- batch_size=3
- shuffle=True

Feed into model for training

Model (e.g., convnet)

Dataset instance

Image:

<table>
<thead>
<tr>
<th>Image</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Pytorch **DataLoader** class (the **DataLoader** has a **Dataset**)

Transforms, such as:

- Format conversion
- Resizing
- Normalization
- Vertical/horizontal flips
- Random cropping

Note: transforms are typically applied within the **Dataset**'s `__getitem__` function, which the **DataLoader** calls to retrieve each image. It is also possible for the **DataLoader** to apply its own transforms.

Batch

- `batch_size=3`
- `shuffle=True`

Feed into model for training

Model (e.g., convnet)

The **DataLoader** loads images in batches from the **Dataset** which is passed to it upon initialization. It does so in parallel using many CPU thread "workers", which is important because the speed of training is often limited by loading the data rather than all the computations for training the network itself. `num_workers=8` is a decent starting point.
Part 2: Code walkthrough for Assignment 2
Part 3: Building intuition for ML with neural networks
List of key concepts

- Linear vs non-linear models
- Neural networks as function approximators
- Engineered vs learned features
- Basics of neural networks
- Backpropagation and gradient descent
- Overfitting
- CNNs
- RNNs
- Generative models
Features – aspects of input useful for the task

4 legs?

But then, how do you find legs in the image?
Linear functions

\[y = mx + b \]

\[y = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n + b \]

Non-linear functions

\[y = x^2 \]

\[y = c_1 x_1^2 + \sin(x_2) + \ldots \]
Linear and non-linear classifiers

How would you draw a line to separate the classes (red and blue) in these datasets?

Data A

Decision rule: $y > 2x - 1$?
(if so, say “blue”)

Data B

Decision rule: $y > (x-4)^2$?

Recall: A feature is some aspect of the input that is useful for a task.

- For example, in the plots above, x and y are features of each dot!
- Given only x and y, we can classify the dots as “red” or “blue” using a decision rule.
How would you draw a line to separate the classes (red and blue) in these datasets?

Data A

Decision rule:

\[y > 2x - 1 \]

(if so, say “blue”)

Data C

Recall: A feature is some aspect of the input that is useful for a task.

- For example, in the plots above, \(x \) and \(y \) are features of each dot!
- Given only \(x \) and \(y \), we can classify the dots as “red” or “blue” using a decision rule.
Linear and non-linear classifiers

Decision rule:

$y > (x-4)^2$?

Idea: transform the data so it becomes easy to classify with a straight line

When we use $a = (x-4)^2$ as a feature (in addition to y), our decision rule is linear!
Linear and non-linear classifiers

Idea: Can we find some non-linear features for data C, such that our final decision rule is linear?
That is precisely what deep learning does!
Linear and non-linear classifiers

Decision rule: $y > (x-4)^2$?

Making a linear function composed of linear functions results in... a linear function. For example:

$a = 2x + 3$, $b = 5x + 4$, $c = x + 1$

$3a + 2b + c + 1 = 16x + 19$

You can think of this as a “linear combination” of functions
Features – aspects of input useful for the task

4 legs?

But then, how do you find legs in the image?
Researchers have spent their entire careers finding useful features
Deep Learning: Let’s learn the right features

Learned features → Machine Learning System → chair

Deep Learning System
Feed-forward neural networks: a foundation
Feed-forward neural networks: a foundation
Feed-forward neural networks: a foundation

The equation view:

\[x_1 = 3 \]
\[x_2 = 1 \]
\[h_1 = -3x_1 \]
\[h_2 = 0.5x_1 + x_2 \]
\[h_3 = 2x_1 + 5x_2 \]
\[y = \frac{1}{3}h_1 + 2h_2 + h_3 \]
\[= \frac{1}{3}(-3x_1) + 2(0.5x_1 + x_2) + 1(2x_1 + 5x_2) \]

The network view:

Problem 1: we need \(y \) to be a probability between 0 and 1

Problem 2: \(y \) is still just a linear function of \(x \! \! \! \! \! \! \! \! \! 1 \)

The matrix-vector view:

\[h = W_1 x \]
\[y = W_2 h \]
\[y = W_2 (W_1 x) \]
Feed-forward neural networks: a foundation

Problem 1: we need y to be a probability between 0 and 1

Problem 2: y is still just a linear function of x!

Solution 1: a sigmoid activation function

$$y_{out} = \text{sigmoid}(y) = \frac{e^y}{1+e^y}$$

Solution 2: Let’s put non-linear activation functions on h_1, h_2, and h_3 as well! (e.g. sigmoid, ReLU)

Universal Approximation Theorem:

A feed-forward network with 1 or more hidden layers, enough neurons, and a non-linear activation function for each neuron can approximate ANY continuous function with ANY degree of accuracy.

For example: probability of being a cat = $f($pixels$)$
Gradient descent:

1. Define a “loss function”, such as:
 \[(y_{\text{out}} - y_{\text{label}})^2\]

 Intuition: the loss measures the network’s “badness”

2. Calculate the partial derivative of the loss with respect to each parameter. These partial derivatives are called *gradients*.

 Intuition: if I increase parameter \(W_{\text{example}}\) by a tiny bit, does the loss go up or down? (by how much?)

3. Do this for every parameter: subtract the parameter’s *gradient* times the *learning rate* (a small value, e.g. 0.001) from the parameter’s original value, and set this as the parameter’s new value.

 Intuition: if increasing \(W_{1:(2,3)}\) improves loss, then increase it! If it worsens the loss, decrease it! If no effect, do nothing.

4. Repeat 2 and 3 many times, using many different data points, to reduce the loss!
We have our network. How does it learn?

Gradient descent:

1. Define a “loss function”, such as: \((y_{out} - y_{label})^2\)

 Intuition: the loss measures the network’s “badness”

2. Calculate the partial derivative of the loss with respect to each parameter. These partial derivatives are called *gradients*

 Intuition: if I increase parameter \(w_{example}\) by a tiny bit, does the loss go up or down? (by how much?)

3. Do this for every parameter: subtract the parameter’s *gradient* times the *learning rate* (a small value, e.g. 0.001) from the parameter’s original value, and set this as the parameter’s new value.

 Intuition: if increasing \(w_{1:(2,3)}\) improves loss, then increase it! If it worsens the loss, decrease it! If no effect, do nothing.

4. Repeat 2 and 3 many times, using many different data points, to reduce the loss!
We have our network. How does it learn?

Backpropagation:

Just a method for finding the gradients, using the chain rule from calculus.

Intuition: the gradients for weights near the output end (where loss is calculated) are easy to find. Once you have these gradients, you can use them to find the gradients of the next earliest layer - continue “propagating” the gradients backwards until you arrive at the earliest set of weights.

Here, you would first find the gradients for each value in w_2, then use those to find the gradients for w_1.

![Diagram of a neural network showing the flow of information from input to output and the process of backpropagation.](image)
Learning rate: a very important “hyperparameter”

The learning rate, together with the gradients, determines the overall size of our steps in the loss landscape.

Small learning rate: slow, (+ tend to get stuck in local minima)

Large learning rate: unstable
A neural network can (in theory) approximate any function, which it learns from (almost never enough) data.

How to fix underfitting:
- Bigger model - more neurons, more layers, etc (in practice, this makes it easier to fit complex functions)
- Train for more epochs

How to fix overfitting:
- Simpler model
- Reduce training epochs (“early stopping”)
- Regularize (e.g., dropout, adding an L_2 regularizer term to the loss)
- Add more data

Fast.ai, Ryan Holbrook (L to R)
Multiple layers can learn increasingly complex features

Classification (is it a face?)

Yes

No

High level features

Medium level features

Low level features

Input image

Input (1 neuron for each pixel value)

[Honglak Lee]
End of tutorial recording here
Convolutional Neural Networks (CNNS)

Before, we turned an image matrix/tensor into one long vector. But images have 2D structure - let’s exploit that!

Visualization of a convolution operation

Legend:
- Blue grid = input image
- Dark blue shadow = “kernel”
- Green grid = activation values of second layer

Example kernels. Each kernel is a feature detector!

One convolution produces a new “image” that encodes *features* instead of *pixels*. We can apply another convolution to this!
Convolutional Neural Networks (CNNS) (slide version 2, more verbose)

Before, we turned an image matrix/tensor into one long vector. But images have 2D structure - let’s exploit that!

In the visualization (right), the blue grid is an input image. The darker blue shadow is a “kernel” - we apply the same neural network function to each patch of the image. The green grid represents neurons in the second layer of the network.

Intuition: let’s say we have a neuron in our second layer that recognizes eyes. Convolution allows this neuron to find eyes anywhere in the image!

**We apply many different “kernels” (each of which may detect a specific feature), to every patch of the image. Eye detector, ear detector, banana detector, etc…)
Feed-forward nets are not ideal for data with a sequential structure.
Feed-forward nets are not ideal for data with a sequential structure.

Inputs:
- We
- The
- cook
- beans
- sings

Outputs:
- <other>
- <noun>
- <verb>
Idea behind recurrent neural networks (RNNs): save some activations and feed them back into the network at the next time step.

Outputs:
<other>
<noun>
<verb>

Inputs:
We
The
cook
beans
sings

We cook beans. The cook sings.
Recurrent Neural Networks (RNN) intuition

1. RNNs maintain a state (here, “A”)
2. The current state is combined with the next input in the sequence to produce the next state.
3. Each state is used to make some kind of prediction at time t

Note: each black arrow here represents an entire feed-forward network! (at least the vertical ones)
Generative models

https://thispersondoesnotexist.com
Generative models: autoencoders

Input: A picture in our dataset

Output: The same picture, reconstructed (we use the original image as our “label”)

Loss:
mean squared error of pixel values

Intuition: the more different the images are from each other, the higher the loss

We have our inputs, outputs, network model, and loss. *Everything we need for gradient descent and backpropagation!*

Our model learns to reconstruct images using a low-dimensional vector (in the latent space)

We can generate a new image by feeding a randomly-generated low-dim vector to the “decoder”